請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63617
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳俊傑 | |
dc.contributor.author | Yi-Hsuan Huang | en |
dc.contributor.author | 黃怡瑄 | zh_TW |
dc.date.accessioned | 2021-06-16T17:14:54Z | - |
dc.date.available | 2012-08-20 | |
dc.date.copyright | 2012-08-20 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-18 | |
dc.identifier.citation | 劉人鳳,2004: 利奇馬颱風之都卜勒雷達分析。國立台灣大學大氣科學研究所碩士論文,98頁。
連國淵,2009: 颱風路徑與結構同化研究-系集卡爾曼濾波器。國立台灣大學大氣科學研究所碩士論文,87頁。 Abarca, S. F., and K. L. Corbosiero, 2011: Secondary eyewall formation in WRF simulations of hurricanes Rita and Katrina (2005). Geophys. Res. Lett., 38, L07802, doi:10.1029/2011GL047015. Bell, M. M., M. T. Montgomery, and W.-C. Lee, 2012: An axisymmetric view of eyewall evolution in Hurricane Rita (2005). J. Atmos. Sci., 8, 2414-2432. Black, M. L., and H. E. Willoughby, 1992: The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev. 120, 947-957. Bui, H. H., R. K. Smith, and M. T. Montgomery, 2009: Balanced and unbalanced aspects of tropical cyclone intensification. Meteorol. Soc. 135: 1715–1731. Chen, Y., and M. K. Yau (2001), Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification, J. Atmos. Sci., 58, 2128-2145. ____, G. Brunet, and M. K. Yau (2003), Spiral bands in a simulated hurricane. Part II: Wave activity diagnostics, J. Atmos. Sci., 60, 1239-1256. ____, and C. Snyder, 2007: Assimilating vortex position with an ensemble Kalman filter. Mon. Wea. Rev., 135, 1828-1845. Chou, K.-H., C.-C. Wu, P.-H. Lin, S. D. Aberson, M. Weissmann, F. Harnisch, and T. Nakazawa, 2011: The impact of dropwindsonde observations on typhoon track forecasts in DOTSTAR and T-PARC. Mon. Wea. Rev. 139, 1728-1743. Corbosiero, K. L., J. Molinari, A. R. Aiyyer, and M. L. Black, 2006: The structure and evolution of Hurricane Elena (1985). Part II: Convective asymmetries and evidence for vortex Rossby waves. Mon. Wea. Rev., 134, 3073–3091. Didlake, A. C., and R. A. Houze, 2009: Convective-scale downdrafts in the principal rainband of Hurricane Rita (2005). Mon. Wea. Rev., 137, 3269-3293. ____, and ____, 2011: Kinematics of the secondary eyewall observed in Hurricane Rita (2005). J. Atmos. Sci., 68, 1620–1636. Dritschel, D. G., and D. Waugh, 1992: Quantification of the inelastic interaction of unequal vortices in two-dimensional vortex dynamics. Phys. Fluids, 4A, 1737-1744. Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107. Elsberry R. L. and P. A. Harr, 2008: Tropical cyclone structure (TCS08) field experiment science basis, observational platforms, and strategy. Asia-Pacific J. Atmos. Sci., 44, 3, 209-231. Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143-10162. Fuentes, O. U. V., 2004: Vortex filamentation its onset and its role on axisymmetrization and merger. Dyn. Atmos. Oceans, 40, 23-42. Fujita, T., D. J. Stensrud, and D. C. Dowell, 2008: Using precipitation observations in a mesoscale short-range ensemble analysis and forecasting system. Wea. Forecasting, 23, 357-372. Grell, G.A. and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geoph. Res. Let., 29, NO 14., 10.1029/2002GL015311, 2002. Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50, 3380–3403. Hawkins, J. D., and M. Helveston, 2008: Tropical cyclone multiple eyewall characteristics. 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL. Amer. Meteor. Soc., 14B.1. Hence, D. A. , and R. A. Houze Jr., 2008: Kinetic structure of convective-scale elements in the rainbands of Hurricanes Katrina and Rita (2005). J. Geophys. Res., 113, D15108, doi://10.1029/2007JD009429. ____, and ____, 2012: Vertical structure of tropical cyclones with concentric eyewalls as seen by the TRMM precipitation radar. J. Atmos. Sci., 69, 1021-1036. Hill, K. A., and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 3294-3315. Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. Mon. Wea. Rev., 132, 103-120. ____, and J.-O. J. Lim, 2006: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151. _____., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341. Hogsett, W., and D.-L. Zhang, 2009: Numerical simulation of Hurricane Bonnie (1998). Part III: Energetics. J. Atmos. Sci., 66, 2678–2696. Houze, R. A. Jr., S. S. Chen, W.-C. Lee, R. F. Rogers, J. A. Moore, G. J. Stossmeister, M. M. Bell, J. Cetrone, W. Zhao, and S. R. Brodzik, 2006: The Hurricane Rainband and Intensity Change Experiment: Observations and modeling of Hurricanes Katrina, Ophelia, and Rita. Bull. Am. Meteor. Soc. 87, 1503-1521. ____, S. S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement, Science, 315, 1235– 1239. Huang, H.-P., and W. A. Robinson, 1998: Two-dimensional turbulence and persistent zonal jets in a global barotropic model, J. Atmos. Sci., 55, 611–632. Huang, Y.-H., M. T. Montgomery, C.-C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662-674. Kossin, J. P., and M. Sitkowski, 2009: An objective model for identifying secondary eyewall formation in Hurricanes. Mon. Weather Rev., 137, 876-892. Kuo, H.-C., L.-Y. Lin, C.-P. Chang, and R. T. Williams, 2004: The formation of concentric vorticity structures in typhoons. J. Atmos. Sci., 61, 2722–2734. ____, W. H. Schubert, C.-L. Tsai, and Y.-F. Kuo, 2008: Vortex interaction and barotropic aspects of concentric eyewall formation. Weather Rev., 137, 5182-5198. ____, C.-P. Chang, Y.-T. Yang, and H.-J. Jiang, 2009: Western North Pacific typhoons with concentric Eyewalls. Mon. Weather Rev., 137, 3758-3770. Judt, F., and S. S. Chen., 2010: Convectively generated potential vorticity in rainbands and formation of the secondary eyewall in Hurricane Katrina of 2005. J. Atmos. Sci., 67, 3581-3599. MacDonald, N. J., 1968: The evidence for the existence of Rossby type waves in the hurricane vortex. Tellus, 20, 138–150. Martinez, Y., G. Brunet, M. K. Yau, and X. Xang, 2011: On the dynamics of concentric eyewall genesis: Space-time empirical normal modes diagnosis. J. Atmos. Sci., 68, 457-476. McWilliams, J. C., 1990: The vortices of two-dimensional turbulence. J. Fluid. Mech., 219, 361-385. Melander, M. V., J. C. McWilliams, and N. J. Zabusky, 1987: Axisymmetrization and vorticity-gradient intensification of an isolated two-dimensional vortex through filamentation. J. Fluid Mech., 178, 137–159. Meng, Z., and F. Zhang, 2007: Test of an ensemble Kalman filter for mesoscale and regionalscale data assimilation. Part II: Imperfect model experiments. Mon. Wea. Rev., 135, 1403-1423. ____, and F. Zhang, 2008a: Test of an ensemble Kalman filter for mesoscale and regionalscale data assimilation. Part III: Comparison with 3DVar in a real-data case study. Mon. Wea. Rev., 136, 522-540. ____, and F. Zhang, 2008b: Test of an ensemble Kalman filter for mesoscale and regionalscale data assimilation. Part IV: Comparison with 3DVar in a month-long experiment. Mon. Wea. Rev., 136, 3671-3682. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102(D14), 16,663-16,682. Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes, Q. J. R. Meteorol. Soc., 123, 435– 465. Moon, Y. D. S. Nolan, and M. Iskandarani, 2010: On the use of two-dimensional incompressible flow to study secondary eyewall formation in tropical cyclones. J. Atmos. Sci., 67, 3765–3773. Nong, S., and K. A. Emanuel, 2003: A numerical study of the genesis of concentric eyewalls in hurricane. Quart. J. Roy. Meteor. Soc., 129, 3323–3338. Ortt, D., and S. S. Chen, 2008: Effect of environmental moisture on rainbands in Hurricane Rita and Katrina (2005). 