請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63614完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴朝明(Chao-Ming Lai) | |
| dc.contributor.author | Wei-Yu Lai | en |
| dc.contributor.author | 賴威宇 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:14:50Z | - |
| dc.date.available | 2014-08-27 | |
| dc.date.copyright | 2012-08-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-19 | |
| dc.identifier.citation | 行政院農業委員會。 2010。 99年農業廢棄物排放量歷年表。台灣。http://agrstat.coa.gov.tw/sdweb/public/common/Download_file.ashx?list_id=18
(accessed 2012/06/15 ) 孫志鴻、賴朝明。1998。畜牧溫室氣體測定講習會論文暨講義集(二)實際操作。畜牧溫室氣體測定講習會。國立台灣大學全球變遷研究中心。台北市。 盛中德。2010。再生能源技術之應用研發。農業工程與節能減碳學術研討會專刊。農業試驗所特刊第150號,pp. 77-89。 賴朝明、鍾仁賜、陳建德、鄭智馨、白創文、柯光瑞、胡智傑、賴威宇、陳思昀。2011。「生質電力技術開發與系統展示」子計畫五:生質廢棄物焙燒成品及氣化飛灰作為土壤改良劑之研發(1/3)。行政院國科會專題計畫成果報告。台北市。 Abdullah, A. H., A. Kassim, Z. Zainal, M. Z. Hussien, D. Kuang, F. Ahmad, and O. S. Wooi. 2001. Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure. Malaysi. J. Analy. Sci. 7: 65-68. Akhter, M. S., A. R. Chughtai, and D. M. Smith. 1985. The structure of hexane soot I: Spectroscopic studies. Appl. Spectrosc. 39: 143-153. Amonette, J. E., J. Kim, C. K. Russell, A. V. Palumbo, and W. L. Daniels. 2003. Enhancement of soil carbon sequestration by amendment with fly ash. 2003 International, Ash utilization symposium. Lexington, Kentucky. Anderson, C. R., L. M. Condron, T. J. Clough, M. Fiers, A. Stewart, R. A. Hill, and R. R. Sherlock. 2011. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54: 309-320. Antal, M. J., and G. M. Gunnar. 2003. The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 42: 1619-1640. Bailey, V. L., S. J. Fansler, J. L. Smith, and H. Bolton. 2011. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biol. Biochem. 43: 296-301. Bell, M. J., and F. Worrall. 2011. Charcoal addition to soils in NE England: A carbon sink with environmental co-benefits? Sci.Total Environ. 409: 1704-1714. Ben‐Dor, E., and A. Banin. 1989. Determination of organic matter content in arid‐zone soils using a simple “loss‐on‐ignition” method. Commun. Soil Sci. Plant. 20: 1675-1695. Biscoe, J., and B. E. Warren. 1942. An X-ray study of carbon black. J. Appl. Phys. 13: 364. Bremner, J. M., and C. S. Mulvaney. 1982. Nitrogen-Total, p. 595-641, In A. L. Page, et al. (eds.) Methods of soil analysis part 2- Chemical and microbiological properties 2nd. ed. Soil Science Society of America, Inc. and American Society of Agronomy. Inc., Madison, Wisconsin, USA. Brennan, J. K., T. J. Bandosz, K. T. Thomson, and K. E. Gubbins. 2001. Water in porous carbons. Colloid Surface A 187-188: 539-568. Brewer, C. E., R. Unger, K. Schmidt-Rohr, and R. C. Brown. 2011. Criteria to Select Biochars for Field Studies based on Biochar Chemical Properties. Bioenerg. Res. 4: 312-323. Bruun, E. W., H. Hauggaard-Nielsen, N. Ibrahim, H. Egsgaard, P. Ambus, P. A. Jensen, and K. Dam-Johansen. 2011. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass Bioenerg. 35: 1182-1189. Canadell, J. G., C. Le Quere, M. R. Raupach, C. B. Field, E. T. Buitenhuis, P. Ciais, T. J. Conway, N. P. Gillett, R.A. Houghton, and G. Marland. 