請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63585完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳家揚 | |
| dc.contributor.author | Ying-Min Tsai | en |
| dc.contributor.author | 蔡盈旻 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:14:23Z | - |
| dc.date.available | 2014-09-17 | |
| dc.date.copyright | 2012-09-17 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-20 | |
| dc.identifier.citation | 1. 台灣自來水公司第四區管理處, 沉澱池原理及操作 http://www.slideshare.net/5045033/ss-1002346.
2. 王根樹; 蔡詩偉; 陳家揚, 飲用水水源與水質中新興污染物對人體健康風險評估之硏究計畫. In 中華民國行政院環境保護署環境檢驗所: 2010. 3. 國立海洋生物博物館, 墾丁地區河口民生污水分析. 2012. 4. 行政院環境保護署環境檢驗所, 生活污水中個人保健品殘留化學物質之檢測技術建立研究. In 中華民國行政院環境保護署環境檢驗所: 2010. 5. Stackelberg, P. E.; Furlong, E. T.; Meyer, M. T.; Zaugg, S. D.; Henderson, A. K.; Reissman, D. B., Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Science of The Total Environment 2004, 329, 99-113. 6. Loraine, G. A.; Pettigrove, M. E., Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in Southern California. Environmental Science & Technology 2005, 40, 687-695. 7. Ahrens, L., Polyfluoroalkyl compounds in the aquatic environment: a review of their occurrence and fate. Journal of Environmental Monitoring 2011, 13, 20-31. 8. Paul, A. G.; Jones, K. C.; Sweetman, A. J., A First Global Production, Emission, And Environmental Inventory For Perfluorooctane Sulfonate. Environmental Science & Technology 2009, 43, 386-392. 9. Kolpin, D. W.; Furlong, E. T.; Meyer, M. T.; Thurman, E. M.; Zaugg, S. D.; Barber, L. B.; Buxton, H. T., Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environmental Science & Technology 2002, 36, 1202-1211. 10. Wiegel, S.; Aulinger, A.; Brockmeyer, R.; Harms, H.; Loffler, J.; Reincke, H.; Schmidt, R.; Stachel, B.; von Tumpling, W.; Wanke, A., Pharmaceuticals in the river Elbe and its tributaries. Chemosphere 2004, 57, 107-126. 11. Lee, H.-B.; Peart, T. E.; Svoboda, M. L., Determination of endocrine-disrupting phenols, acidic pharmaceuticals, and personal-care products in sewage by solid-phase extraction and gas chromatography–mass spectrometry. Journal of Chromatography A 2005, 1094, 122-129. 12. Lin, A. Y.-C.; Tsai, Y.-T., Occurrence of pharmaceuticals in Taiwan's surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities. Science of The Total Environment 2009, 407, 3793-3802. 13. Thomas, K. V.; Dye, C.; Schlabach, M.; Langford, K. H., Source to sink tracking of selected human pharmaceuticals from two Oslo city hospitals and a wastewater treatment works. Journal of Environmental Monitoring 2007, 9, 1410-1418. 14. Balch, G. C.; Mackenzie, C. A.; Metcalfe, C. D., Alterations to gonadal development and reproductive success in japanese medaka (Oryzias latipes) exposed to 17α-ethinylestradiol. Environmental Toxicology and Chemistry 2004, 23, 782-791. 15. Nash, J. P.; Kime, D. E.; Van der Ven, L. T. M.; Wester, P. W.; Brion, F.; Maack, G.; Stahlschmidt-Allner, P.; Tyler, C. R., Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish. Environmental Health Perspectives 2004, 112, 1725-1733. 