請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63593完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧奕璋(Yi-Chang Lu) | |
| dc.contributor.author | Yu-Long Huang | en |
| dc.contributor.author | 黃玉龍 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:14:30Z | - |
| dc.date.available | 2017-08-20 | |
| dc.date.copyright | 2012-08-20 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-20 | |
| dc.identifier.citation | [1] F. Sanger, S. Nicklen and A. R. Coulson, “DNA sequencing with chain terminating inhibitors,” Proc. Natl. Acad. Sci. vol. 74, no. 12, pp. 5463-5467, Dec. 1977.
[2] J. Shendure and H. Ji, “Next-generation DNA sequencing,” Nat Biotechnol, vol. 26, no. 10, pp. 1135–1145, Oct. 2008. [3] O. Morozova and M. A. Marra, “Applications of next-generation sequencing technologies in functional genomics,” Genomics, vol. 92, no. 5, pp. 255-264, Nov. 2008. [4] J. Kececioglu and E. Myers, 'Combinatorial algorithms for DNA sequence assembly,' Algorithmica, vol. 13, pp 7-51, Feb. 1995. [5] P. A. Pevzner, H. Tang, and M. S. Waterman, “An Eulerian path approach to DNA fragment assembly,” Proc. Natl. Acad. Sci. vol. 98, pp. 9748–9753, Aug. 2001. [6] P. A. Pevzner, H. Tang, “Fragment Assembly with Double-Barreled Data,” Bioinformatics, (Suppl. 1) 17: S225-S233, Apr. 2001. [7] D. R. Zerbino and E. Birney. “Velvet: Algorithms for de novo short read assembly using de Bruijn graphs,” Genome Research, vol. 18, pp. 821–829, 2008. [8] R. Li, H. Zhu, and J. Wang, “De novo assembly of human genomes with massively parallel short read sequencing,” Genome Research, vol. 20, pp. 265–272, 2009. [9] J. Butler, I. MacCallum, M. Kleber, et al. “ALLPATHS: De novo assembly of whole genome shotgun microreads,” Genome Research, vol. 18, pp. 810–820, May 2008. [10] J. T. Simpson, K. Wong, S. D. Jackman, et al. “ABySS: a parallel assembler for short read sequence data,” Genome Research, vol. 19, pp. 1117–1123, 2009. [11] Y. Lin, J. Li, H. Shen, et al. “Comparative studies of de novo assembly tools for next-generation sequencing technologies,” Bioinformatics, vol. 27, no. 15, pp. 2031-2037, June 2011. [12] J. J. Cook and C. Zilles, 'Characterizing and optimizing the memory footprint of de novo short read DNA sequence assembly,' ISPASS, pp.143-152, April 2009. [13] P. Guerrier, A. Greiner, 'A generic architecture for on-chip packet-switched interconnections,' Design, Automation and Test in Europe Conference and Exhibition 2000. Proceedings, pp.250-256, 2000. [14] W. Dally and B. Towles. Principles and Practices of Interconnection Networks. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003. [15] D. Wentzlaff, P. Griffin, A. Agarwal, et al, 'On-Chip Interconnection Architecture of the Tile Processor,' Micro, IEEE , vol.27, no.5, pp.15-31, Sept.-Oct. 2007 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63593 | - |
| dc.description.abstract | 本篇論文研究用於全新基因序列組裝(DNA de novo sequence assembly )的平行化電路架構設計,其內容包含了演算法改良、軟體模擬以及電路設計結果。
存在於生物體內的基因序列,為了解生命運作及物種特性的重要資訊,因此各國競相進行為數眾多的基因定序計畫。由於生物基因的資料量龐大,如何提升運算速度以及降低成本,一直以來是個很重要的議題。隨著新一代基因定序技術的出現,許多短序列重組演算法相繼被提出,在這方面有著突破性的發展,不過目前在實際應用上仍不如預期。而限制效能的原因,主要在於資料存取頻寬上的限制,而使得其運算速度遲遲無法提升。本篇論文,便是針對這種情況,而進行關於這方面的研究和改善。 有鑑於此,我們提出一個可平行處理基因序列重組的演算法,並實現可執行該演算法的平行處理單元,搭配連結網路的電路架構,讓平行處理單元彼此之間可進行大量資料傳輸。相較於傳統的軟體演算法而言,此電路架構可發揮其頻寬及平行運算上的優勢,來加速處理基因序列重組的整體速度。透過軟體方式的前期模擬,我們確保了該演算法在求解序列重組問題的輸出解品質。另外,我們使用TSMC 90 nm製程,實現上述提及的平行處理單元電路,透過模擬硬體設計,得知該電路可以操作在100 MHz,在輸入同樣的重組問題下,我們可以得到最後的整體運算速度,提升約為目前軟體演算法的10倍。 | zh_TW |
| dc.description.abstract | This thesis researches into the topic of DNA de novo sequence assembly for a novel parallel hardware architecture design including the improvement of the algorithm, preliminary software simulation and the final result of circuit design.