2007. From the Cover: Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA 104: 18866-18870. Chan, K.Y., L. van Zwieten, I. Meszaros, A. Downie, and S. Joseph. 2007. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res. 45: 629. Chan, K. Y., L. vanZwieten, I. Meszaros, A. Downie, and S. Joseph. 2008. Using poultry litter biochars as soil amendments. Aust. J. Soil Res. 46: 437-444. Chen, B., and Z. Chen. 2009. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76: 127-133. Cheng, C. H., J. Lehmann, and M. H. Engelhard. 2008. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochim. Cosmochim. Ac. 72: 1598-1610. Clough, T. J., J. E. Bertram, J. L. Ray, L. M. Condron, M. O'Callaghan, R. R. Sherlock, and N. S. Wells. 2010. Unweathered Wood Biochar Impact on Nitrous Oxide Emissions from a Bovine-Urine-Amended Pasture Soil. Soil Sci. Soc. Am. J. 74: 852. Cross, A., and S. P. Sohi. 2011. The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol. Biochem. 43: 2127-2134. Deenik, J. L., A. Diarra, G. Uehara, S. Campbell, Y. Sumiyoshi, and M. J. Antal. 2011. Charcoal ash and volatile matter effects on soil properties and plant growth in an acid Ultisol. Soil Sci. 176: 336-345. Dias, B. O., C. A. Silva, F. S. Higashikawa, A. Roig, and M. A. Sanchez-Monedero. 2010. Use of biochar as bulking agent for the composting of poultry manure: Effect on organic matter degradation and humification. Bioresour. Technol. 101: 1239-1246. Downie, A., A. Crosky, and P. Munroe. 2009. Physical properties of biochar, p. 13-29, In J. Lehmann and S. Joseph (eds.) Biochar for enviromental management: Science and technology. 1st ed. Earthscan, London. Duku, M. H., S. Gu, and E. B. Hagan. 2011. Biochar production potential in Ghana—A review. Renewable and Sust. Energ. Rev. 15: 3539-3551. Ehhalt, D. H., and U. Schmidt. 1978. Sources and sinks of atmospheric methane. Pageoph. 7: 143-155. Emmerich, F. G., J. C. Sousa, I. L. Torriani, and C. A. Luengo. 1987. Applications of a granular model and percolation theory to the electrical resistivity of heat treated endocarp of babassu nut. Biomass Bioenerg. 58: 471-424. Gaskin, J. W., R. A. Speir, K. Harris, K. C. Das, R. D. Lee, L. A. Morris, and D. S. Fisher. 2010. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron. J. 102: 623. Glaser, B., L. Haumaier, G. Guggenberger, and W. Zech. 2001. The 'Terra Preta' phenomenon: a model for sustainable agriculture in the humid tropics. Natural Sci. 88: 37-41. Glaser, B., J. Lehmann, and W. Zech. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - A review. Biol. Fertil. Soils 35: 219-230. Hartt, C. F. 1874. Preliminary report of the Morgan exhibition, 1870-1871-Report of a recommaissance of the Lower. Tapajos. Bull. Cornell University. 1: 1-37. Hirst, P. 2010. Biochar production: From colliers to restorts, p. 133-152, In P. Taylor, et al. (eds.) The biochar revolution: Transforming agriculture & environment. 1st ed. Global publishing group, Mt. Evelyn, Victoria, Australia. Hossain, M. K., V. Strezov, K. Yin Chan, and P. F. Nelson. 2010. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 78: 1167-1171. IBI. 2012. Biochar use in soil. http://www.biochar-international.org/ (accessed 2012/06/15). Imaya, A., S. Yoshinaga, Y. Inagaki, N. Tanaka, and S. Ohta. 2010. Volcanic ash additions control soil carbon accumulation in brown forest soils in Japan. Soil Sci. Plant Nutri. 56: 734-744. IPCC. 2007. Fourth assessment report: climate change 2007 (AR4), working group II: (Impact, adaptation and vulnerability) The scientific basis. Cambridge University Press., New York, USA. Jones, D. L., D. V. Murphy, M. Khalid, W. Ahmad, G. Edwards-Jones, and T. H. DeLuca. 2011. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol. Biochem. 43: 1723-1731. Kool, D. M., N. Wrage, S. Zechmeister-Boltenstern, M. Pfeffer, D. Brus, O. Oenema, and J. W. Van Groenigen. 2010. Nitrifier denitrification can be a source of N2O from soil: a revised approach to the dual-isotope labelling method. Eur. J. Soil Sci. 61: 759-772. Krull, E. S., J. A. Baldock, J. O. Skemstad, and R. J. Smernik. 2009. Characteristics of biochar: organo-chemical properties, p. 53-65, In J. Lehmann and S. Joseph, (eds.) Biochar for environmental management: Science and technology. 1st ed. Earthscan, London, UK. Laird, D. A., P. Fleming, D. D. Davis, R. Horton, B. Wang, and D. L. Karlen. 2010. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158: 443-449. Lehmann, J. 2007. A handful of carbon. Nature 447: 143-144. Lehmann, J., and S. Joseph. 2009. Biochar for environmental management: Science and technology. Earthscan, London, UK. Lehmann, J., J. Gaunt, and M. Rondon. 2006. Bio-char sequestration in terrestrial ecosystems – A review. Mitigation and Adaptation Stra. 11: 395-419. Lehmann, J., J. Skjemstad, S. Sohi, J. Carter, M. Barson, P. Falloon, K. Coleman, P. Woodbury, and E. Krull. 2008. Australian climate-carbon cycke feedack reduced by soil black carbon. Nat. Geosci. 1: 832-835. Liang, B., J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. O'Neill, J. O. Skjemstad, J. Thies, F.J. Luizao, J. Petersen, and E.G. Neves. 2006. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 70: 1719. Lima, H. N., C. E. R. Schaefer, J. W. V. Mello, R. J. Gilkes, and J. C. Ker. 2002. Pedogenesis and pre-Colombian land use of 'Terra Preta Anthrosols' (' Indian black earth') of western Amazonia. Geoderma 110: 1-17. Lombard, K., M. O'Neill, A. Ulery, J. Mexal, B. Onken, S. Forster-Cox, and T. Sammis. 2011. Fly ash and composted biosolids as a source of Fe for hybrid poplar: A greenhouse study. Appli. Environ. Soil Sci. 2011: 1-11. Major, J., J. Lehmann, M. Rondon, and C. Goodale. 2010a. Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Global Change Biol. 16: 1366-1379. Major, J., M. Rondon, D. Molina, S. J. Riha, and J. Lehmann. 2010b. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 333: 117-128. Masulili, A., W. H. Utomo, and S. MS. 2010. Rice husk biochar for rice based cropping system in acid soil 1. the characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia. J.Agri. Sci. 2: 39-47. Mclean, E. O. 1982. Soil pH and lime reqirement, p. 199-224, In A. L. Page, et al. (eds.) Methods of soil analysis part 2- Chemical and microbiological properties 2nd (ed). Soil Science Society of America, Inc. and American Society of Agronomy. Inc., Madison, Wisconsin, USA. Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commin. Soil Sci. Plant. 15: 1409-1416. Mer, J. L., and P. Roger. 2001. Production, oxidation, emission and consumption of methane by soils: a review. Eur. J. Soil Biol. 37: 25-50. Murphy,J. and Riley,J.P. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 27: 31-36. Nelson, D. W., and L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter, p. 961-1010, In D. L. Sparks, et al. (eds.) Methods of soil analysis part 3- Chemical Methods. Soil Science Society of America, Inc. and American Society of Agronomy. Inc., Madison, Wisconsin, USA. Nguyen, B. T., and J. Lehmann. 2009. Black carbon decomposition under varying water regimes. Org. Geochem. 40: 846-853. Novak, J. M., W. J. Busscher, D. L. Laird, M. Ahmedna, D. W. Watts, and M. A. S. Niandou. 2009. Impact of biochar amendment on fertility of a Southeastern Coastal Plain soil. Soil Sci. 174: 105-112. Novak, J. M., W. J. Busscher, D. W. Watts, D. A. Laird, M. A. Ahmedna, and M. A. S. Niandou. 2010. Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma. 154: 281-288. Olsen, S. R., and L. E. Sommers. 1982. Phosphate, p. 403-430, In A. L. Page, et al. (eds.) Methods of soil analysis part 2- Chemical and microbiological properties 2nd ed. Soil Science Society of America, Inc. and American Society of Agronomy. Inc., Madison, Wisconsin, USA. Pessenda, L.C. R., R. Boulet, R. Aravena, V. Rosolen, S. E. M. Gouveia, A. S. Ribeiro, and M. Lamotte. 2001. Origin and dynamics of soil organic matter and vegetation changes during the Holocene in a forest-savanna transition zone, Brazilian Amazon region. Holocene 11: 250-254. Rhoades, J. D. 1982a. Soluble salts, p. 167-179, In A. L. Page, et al. (eds.) Methods of soil analysis part 2- Chemical and microbiological properties 2nd ed. Soil Science Society of America, Inc. and American Society of Agronomy. Inc., Madison, Wisconsin, USA. Rhoades, J. D. 1982b. Cation exchange capacity, p. 149-158, In A. L. Page, et al., (eds.) Methods of soil analysis part 2- Chemical and microbiological properties 2nd ed. Soil Science Society of America, Inc. and American Society of Agronomy. Inc., Madison, Wisconsin, USA. Rondon, M. A., D. Molina, M. Hurtado, J. Ramirez, J. Lehmann, J. Major, and E. Amezquita. 2006a. Enhancing the productivity of crops and grasses while reducing greenhouse gas emissions through bio-char amendments to unfertile tropical soils. Proc. 18th World Congress of Soil Science, Philadelphia, Pennsylvania, USA. 9-15 July 2006. Rondon, M. A., J. Lehmann, J. Ramirez, and M. Hurtado. 2006b. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol. Fertil. Soil. 43: 699-708. Schnitzer, M., C. Monreal, G. Facey, and P. Fransham. 2007. The conversion of chicken manure to biooil by fast pyrolysis I. Analyses of chicken manure, biooils and char by 13C and 1H NMR and FTIR spectrophotometry. J. Environ. Sci. Health, Part B. 42: 71-77. Spokas, K. A. 2010. Review of the stability of biochar in soils: predictability of O:C molar ratio. Carbon Manag. 