16. Jobling, S.; Sumpter, J. P.; Sheahan, D.; Osborne, J. A.; Matthiessen, P., Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environmental Toxicology and Chemistry 1996, 15, 194-202. 17. Ahrens, L.; Yamashita, N.; Yeung, L. W. Y.; Taniyasu, S.; Horii, Y.; Lam, P. K. S.; Ebinghaus, R., Partitioning behavior of per- and polyfluoroalkyl compounds between pore water and sediment in two sediment cores from Tokyo Bay, Japan. Environmental Science & Technology 2009, 43, 6969-6975. 18. Ahrens, L.; Taniyasu, S.; Yeung, L. W. Y.; Yamashita, N.; Lam, P. K. S.; Ebinghaus, R., Distribution of polyfluoroalkyl compounds in water, suspended particulate matter and sediment from Tokyo Bay, Japan. Chemosphere 2010, 79, 266-272. 19. Higgins, C. P.; Luthy, R. G., Sorption of perfluorinated surfactants on sediments. Environmental Science & Technology 2006, 40, 7251-7256. 20. Martin, J. W.; Ellis, D. A.; Mabury, S. A.; Hurley, M.; Wallington, T., Atmospheric chemistry of perfluoroalkanesulfonamides: kinetic and product studies of the OH radical and Cl atom initiated oxidation of N-ethyl perfluorobutanesulfonamide. Environmental Science & Technology 2006, 40, 864-872. 21. Rhoads, K. R.; Janssen, E. M. L.; Luthy, R. G.; Criddle, C. S., Aerobic biotransformation and fate of N-ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE) in activated sludge. Environmental Science & Technology 2008, 42, 2873-2878. 22. Ellis, D. A.; Martin, J. W.; De Silva, A. O.; Mabury, S. A.; Hurley, M. D.; Sulbaek Andersen, M. P.; Wallington, T. J., Degradation of fluorotelomer alcohols: a likely atmospheric source of perfluorinated carboxylic acids. Environmental Science & Technology 2004, 38, 3316-3321. 23. Lin, A. Y.-C.; Panchangam, S. C.; Lo, C.-C., The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers. Environmental Pollution 2009, 157, 1365-1372. 24. Loos, R.; Locoro, G.; Huber, T.; Wollgast, J.; Christoph, E. H.; De Jager, A.; Gawlik, B. M.; Hanke, G.; Umlauf, G.; Zaldivar, J. M., Analysis of perfluorooctanoate (PFOA) and other perfluorinated compounds (PFCs) in the River Po watershed in N-Italy. Chemosphere 2008, 71, 306-313. 25. Hansen, K. J.; Johnson, H. O.; Eldridge, J. S.; Butenhoff, J. L.; Dick, L. A., Quantitative characterization of trace levels of PFOS and PFOA in the Tennessee River. Environmental Science & Technology 2002, 36, 1681-1685. 26. Zushi, Y.; Takeda, T.; Masunaga, S., Existence of nonpoint source of perfluorinated compounds and their loads in the Tsurumi River basin, Japan. Chemosphere 2008, 71, 1566-1573. 27. So, M. K.; Taniyasu, S.; Yamashita, N.; Giesy, J. P.; Zheng, J.; Fang, Z.; Im, S. H.; Lam, P. K. S., Perfluorinated compounds in coastal waters of Hong Kong, South China, and Korea. Environmental Science & Technology 2004, 38, 4056-4063. 28. Becker, A. M.; Gerstmann, S.; Frank, H., Perfluorooctane surfactants in waste waters, the major source of river pollution. Chemosphere 2008, 72, 115-121. 29. Corsini, E.; Avogadro, A.; Galbiati, V.; dell'Agli, M.; Marinovich, M.; Galli, C. L.; Germolec, D. R., In vitro evaluation of the immunotoxic potential of perfluorinated compounds (PFCs). Toxicology and Applied Pharmacology 2011, 250, 108-116. 