28th Conference on Hurricanes and Tropical Meteorology, American Meteorological Society, Miami, FL , Amer. Meteor. Soc., preprint 5C.5. Qiu, X., Z.-M. Tan, and Q. Xiao, 2010: The roles of vortex Rosbby waves in Hurricane secondary eyewall formation. Mon. Wea. Rev.,138, 2092-2019. Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118, 891–917. Rozoff, C. M., W. H. Schubert, B. D. McNoldy, and J. P. Kossin, 2006: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63, 325–340. Samsury, C. E. ,and E. J. Zipser, 1995: Secondary wind maxima in Hurricanes: airflow and relationship to rainbands. Mon. Wea. Rev., 133, 3502-3517. Schubert, W. H. and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 1687-1697. Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378-394. Sikowstki, M., J. P. Kossin, and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 3829-3847. Smith, R. K., M. T. Montgomery, Vogl S., 2008: A critique of Emanuel’s hurricane model and potential intensity theory. Q. J. R. Meteorol. Soc., 134, 551–561. ____, M. T. Montgomery, and S. V. Nguyen, 2009: Tropical cyclone spin-up revisited. Q. J. R. Meteorol. Soc. 135: 1321–1335. ____, and M. T. Montgomery, 2010: Hurricane boundary-layer theory. Q. J. R. Meteorol. Soc., 136, 1–6. Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 1663-1677. Terwey, W. D., and M. T. Montgomery, 2008: Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res., 113, D12112. Torn, R. D., and G. J. Hakim, 2009: Ensemble data assimilation applied to RAINEX observations of Hurricane Katrina (2005). Mon. Wea. Rev., 137, 2817-2829. Vallis, G. K., and M. E. Maltrud, 1993: Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr., 23, 1346–1362. Wang, Y., 2002a: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59, 1213–1238. ____, 2002b: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59, 1239–1262. ____, 2008: Rapid filamentation zone in a numerically simulated tropical cyclone. J. Atmos. Sci., 65, 1158–1181. ____, 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 1250-1273. Weissmann M., F. Harnisch, C.-C. Wu, P.-H. Lin, Y. Ohta, K. Yamashita, Y.-K. Kim, E.-H. Jeon, T. Nakazawa, and S. Aberson, 2011: The influence of dropsondes on typhoon track and mid-latitude forecasts. Mon. Wea. Rev., 139, 908-920. Willoughby, H. E., 1979: Forced secondary circulations in hurricanes, J. Geophys. Res., 84, 3173– 3183. ____, J. A. Clos, and M. G. Shoreibah, 1982: Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex, J. Atmos. Sci., 39, 395– 411. ____, H.-L. Jin, S. J. Lord, and J. M. Piotrowicz, 1984: Hurricane structure and evolution as simulated by an axisymmetric, nonhydrostatic numerical model, J. Atmos. Sci., 41, 1169–1186. _____, and P. G. Black, 1996: Hurricane Andrew in Florida: Dynamics of a disaster, Bull. Am. Meteorol. Soc., 77, 543–549. _____, R. W. R. Darling, and M. E. Rahn, 2006: Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Mon. Wea. Rev., 134, 1102–1120. Wu, C.-C., P.-H. Lin, S. Aberson, T.-C. Yeh, W.-P. Huang, K.-H. Chou, J.-S. Hong, G.-C. Lu, C.-T. Fong, K.-C. Hsu, I-I Lin, P.-L. Lin, C.-H. Liu, 2005: Dropsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR): An overview. Bulletin of Amer. Meteor. Soc., 86, 787-790. _____, K.-H. Chou, P.-H. Lin, S. Aberson, M. S. Peng, and T. Nakazawa, 2007: The impact of dropwindsonde data on typhoon track forecasting in DOTSTAR. Wea. and Forecasting, 22, 1157-1176. _____, H.-J. Cheng, Y. Wang, and K.