1: 289-303. Spokas, K. A., W. C. Koskinen, J. M. Baker, and D. C. Reicosky. 2009. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77: 574-581. Steinbeiss, S., G. Gleixner, and M. Antonietti. 2009. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol. Biochem. 41: 1301-1310. Steiner, C., B. Glaser, W. G. Teixeira, J. Lehmann, W. E. H. Blum, and W. Zech. 2008. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J. Plant Nutri. Soil Sci. 171: 893-899. van Zwieten, L., S. Kimber, S. Morris, A. Downie, E. Berger, J. Rust, and C. Scheer. 2010. Influence of biochars on flux of N2O and CO2 from Ferrosol. Aust. J. Soil Res. 48: 555-568. van Zwieten, L., S. Kimber, S. Morris, K. Y. Chan, A. Downie, J. Rust, S. Joseph, and A. Cowie. 2009. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327: 235-246. Vogel, C., C. Adam, B. Peplinski, and S. Wellendorf. 2010. Chemical reactions during the preparation of P and NPK fertilizers from thermochemically treated sewage sludge ashes. Soil Sci. Plant Nutri. 56: 627-635. Wardle, D. A., M. C. Nilsson, and O. Zackrisson. 2008. Fire-derived charcoal causes loss of forest humus. Science 320:629. Warnock, D. D., J. Lehmann, T. W. Kuyper, and M. C. Rillig. 2007. Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant Soil 300: 9-20. Winsley, P. 2007. Biochar and bioenergy production for climate change. New Zealand Sci. Rev. 64: 5-10. Yamato, M., Y. Okimori, I. F. Wibowo, S. Anshori, and M. Ogawa. 2006. Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci. Plant Nutri. 52: 489-495. Yanai, Y., K. Toyota, and M. Okazaki. 2007. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci. Plant Nutri. 53: 181-188. Yu, X. Y., G. G. Ying, and R. S. Kookana. 2009. Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 76: 665-671. Yuan, J. H., R. K. Xu, W. Qian, and R. H. Wang. 2011. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars. J. Soil Sediment. 11: 741-750. Zavalloni, C., G. Alberti, S. Biasiol, G. D. Vedove, F. Fornasier, J. Liu, and A. Peressotti. 2011. Microbial mineralization of biochar and wheat straw mixture in soil: A short-term study. Appl. Soil Ecol. 50: 45-51. Zhang, A., L. Cui, G. Pan, L. Li, Q. Hussain, X. Zhang, J. Zheng, and D. Crowley. 2010. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agri. Eco. Envir. 139: 469-475. Zhang, A., R. Bian, G. Pan, L. Cui, Q. Hussain, L. Li, J. Zheng, J. Zheng, X. Zhang, X. Han, and X. Yu. 2012. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crop Res. 127: 153-160. Zimmerman, A. R., B. Gao, and M. Y. Ahn. 2011. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 43: 1169-1179. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63614 | - |