30. Yang, Q.; Xie, Y.; Eriksson, A. M.; Nelson, B. D.; DePierre, J. W., Further evidence for the involvement of inhibition of cell proliferation and development in thymic and splenic atrophy induced by the peroxisome proliferator perfluoroctanoic acid in mice. Biochemical Pharmacology 2001, 62, 1133-1140. 31. Yang, Q.; Xie, Y.; Alexson, S. E. H.; Dean Nelson, B.; DePierre, J. W., Involvement of the peroxisome proliferator-activated receptor alpha in the immunomodulation caused by peroxisome proliferators in mice. Biochemical Pharmacology 2002, 63, 1893-1900. 32. Yang, Q.; Abedi-Valugerdi, M.; Xie, Y.; Zhao, X. Y.; Moller, G.; Dean Nelson, B.; DePierre, J. W., Potent suppression of the adaptive immune response in mice upon dietary exposure to the potent peroxisome proliferator, perfluorooctanoic acid. International Immunopharmacology 2002, 2, 389-397. 33. Bonefeld-Jorgensen, E. C.; Long, M.; Bossi, R.; Ayotte, P.; Asmund, G.; Kruger, T.; Ghisari, M.; Mulvad, G.; Kern, P.; Nzulumiki, P., Perfluorinated compounds are related to breast cancer risk in greenlandic inuit: A case control study. Environmental Health 2011, 10, 88-103. 34. Vieno, N. M.; Harkki, H.; Tuhkanen, T.; Kronberg, L., Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant. Environmental Science & Technology 2007, 41, 5077-5084. 35. Sinclair, E.; Kannan, K., Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants. Environmental Science & Technology 2006, 40, 1408-1414. 36. Takagi, S.; Adachi, F.; Miyano, K.; Koizumi, Y.; Tanaka, H.; Mimura, M.; Watanabe, I.; Tanabe, S.; Kannan, K., Perfluorooctanesulfonate and perfluorooctanoate in raw and treated tap water from Osaka, Japan. Chemosphere 2008, 72, 1409-1412. 37. Takagi, S.; Adachi, F.; Miyano, K.; Koizumi, Y.; Tanaka, H.; Watanabe, I.; Tanabe, S.; Kannan, K., Fate of perfluorooctanesulfonate and perfluorooctanoate in drinking water treatment processes. Water Research 2011, 45, 3925-3932. 38. Chang, Y.-C.; Chen, W.-L.; Bai, F.-Y.; Chen, P.-C.; Wang, G.-S.; Chen, C.-Y., Determination of perfluorinated chemicals in food and drinking water using high-flow solid-phase extraction and ultra-high performance liquid chromatography/tandem mass spectrometry. Analytical and Bioanalytical Chemistry 2012, 402, 1315-1325. 39. Chen, C. Y.; Wen, T. Y.; Wang, G. S.; Cheng, H. W.; Lin, Y. H.; Lien, G. W., Determining estrogenic steroids in Taipei waters and removal in drinking water treatment using high-flow solid-phase extraction and liquid chromatography/tandem mass spectrometry. Science of The Total Environment 2007, 378, 352-365. 40. Block, S. S., Disinfection, Sterilization, and Preservation. fifth ed.; Lippincott Williams & Wilkins 2000; p 74-76. 41. Wang, C.; Shi, H.; Adams, C. D.; Gamagedara, S.; Stayton, I.; Timmons, T.; Ma, Y., Investigation of pharmaceuticals in Missouri natural and drinking water using high performance liquid chromatography-tandem mass spectrometry. Water Research 2011, 45, 1818-1828. 