-H. Chou, 2009: A numerical investigation of the eyewall evolution in a landfalling typhoon. Mon. Wea. Rev., 137, 21-40. _____, G.-Y. Lien, J.-H. Chen, and F. Zhang, 2010: A New Approach for Tropical Cyclone Initialization Based on the Ensemble Kalman Filter (EnKF). J. Atmos. Sci., 67, 3806-3822 _____, Y.-H Huang, and G.-Y. Lien, 2012a: Concentric eyewall formation in Typhoon Sinlaku (2008). Part I: Assimilation of T-PARC data based on the ensemble Kalman filter (EnKF). Mon. Wea. Rev., 140, 506-527. _____, S.-G. Chen, C.-C. Yang, P.-H. Lin, and S. D. Aberson, 2012b: Potential vorticity diagnosis of the factors affecting the track of Typhoon Sinlaku (2008) and the impact from dropwindsonde data during T-PARC. Mon. Wea. Rev., 140, 2670-2688. Yano, J.-I., and K. A. Emanuel, 1991: An improved model of the equatorial troposphere and its coupling with the stratosphere, J. Atmos. Sci., 48, 377– 389. Yussouf, N., and D. J. Stensrud, 2010: Impact of phased-array radar observations over a short assimilation period: Observing system simulation experiments using an ensemble Kalman. Mon. Wea. Rev., 138, 517-538. Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev.,132, 1238-1253. ____, Z. Meng and A. Aksoy, 2006: Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: perfect model experiments. Mon. Wea. Rev., 134, 722-736. ____, and C. Snyder, 2007: Ensemble-based data assimilation. Bull. Amer. Meteor. Soc., 88, 565-568. ____, Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter: Humberto (2007). Mon. Wea. Rev., 137, 2105-2125. Zhang, J. A., R. F. Rogers, D. S. Nolan and F. D. Marks Jr., 2011: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 2523-2535. Zhou, Xiaqiong, Bin Wang, 2011: Mechanism of concentric eyewall replacement cycles and associated Intensity Change. J. Atmos. Sci., 68, 972–988. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63617 | - |
dc.description.abstract | 2008年的颱風辛樂克為T-PARC (THORPEX – Pacific Asian Regional Campaign) 實驗的重點觀測颱風,觀測的資料幾乎涵蓋了整個辛樂克的生命史,此珍貴的颱風觀測資料能夠幫助我們了解許多重要的颱風科學問題。 利用一個新發展的渦旋初始化方法,將T-PARC其間所有的觀測資料以EnKF方法同化至WRF模式中,因而得到一組與觀測相符合的辛樂克颱風資料庫。 此組資料庫具有5公里的水平空間解析度,以及每30或2分鐘一筆的模式輸出資料。 在本研究使用此資料庫探討雙眼牆形成的動力問題,並從一個新的觀點提出一個外眼牆形成的概念模型,概念模擬包含先行的流場特徵與對應的動力詮釋。
模擬結果顯示,在外眼牆形成前約一天左右,渦旋外圍的中低層切向風開始增強及向外擴張,並伴隨邊界層內流的增強及維持,此為概念模型中的兩個外眼牆形成之先行流場特徵。 動力分析結果則發現,當渦旋外圍的邊界層內流足夠強時,能夠有效地將較大的絕對角動量往較小地半徑輸送,使得外圍的切向環流增強擴張,最顯著的切向風增強發生在半徑相對來說較小的區間,此快速的切向風增強在邊界層頂附近最為明顯,並形成主眼牆之外的第二個超梯度風極大值區。該處的超地度風隨時間發展,邊界層內流在經過此區間時,伴隨的空氣質點受超梯度力的作用而迅速減速,進而使得邊界層輻合增加,引發在邊界層頂附近的上升運動。 當該區域具有適合對流發展的熱力及動力條件時,此由邊界層非平衡動力所造成的舉升機制,可激發或支持上方深對流的發展。 本研究所提出的外眼牆形成概念模型,強調邊界層的非平衡動力過程,以及其漸進但持續的影響。 邊界層的非平衡動力是持續且漸進地支持超梯度風半徑區間的主、次環流發展,在加上各流場演變特徵之間存在正回饋的機制,經過足夠的影響時間,熱帶氣旋的第二個眼牆對流區即有機會形成於超梯度風發展的半徑區間。 此外,概念模型中所需要的足夠強之外圍邊界層內流,可用以解釋大多數的強颱會經歷至少一次的眼牆置換過程,而強度較弱的熱帶氣旋則少見雙眼牆或多眼牆的結構。 鑒於邊界層非平衡動力在外眼牆形成過程中可能的關鍵角色,本研究認為模式對邊界層動力以及邊界層和自由大氣之間偶合過程的合理詮釋,會增進我們對雙眼牆結構形成與演變機制的了解,並可能進一步提升雙眼牆過程之預報,包含其形成的時間與半徑區間。 | zh_TW |
dc.description.abstract | Typhoon Sinlaku (2008) is a case in point under T-PARC (THORPEX – Pacific Asian Regional Campaign) with the most abundant flight observations taken and with great potentials to address major scientific issues of tropical cyclones. In a recent study, a new method for vortex initialization based on EnKF data assimilation and the WRF model was adopted to simulate the life cycle of Sinlaku. A high-spatial/temporal-resolution and model/observation-consistent dataset was constructed by continuously assimilating (with an update cycle every 30 minutes) tracks, the mean surface structure of Sinlaku and all available measurement data for Sinlaku during a 4-day period. This dataset provides a unique opportunity to study the dynamical processes of concentric eyewall formation in Sinlaku.