| dc.description.abstract | 生質以熱裂解生產生質能源的固體副產物稱為生物炭 (biochar, BC)。最近許多研究指出,將生物炭施用至土壤中,具有可減少土壤排放溫室氣體、增加土壤碳貯存及增加作物產量等多重效益。除此之外,亦可間接減少能源及生質廢棄物處理的問題。本研究之目的為先建立一 「盆栽試驗土壤溫室氣體排放之測定方法」,再藉由盆栽試驗探究生物炭:(1)對土壤溫室氣體排放之影響、(2)對土壤碳貯存之影響以及 (3)對水稻及菾菜生長與產量之影響。本研究使用人工林疏伐之柳杉廢木屑於290及700 ℃下製成生物炭 (BC290及BC700),以2%及5%比例施用至酸性的平鎮系 (Pc) 及鹼性的和興系 (Hb) 土壤,於溫室種植水稻及菾菜。試驗共有六種處理:(1) BK1 (對照組I),不施用生物炭及肥料。(2) BK2 (對照組II),不施用生物炭但施肥 (每盆水稻施肥量為1 g N - 1 g P - 1 g K,每盆菾菜施肥量為0.5 g N - 0.1 g P- 0.4 g K)。(3) BC290-2%,施用2% BC290生物炭及施肥。 (4) BC290-5%,施用5% BC290生物炭及施肥。 (5) BC700-2%,施用2% BC700生物炭及施肥。(6) BC700-5%,施用5% BC700生物炭及施肥。每處理三重複。盆栽試驗於2011年4月5日開始,定期以前述建立之方法監測土壤排放之溫室氣體 (CO2、CH4及N2O) ,並計算二氧化碳當量,以評估施用生物炭對盆栽土壤溫室氣體排放之影響。以土壤排放二氧化碳累積量配合生物炭之碳添加量估算土壤碳貯存量,以評估施用生物炭對土壤碳貯存之影響。定期採樣及分析土壤性質 (pH、有效性磷及鉀、全氮、CEC及有機質含量),並定期記錄水稻、菾菜株高及水稻分蘗數,於收穫後測定產量 (穀粒重或乾物重) 以評估施用生物炭對土壤性質、作物生長及產量之影響。結果顯示:本研究建立一「盆栽試驗土壤溫室氣體排放之測定方法」,可供本研究及後續相關研究應用。盆栽試驗結果顯示,施用生物炭對土壤溫室氣體排放之影響,在水稻平鎮系及和興系土壤施用5% BC700可顯著減少土壤排放二氧化碳當量累積量 (p < 0.05),在菾菜平鎮系土壤施用2% BC700可顯著減少土壤排放二氧化碳當量累積量 (p < 0.05),但在菾菜和興系土壤施用生物炭則無顯著影響。對土壤碳貯存之影響,無論在水稻平鎮系及和興系土壤或在菾菜平鎮系及和興系土壤,皆以施用5% B700效果最為顯著 (p < 0.05)。對作物生長及產量之影響,在施肥條件下施用生物炭對水稻及菾菜皆無顯著影響。 | zh_TW |
| dc.description.abstract | Biochar (BC) is a byproduct from biomass pyrolysis or gasification which used to produce biofuels. Recent studies have indicated that application of biochar to soils results in reducing greenhouse gas (GHG) emissions from soil, increasing soil carbon sequestration, and improving crop yields. Besides, biochar production could indirectly solve energy and biomass wastes problems. The objectives of this study were first to develop a method to measure greenhouse gas emissions from soil in a pot experiment, and then to examine the effects of biochar application on (1) greenhouse gas emissions from soils, (2) soil carbon sequestration, and (3) crop growth and yield in pot experiments. Biochars were produced at 290 (BC290) and 700℃ (BC700) by slow pyrolysis of Japanese Cedar woodchip thinned from plantation. The acidic Pinchen series (Pc) and alkaline Hoshin series (Hb) soils in Taiwan were selected to be planted with rice and leaf beet, and applied with BC290 or BC700 at a rate of 2% or 5% with or without fertilizers. There were six treatments in this study: (1) BK1 (Control I): applying 0% BC without fertilizer, (2) BK2 (Control II): applying 0% BC with fertilizers (1 g N - 1 g P - 1 g K for rice or 0.5 g N - 0.1 g P- 0.4 g K for leaf beet), (3) BC290-2%: applying 2% BC290 with fertilizers, (4) BC290-5%: applying 5% BC290 with fertilizers, (5) BC700-2%: applying 2% BC700 with fertilizers, and (6) BC700-5%: applying 5% BC700 with fertilizers, and triplicates for each treatment. Pot experiments were started on April 5, 2011. GHG emissions were monitored using closed chamber method during the rice and leaf beet growing periods and further calculated in carbon dioxide equivalent (CO2e). Carbon sequestrations were estimated from the differences between carbon addition (biochar-C) and carbon loss (CO2-C). Soils were sampled periodically and analyzed pH, CEC, available phosphorous, available potassium, total nitrogen, and organic carbon contents. Plant growth (plant height and tiller number) of rice and leaf beet were measured weekly and grain yields or dry matter weights were also measured after harvesting. The method for measuring greenhouse gas emissions from soil in a pot experiment was newly developed and used in this study, and could also be used in other related studies. The results of pot