請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63570完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林立德(Li-Deh Lin) | |
| dc.contributor.author | Yen-Jung Lai | en |
| dc.contributor.author | 賴彥蓉 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:14:09Z | - |
| dc.date.available | 2014-09-17 | |
| dc.date.copyright | 2012-09-17 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-20 | |
| dc.identifier.citation | 1. Marcucci B. A shade selection technique. J Prosthet Dent. 2003;89(5):518–521.
2. Egger B. Natural color concept: A systematic approach to visual shade selection. Quintessence Dent Technol. 2003;26:1-10. 3. Dagg H, O'Connell B, Claffey N, Byrne D, Gorman C. The influence of some different factors on the accuracy of shade selection. J Oral Rehabil. 2004;31(9):900–904. 4. Fondriest J. Shade matching in restorative dentistry: the science and strategies. Int J Periodontics Restorative Dent. 2003;23(5):467–479. 5. Buchalla W. Comparative fluorescence spectroscopy shows differences in noncavitated enamel lesions. Caries Res. 2005;39(2):150–156. 6. Lee Y-K, Lu H, Powers JM. Fluorescence of layered resin composites. J Esthet Restor Dent. 2005;17(2):93–100. 7. Sensi L, Marson F, Roesner T, Baratieri L, Monteiro S Jr. Fluorescence of composite resins: Clinical considerations. Quintessence Dent Technol. 2006;29:43–53. 8. Lee Y-K, Lu H, Powers JM. Effect of surface sealant and staining on the fluorescence of resin composites. J Prosthet Dent. 2005;93(3):260–266. 9. D'Alpino PHP, Pereira JC, Svizero NR, Rueggeberg FA, Pashley DH. Use of fluorescent compounds in assessing bonded resin-based restorations: a literature review. J Dent. 2006;34(9):623–634. 10. Monsenego G, Burdairon G, Clerjaud B. Fluorescence of dental porcelain. J Prosthet Dent. 1993;69(1):106–113. 11. Ecker GA, Moser JB, Wozniak WT, Brinsden GI. Effect of repeated firing on fluorescence of porcelain-fused-to-metal porcelains. J Prosthet Dent. 1985;54(2):207–214. 12. Miller M. Composite resin fluorescence. J Esthet Restor Dent. 2004;16(6):335. 13. 徐敘瑢,光電材料與顯示技術,五南圖書出版股份有限公司:台北,民93。 14. Hunt RWG, Pointer MR. Front Matter, in Measuring Colour, 4th ed. John Wiley & Sons, Ltd, Chichester, UK; 2011. 15. The Lesson of the 'Unseen' Web site. http://thespunkyscientist.blogspot.tw/2011/04/lesson-of-unseen.html. Accessed June 25, 2012. 16. School for Champions Web site. http://www.school-for-champions.com/science/light_dispersion.htm/. Accessed June 25, 2012. 17. Spartan Environmental Technologies Web site. http://www.spartanwatertreatment.com/UV.html. Accessed June 25, 2012. 18. Ropp RC. Luminescence and the Solid State. 2nd ed. Elsevier B.V. Amsterdam, The Netherlands; 2004. 19. Epoch times Web site. http://www.epochtimes.com/b5/5/8/31/n1036571.htm. Accessed June 25, 2012. 20. Olympus America Web site. http://www.olympusmicro.com/primer/java/jablonski/jabintro/index.html. Accessed June 25, 2012. 21. Fairchild MD. Color Appearance Models. 2nd ed. John Wiley & Sons, Ltd, Chichester, UK; 2005. 22. Chu SJ, Devigus A, Mieleszko AJ. Fundamentals of Color: Shade Matching and Communication in Esthetic Dentistry. 1st ed. Quintessence Publishing, Illinois, USA; 2004. 23. Wyszecki G, Stiles WS. Color Science: Concepts and Methods, Quantitative Data and Formulae. 2nd ed. John Wiley & Sons, Ltd, Chichester, UK; 2000. 24. Hunt RWG. The Reproduction of Colour. 6th ed. John Wiley & Sons, Ltd, Chichester, UK; 2004. 25. Wikipedia Web site. http://en.wikipedia.org/wiki/Munsell_color_system. Accessed June 25, 2012. 26. Chu SJ. Precision shade technology: contemporary strategies in shade selection. Pract Proced Aesthet Dent. 2002;14(1):79–83. 