Using this previously constructed dataset, this study investigates the evolutionary of the concentric eyewall structure and aim to explore the key dynamical mechanisms and conditions for the secondary eyewall formation (SEF) in a tropical cyclone. Precursors to SEF found in our study suggest a possible application of a newly proposed spin-up paradigm to the SEF problem. We herein present a new model for SEF based on an axisymmetric view of the problem, including precursor characteristics and the associated evolution of the boundary layer flow and a dynamical interpretation. The findings point to a sequence of structure changes that occur in the outer-core region of a mature tropical cyclone, culminating in the formation of a secondary eyewall. The sequence begins with a broadening of the tangential wind field, followed by an increase of the corresponding boundary layer inflow underneath the broadened swirling wind, and an enhancement of a zone of organized convergence in the boundary layer where the secondary eyewall forms. The narrow region of strong boundary layer convergence is associated with the generation of supergradient winds in and just above the boundary layer that acts to rapidly decelerate inflow there. The progressive strengthening of the boundary layer inflow and the generation of an effective adverse radial force therein leads to an eruption of air from the boundary layer to support deep convection outside the primary eyewall in a favorable thermodynamic and kinematic environment. This presented paradigm for SEF is attractive on physical grounds because its simplicity and consistency with a set of 3-D numerical simulations. It is herein suggested that the unbalanced response in the boundary layer to an expanding swirling flow serves as an important mechanism for initiating and sustaining an approximate ring of deep convection in a narrow supergradient-wind zone in the vortex’s outer-core region. This progressive boundary layer control on SEF, involving in a positive feedback loop among the evolving primary and secondary circulation, implies that the boundary layer scheme and its coupling to the interior flow need to be adequately represented in numerical models to improve the understanding of SEF, as well as the accuracy of SEF forecasts, including the timing and preferred radial intervals. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:14:54Z (GMT). No. of bitstreams: 1 ntu-101-D97229005-1.pdf: 6657668 bytes, checksum: d776aa779e9f49b442afabfdab73d21b (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 摘要 ………………………………………………………………………… i
Abstract …………………………………………………………………… iii 目錄 ………………………………………………………………………… v 圖目錄 ……………………………………………………………………… vii 第一章、 前言與文獻回顧 1 1.1 伴隨雙眼牆過程的渦旋強度及結構演變 3 1.2 颱風雙眼牆形成的文獻回顧 4 1.2.1 外在大氣環境的作用力及有利條件 4 1.2.2 內在的渦旋動力機制 6 (A) 渦旋羅士培波 (vortex Rosbby Wave) 6 (B) 細絲化作用 (filamentation) 9 (C) 軸對稱化過程 (axisymmetrization process) 10 (D) β-skirt 軸對稱化次眼牆形成假說 (BSA hypothesis) 12 1.2.3 模式的雲微物過程 14 1.3 單眼牆颱風發展中非平衡動力所扮演的角色 15 1.4 研究動機與目的 18 1.4.1 邊界層非平衡動力在次眼牆形成過程中的可能角色 18 1.4.2 研究目標 19 第二章、 方法與資料 21 2.1 T-PARC 實驗計畫與辛樂克颱風 21 2.2 以WRF-based EnKF建立的渦旋初始化方法 22 2.3 資料庫的建立 23 2.3.1 資料同化設定與資料 23 2.3.2 WRF模式設定與實驗設計 24 第三章、 同化及模擬結果 26 3.1 渦旋的雙眼牆結構 26 3.1.1 軸對稱平均場的Hovmoller 圖表 26 3.1.2 渦旋的水平結構場 27 3.1.3 渦旋的垂直剖面 28 3.1.4 定義次眼牆形成時間及半徑區間 30 3.2 次眼牆形成前的流場特徵 31 第四章、 動力分析 33 4.1 次眼牆形成的先驅特徵 (precursory characteristics) 33 4.1.1 利於對流發展的條件 33 4.1.2 切向環流的演變 34 4.1.3 徑向環流的演變 35 (A) 邊界層頂之上 35 (B) 邊界層 36 4.1.4 小結 38 4.2 邊界層的非平衡動力 39 4.3 切向環流的動量收支分析 44 4.4 新的次眼牆形成概念模型 46 第五章、 討論與總結 49 第六章、未來展望 51 參考文獻 52 附圖 60 | |
dc.language.iso | zh-TW | |
dc.title | 颱風雙眼牆形成之邊界層非平衡動力機制 | zh_TW |
dc.title | Secondary Eyewall Formation in Tropical Cyclones - Unbalanced Dynamics in the Boundary Layer | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 隋中興,林依依,林博雄,游政谷,楊明仁 | |
dc.subject.keyword | 雙眼牆,外眼牆,邊界層,非平衡動力,超梯度, | zh_TW |
dc.subject.keyword | concentric eyewalls,secondary eyewall,boundary layer,unbalanced dynamics,supergradient, | en |
dc.relation.page | 76 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-20 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 6.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。