experiments showed that applying 5% BC700 significantly reduced cumulative CO2e emissions from both rice-planted Pc and Hb soils, and applying 2% BC700 significantly reduced cumulative CO2e emission from leaf beet-planted Pc soil compared with control II (p < 0.05). For soil carbon sequestration, the effects of applying 5% BC700 were the most significant in both rice- and leaf beet-planted soils (p < 0.05). As for crop growth and yield, there were no significant effects among all treatments with fertilizers (p > 0.05). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:14:50Z (GMT). No. of bitstreams: 1 ntu-101-R99623016-1.pdf: 3154201 bytes, checksum: 258848fd032aa28e723e78e2c44316ab (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 謝誌 ii
摘要 iii Abstract v 目錄 vii 圖目錄 x 表目錄 xi 附表目錄 xii 第一章 前言 1 第二章 前人研究 4 第一節 生物炭背景與緣起 4 第二節 生物炭之原料與製造 6 一、 原料 6 二、 生物炭製造 7 第三節 生物炭之性質 10 第四節 土壤施用生物炭之影響 13 一、 生物炭施用對土壤性質之影響 13 二、 生物炭施用對作物養分及產量之影響 14 三、 生物炭施用對土壤碳貯存之影響 15 四、 生物炭施用對土壤溫室氣體排放之影響 17 五、 生物炭其他利用方式 19 第三章 材料與方法 20 第一節 生物炭製備 20 第二節 土壤製備 23 一、 土壤採集 23 二、 土壤性質分析 23 第三節 盆栽試驗 27 一、生物炭及土壤 27 二、作物及肥料 27 三、試驗設計 27 第四節 溫室氣體採樣及分析 30 一、CO2之分析 30 二、CH4之分析 30 三、N2O之分析 30 四、土壤溫室氣體排放量之估算 31 第五節 土壤採樣及分析 32 第六節 植體採樣及分析 33 第七節 統計分析 34 第四章 結果與討論 35 第一節 盆栽土壤溫室氣體排放測定方法之建立 35 一、盆栽溫室氣體採樣罩之設計 35 二、採樣罩之漏氣試驗 35 三、新方法之建立 35 第二節 施用生物炭對盆栽土壤性質之影響 38 一、施用生物炭對盆栽水稻及菾菜土壤pH值之影響 38 二、對盆栽水稻及菾菜土壤有效磷及有效鉀含量之影響 42 第三節 施用生物炭對盆栽土壤溫室氣體排放通量之影響 46 一、施用生物炭對盆栽水稻土壤CO2、CH4、N2O排放通量之影響 46 二、施用生物炭對盆栽菾菜土壤CO2、CH4、N2O排放通量之影響 48 三、施用生物炭對盆栽水稻土壤CO2、CH4、N2O排放累積量之影響 55 四、施用生物炭對盆栽菾菜土壤CO2、CH4、N2O排放累積量之影響 55 五、施用生物炭對盆栽水稻土壤排放二氧化碳當量累積量之影響 57 六、施用生物炭對盆栽菾菜土壤排放二氧化碳當量累積量之影響 57 第三節 施用生物炭對盆栽土壤碳貯存之影響 59 第四節 施用生物炭對盆栽水稻及菾菜生長及產量之影響 63 一、施用生物炭對水稻生長及產量之影響 63 二、施用生物炭對菾菜生長及產量之影響 66 第五節 生物炭作為土壤改良劑之施用建議 70 一、生物炭作為土壤溫室氣體排放之抑制劑 70 二、生物炭作為土壤碳貯存之改良劑 70 三、生物炭作為提供作物養分或改善土壤性質之肥料 70 第五章 結論 71 參考文獻 72 附錄 81 | |
| dc.language.iso | zh-TW | |
| dc.subject | 菾菜 | zh_TW |
| dc.subject | 土壤 | zh_TW |
| dc.subject | 水稻 | zh_TW |
| dc.subject | 二氧化碳當量 | zh_TW |
| dc.subject | 溫室氣體 | zh_TW |
| dc.subject | 生物炭 | zh_TW |
| dc.subject | 氧化亞氮 | zh_TW |
| dc.subject | 甲烷 | zh_TW |
| dc.subject | 二氧化碳 | zh_TW |
| dc.subject | rice | en |
| dc.subject | greenhouse gas | en |
| dc.subject | carbon dioxide (CO2) | en |
| dc.subject | methane (CH4) | en |
| dc.subject | nitrous oxide (N2O) | en |
| dc.subject | carbon dioxide equivalent (CO2e) | en |
| dc.subject | Biochar (BC) | en |
| dc.subject | leaf beet | en |
| dc.subject | soil | en |
| dc.title | 生物炭施用對盆栽水稻及菾菜土壤溫室氣體排放之影響 | zh_TW |
| dc.title | Effects of Biochar Application on Greenhouse Gas Emissions from Rice-Planted and Leaf Beet-Planted Soils in Pot Experiments | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張慶源(Ching-Yuan Chang),鍾仁賜(Ren-Shih Chung),陳建德(Chien-Ten Chen),鄭智馨(Chih-Hsin Cheng) | |
| dc.subject.keyword | 生物炭,溫室氣體,二氧化碳,甲烷,氧化亞氮,二氧化碳當量,水稻,菾菜,土壤, | zh_TW |
| dc.subject.keyword | Biochar (BC),greenhouse gas,carbon dioxide (CO2),methane (CH4),nitrous oxide (N2O),carbon dioxide equivalent (CO2e),rice,leaf beet,soil, | en |
| dc.relation.page | 92 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