The genome sequences contained in beings are crucial for the knowledge of species. Because the sizes of genome data are such huge, it still consumes a lot of time with the emergence of Next Generation Sequencing. Currently, one of the bottlenecks is the limited bandwidth for data transfer, which greatly slows sequencing speeds. Hence we made an effort in improving this situation. In this thesis, we purpose a parallel DNA de novo sequence assembly algorithm. Based on the algorithm, processing elements (PEs) are designed and connected to the proposed interconnection network so that huge genome data could be transferred efficiently between PEs. Compared to previous approaches, it has advantages in both bandwidth and parallelism. Therefore, the sequencing process is much faster than those conventional approaches. As verified by software simulations, we can guarantee the quality of the solutions. Also, we have implemented the PE with TSMC 90 nm process. According to the simulation results, the hardware can be operated at frequency of 100 MHz and speed up about 10 times when compared to previous software approaches. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:14:30Z (GMT). No. of bitstreams: 1 ntu-101-R99943120-1.pdf: 3381299 bytes, checksum: 8b83a699839bf4a34468c6be4d6301af (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 x 第1章 序論 1 1.1 基因序列定序 1 1.2 全新基因組裝 2 1.3 網路連結架構 4 1.4 研究動機 5 1.5 論文架構 5 第2章 基因序列組裝 6 2.1 基因定序資料 6 2.2 基因定序組裝 9 2.2.1 Overlap-Layout-Consensus 9 2.2.2 Eulerian Path 12 2.3 基因組裝軟體 15 2.3.1 組裝軟體簡介 15 2.3.2 基因組裝流程 16 2.3.3 執行時間分析 19 第3章 平行處理演算法 20 3.1 演算法流程圖 20 3.2 匯入序列片段 24 3.3 序列平行比對 25 3.4 序列平行組裝 29 3.5 序列組裝最佳化 34 第4章 硬體架構設計 36 4.1 系統與處理單元方塊圖 36 4.2 各模組說明 39 4.3 時間評估 44 第5章 效能模擬結果 48 5.1 軟體模擬結果 48 5.2 硬體架構規格 51 5.3 模擬硬體結果 52 第6章 結論與展望 54 6.1 結論 54 6.2 展望 55 參考文獻 56 附錄 A. 連結網路架構 58 | |
| dc.language.iso | zh-TW | |
| dc.subject | 全新基因組裝 | zh_TW |
| dc.subject | 網路連結架構 | zh_TW |
| dc.subject | 平行化處理單元 | zh_TW |
| dc.subject | De novo assembly | en |
| dc.subject | Parallel processing element | en |
| dc.subject | Interconnection network | en |
| dc.title | 全新基因序列組裝之平行處理單元與連結網路架構設計 | zh_TW |
| dc.title | Architecture Design of the Parallel Processing Element and Interconnection Network for De Novo Sequence Assembly | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳和麟(Ho-Lin Chen),簡韶逸(Shao-Yi Chien),陳倩瑜(Chien-Yu Chen) | |
| dc.subject.keyword | 全新基因組裝,網路連結架構,平行化處理單元, | zh_TW |
| dc.subject.keyword | De novo assembly,Interconnection network,Parallel processing element, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