42. Choi, K.; Kim, S.; Kim, C.; Park, J., Removal efficiencies of endocrine disrupting chemicals by coagulation/flocculation, ozonation, powdered/granular activated carbon adsorption, and chlorination. Korean Journal of Chemical Engineering 2006, 23, 399-408. 43. Westerhoff, P.; Yoon, Y.; Snyder, S.; Wert, E., Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environmental Science and Technology 2005, 39, 6649-6663. 44. 教育部環境保護小組, 環境工程概論. 中華民國環境工程學會: 1994. 45. Stackelberg, P. E.; Gibs, J.; Furlong, E. T.; Meyer, M. T.; Zaugg, S. D.; Lippincott, R. L., Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Science of The Total Environment 2007, 377, 255-272. 46. Liou, J. H. Effect of coagulant type on the coagulation of low-turbidity source water. National Cheng Kung University, Taiwan (in Chinese), 2006. 47. Liao, P.-M. The behavior of organic polymers on coagulation and chlorination processes during drinking water purification. National Central University, 2000. 48. Touraud, E.; Roig, B.; Sumpter, J. P.; Coetsier, C., Drug residues and endocrine disruptors in drinking water: Risk for humans? International Journal of Hygiene and Environmental Health 2011, 214, 437-441. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63585 | - |
| dc.description.abstract | 新興污染物為新認定或是未被認定之污染物,這些物質對於人體健康以及生態環境可能具有相當程度的風險,相關環境流布議題也越來越受重視,特別是在進行水資源再利用時,台灣大部分淨水場進行的傳統淨水過程是否能有效移除這些新興污染物,相關資訊仍非常有限。本研究所關注的新興污染物為全氟碳化合物、鎮痛解熱劑和個人保健用品,探討傳統飲用水淨水流程對它們的移除效率情形。
本研究以長興淨水場原水為基質,添加已知濃度標準品,接著經過前加氯、混凝沉澱、快濾以及後加氯的各淨水單元的實驗室模擬,觀察個別單元對待測物的移除率為何,此外也進行UV反應以觀察待測物光解情形。前處理部分,水樣添加同位素標定內標準品後,調整pH值至3,接著以Atlantic HLB 圓盤型吸附劑(直徑47 mm)搭配SPE-DEX 4790自動化固相萃取器進行萃取,萃取後樣本再經濃縮成體積1 mL,以極致液相層析/串聯式質譜儀(UHPLC-MS/MS)進行分析。 在前加氯單元,鎮痛解熱劑、荷爾蒙及類似作用物以及保存劑類,移除率大多超過50%;前加氯對全氟碳化合物移除效率大致介於20-40%,其中PFHxA(perfluorohexanoic acid)完全無法被移除;混凝沉澱對鎮痛解熱劑中的acetaminophen、acetylsalicylic acid、meclofenamic acid以及保健食品 huperzine A移除率較佳(60-80%),然而對大多數鎮痛解熱劑和個人保健用品而言,混凝沉澱的移除效果大多低於30%;混凝沉澱無法移除PFHxA以及PFDA(perfluorodecanoic acid),而對其他全氟碳化合物移除率範圍在20-80%。快濾對大多數個人保健用品有超過 70% 的移除率;快濾對全氟碳化合物移除效率大致介於70-98%,但是對於PFHxA的移除率較差(低於23%)。後加氯單元對鎮痛解熱劑aminopyrine、 phenazone、荷爾蒙EE2、E2、E3、防曬劑oxybenzone、保健食品 huperzine A以及保存劑ethyl paraben、propyl paraben有較佳的移除效果(超過70%);後加氯對全氟碳化合物移除效率大致介於20-40%,其中PFHxA則完全無法被移除。經全流程處理過後,除了清潔劑NP移除效果較差(低於30%),其餘個人保健用品經全流程處理移除率大多超過90%。全氟碳化合物經全流程處理過後移除率大多超過90%,而PFHxA移除率則是低於20%。UV反應實驗結果顯示,鎮痛解熱劑、荷爾蒙及類似作用物、保健食品huperzine A以及保存劑較易被光解,在UV反應時間60分鐘內,降解去除率可達100%;荷爾蒙及類似作用物之finasteride、防曬劑、驅蟲劑、興奮劑以及清潔劑經過60分鐘UV反應,仍有20-60%未被移除;UV反應結果顯示全氟碳化合物無法被有效光解。 以各淨水單元對待測物之移除率來看,快濾對個人保健用品以及全氟碳化合物移除效果較優於其他淨水單元,移除率大多超過90%;從全流程處理結果顯示,透過傳統飲用水淨水流程可以移除大多數個人保健用品以及全氟碳化合物。 | zh_TW |
| dc.description.abstract | Emerging contaminants are defined as newly identified or unrecognized pollutants. These substances may cause adverse effects on human health and the ecosystem, and their environment fate has become more concerned, especially on the issue of reused water. In Taiwan, most drinking water treatments utilize conventional processes and the information of elimination of these emerging contaminants is still limited. This study focused on the removal efficiency of the processes on perfluocochemicals and personal care products.
Raw water from the upstream (Chin-Tan Weir) of Hsin-Dian Creek was used as the matrix and was spiked two levels of eught perfluocochemicals and 23 personal care products into raw water. Four processes were simulated at laboratory scale to evaluate the removal efficiencies:pre-chlorination, coagulation/sedimentation, rapid filtration, and post-chlorination. Some personal care products contain aromatic structures that may be photolyzed; thus this study also investigated the effect of the UV degradation. Water samples were adjusted to pH 3.0 by formic acid then underwent solid-phase extraction with Atlantic HLB disk. The eluents were concentrated to 1 mL by a SpeedVac concentrator and were analyzed by ultra-high performance liquid chromatography/ tandem mass spectrometry. The removal rate of analgesics, hormones and parabens in the pre-chlorination unit are over 50 %; 20-40% of perfluocochemicals were removed in the pre-chlorination unit and PFHxA (perfluorohexanoic acid) was not removed. The coagulation/sedimentation procedure removed less than 30% of the personal care products, and only had better removal on acetaminophen、acetylsalicylic acid、meclofenamic acid and huperzine A (60-80%). The coagulation/sedimentation procedure took out 20-80% of perfluocochemicals expect for PFHxA and PFDA (perfluorodecanoic acid) (not removed). The rapid filtration step took out over 70% of personal care products; the removal rates on perfluocochemicals ranged from 70 to 98% but was not good on removing of PFHxA ( < 23%). The removal rate in post-chlorination process for aminopyrine, phenazone, EE2, E2, E3, oxybenzone, huperzine A, ethyl paraben and propyl paraben were over 70% but other personal care products had removal rates lower than 70% during the post-chlorination process; most of the perfluocochemicals were removed in 20-40% expect for PFHxA (not removed). The whole procedure removed most of the personal care products (>90%) excluding NP (<30%); perfluocochemicals have removals over 90% expect for PFHxA (< 20%). Analgesics, hormones, parabens and huperzine A can be easily photolyzed in 60 minutes by UV radiation (100%). 20-60% of finasteride, suntan lotions, DEET, caffeine and NP were still left after 60-min UV radiation; perfluocochemicals cannot be effectively photolyzed by UV radiation. The rapid filtration step has the best removals in both personal care products and perfluocochemicals (removals > 90%) and the conventional drinking water treatment can remove most of the personal care products and perfluocochemicals. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:14:23Z (GMT). No. of bitstreams: 1 ntu-101-R99844013-1.pdf: 2517575 bytes, checksum: 94ee8bf9cc4859a2ebfc6cd69d147077 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 中文摘要 II
英文摘要 IV 目錄 VII 表目錄 X 圖目錄 XI 附錄 XII 第一章 前言 1 1.1. 研究緣起 1 1.2. 研究目的 2 第二章 文獻探討 3 2.1 簡介 3 2.2 環境流布與健康危害 3 2.3 水處理之移除效率 6 第三章 研究方法與材料 8 3.1. 試劑及儀器 8 3.1.1. 試劑與材料 8 3.1.2. 儀器設備 12 3.2. 採樣 13 3.2.1. 實驗用水樣 13 3.3. 各單元條件之設計 13 3.3.1. 前加氯 14 3.3.2. 混凝沉澱 14 3.3.3. 快濾 15 3.3.4. 後加氯 15 3.3.5. 全流程 15 3.3.6. UV反應實驗 15 3.4. 樣品前處理步驟 16 3.5. 儀器分析條件 16 3.6. 品保/品管 17 3.7. 資料分析 18 第四章 結果與討論 19 4.1. 固相萃取前處理方法 19 4.2. QC樣本定量準確性以及一致性 19 4.3. 各單元去除個人保健用品以及全氟碳化合物之效率 19 4.3.1. Milli-Q water模擬 20 4.3.1.1. 加氯 20 4.3.1.2. 混凝沉澱 20 4.3.1.3. 快濾 21 4.3.1.4. 全流程之去除效果 21 4.3.2. 原水模擬 21 4.3.2.1. 前加氯 21 4.3.2.2. 混凝沉澱 22 4.3.2.3. 快濾 23 4.3.2.4. 後加氯 23 4.3.2.5. 全流程之去除效果 24 4.3.3. 原水模擬與Milli-Q water模擬之比較 24 4.3.4. 各淨水單元移除機制之討論 25 4.3.4.1. 加氯 25 4.3.4.2. 混凝沉澱 26 4.3.4.3. 快濾 27 4.4. UV移除效果 28 第五章 結論 30 參考文獻 32 表目錄 表 1、長興淨水場之水質特性 36 表 2、待測物使用ESI離子源之串聯式質譜儀之最佳參數及定量標定內標準品 37 表 3、試劑水圓盤型吸附劑全處理流程回收率 39 表 4、淨水流程模擬實驗之重複樣本之相對差異百分比(RPD) 41 圖目錄 圖 1、個人保健用品與全氟碳化合物之結構(4, 38) 43 圖 2、前加氯流程 46 圖 3、凝劑加藥曲線圖(1) 46 圖 4、混凝沉澱流程 47 圖 5、快濾流程 48 圖 6、後加氯流程 48 圖 7、全流程處理 49 圖 8、前處理流程 50 圖 9、Milli-Q water模擬:鎮痛解熱劑之各單元移除率:(a) 低濃度 (b) 高濃度 51 圖10、Milli-Q water模擬:荷爾蒙及類似作用物之各單元移除率:(a) 低濃度 (b) 高濃度 52 圖11、Milli-Q water模擬:保存劑、中國藥草之各單元移除率:(a) 低濃度 (b) 高濃度 53 圖12、Milli-Q water模擬:防曬劑、驅蟲劑、興奮劑、清潔劑之各單元移除率:(a) 低濃度 (b) 高濃度 54 圖13、Milli-Q water模擬:全氟碳化合物之各單元移除率:(a) 低濃度 (b) 高濃度 55 圖14、原水模擬:鎮痛解熱劑之各單元移除率:(a) 低濃度 (b) 高濃度 56 圖15、原水模擬:荷爾蒙及類似作用物之各單元移除率:(a) 低濃度 (b) 高濃度 57 圖16、原水模擬:保存劑、中國藥草之各單元移除率:(a) 低濃度 (b) 高濃度 58 圖17、原水模擬:防曬劑、驅蟲劑、興奮劑、清潔劑之各單元移除率:(a) 低濃度 (b) 高濃度 59 圖18、原水模擬:全氟碳化合物之各單元移除率:(a) 低濃度 (b) 高濃度 60 圖19、UV降解鎮痛解熱劑曲線圖 61 圖20、UV降解荷爾蒙及類似作用物曲線圖 61 圖 21、UV降解保存劑、中國藥草曲線圖 62 圖 22、UV降解防曬劑、驅蟲劑、興奮劑、清潔劑曲線圖 62 圖 23、UV降解全氟碳化合物曲線圖 63 附錄 附表 1、原水模擬之各處理單元之去除率數值 64 附表 2、Milli-Q water 模擬之各處理單元之去除率數值 (續)72 附表 3、個人保健用品以及藥物之pKa 、Log Kow (4) 78 | |
| dc.language.iso | zh-TW | |
| dc.subject | 前加氯 | zh_TW |
| dc.subject | 後加氯 | zh_TW |
| dc.subject | 快濾 | zh_TW |
| dc.subject | 液相層析/質譜/質譜儀 | zh_TW |
| dc.subject | 固相萃取 | zh_TW |
| dc.subject | 去除效率 | zh_TW |
| dc.subject | 混凝/沉澱 | zh_TW |
| dc.subject | rapid filtration | en |
| dc.subject | solid-phase extraction | en |
| dc.subject | LC/MS/MS | en |
| dc.subject | pre-chlorination | en |
| dc.subject | coagulation/sedimentation | en |
| dc.subject | removal efficiency | en |
| dc.subject | post-chlorination | en |
| dc.title | 飲用水淨水流程移除全氟碳化合物、藥品暨個人保健用品之效率 | zh_TW |
| dc.title | Removal of Perfluorochemicals, Pharmaceuticals, and Personal Care Products from Drinking Water Treatment Processes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林財富,郭錦樺,王根樹 | |
| dc.subject.keyword | 去除效率,固相萃取,液相層析/質譜/質譜儀,前加氯,混凝/沉澱,快濾,後加氯, | zh_TW |
| dc.subject.keyword | removal efficiency,solid-phase extraction,LC/MS/MS,pre-chlorination,coagulation/sedimentation,rapid filtration,post-chlorination, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-20 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境衛生研究所 | zh_TW |
| 顯示於系所單位: | 環境衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