27. Overheim RD, Wagner DL. Light and Color. 1st ed. John Wiley & Sons, Ltd, Chichester, UK; 1982. 28. McLaren E. The 3D-master shade-matching system and the skeleton buildup technique: Science meets art and intuition. Quintessence Dent Technol. 1999;22:55–68. 29. 林欣儀,人類拔除自然牙之螢光與色度關係 ,國立台灣大學牙醫專業學院臨床牙醫學研究所碩士論文:台北,民100。 30. Planeta Dan Web site. http://planetadan.blogspot.tw/2010/04/el-modelo-cie-lab-informe-de-exposicion.html. Accessed June 25, 2012. 31. Mancewicz SA, Hoerman KC. Characteristics of insoluble protein of tooth and bone-I- Fluorescence of some acid hydrolytic fragments. Arch oral Biol. 1964;9:535–544. 32. Perry A, Biel M, DeJongh O, Hefferren J. Comparative study of the native fluorescence of human dentine and bovine skin collagens. Arch oral Biol. 1969;14(10):1193–1211. 33. Foreman PC. The excitation and emission spectra of fluorescent components of human dentine. Arch oral Biol. 1980;25(10):641–647. 34. Bosch Ten JJ, Zijp J. Optical properties of dentin. Dentine and dentine reactions in the oral cavity. IRL Press Ltd, Oxford, England;1987. 35. Spitzer D, Bosch JJ. The total luminescence of bovine and human dental enamel. Calcif Tissue Res. 1976;2:201–208. 36. Fukushima Y, Araki T. Topography of fluorescence and its possible composites in human teeth. Cell Mol Biol. 1987;33:277–287. 37. Matsumoto H, Kitamura S, Araki T. Autofluorescence in human dentine in relation to age, tooth type and temperature measured by nanosecond time-resolved fluorescence microscopy. Arch oral Biol. 1999;44(4):309–318. 38. Bosch Ten JJ, Coops JC. Tooth color and reflectance as related to light scattering and enamel hardness. J Dent Res. 1995;74(1):374–380. 39. Terry DA, Geller W, Tric O, Anderson MJ, Tourville M, Kobashigawa A. Anatomical form defines color: function, form, and aesthetics. Pract Proced Aesthet Dent. 2002;14(1):59–67. 40. Kvaal S, Solheim T. Fluorescence from dentin and cementum in human mandibular second premolars and its relation to age. Scand J Dent Res. 1989;97(2):131–138. 41. Araki T, Miyazaki E, Kawata T. Measurements of fluorescence heterogeneity in human teeth using polarization microfluorometry. Applied Spectroscopy. 1990;44:627–631. 42. 鍾國雄,牙科材料學,合計圖書出版社:台北,民90。 43. Anusavice KJ. Phillips' Science of Dental Materials. 11th ed. Saunders, Missouri, USA; 2003. 44. Sakaguchi RL, Powers JM. Craig's Restorative Dental Materials. 13th ed. Mosby, Missouri, USA; 2011. 45. 鄭子樵與李紅英,稀土功與應用技術叢書—稀土功能材料,曉園出版社有限公司; 台北,民95。 46. Panzeri H, Fernandes L, Minelll CJ. Spectral fluorescence of direct anterior restorative materials. Aust Dent J. 1977;22(6):458–461. 47. Tani K, Watari F, Uo M, Morita M. Discrimination between composite resin and teeth using fluorescence properties. Dent Mater J. 2003;22(4):569–580. 48. Lim Y-K, Lee Y-K. Fluorescent emission of varied shades of resin composites. Dent Mater. 2007;23(10):1262–1268. 49. Magne P, So WS. Optical integration of incisoproximal restorations using the natural layering concept. Quintessence Int. 2008;39(8):633–643. 50. Vanini L. Light and color in anterior composite restorations. Pract Periodontics Aesthet Dent. 1996;8(7):673–82. 51. Park M-Y, Lee Y-K, Lim B-S. Influence of fluorescent whitening agent on the fluorescent emission of resin composites. Dent Mater. 2007;23(6):731–735. 52. Takahashi MK, Vieira S, Rached RN, de Almeida JB, Aguiar M, de Souza EM. Fluorescence intensity of resin composites and dental tissues before and after accelerated aging: a comparative study. Oper Dent. 2008;33(2):189–195. 53. Janda R, Roulet J-F, Latta M, Steffin G, Ruttermann S. Color stability of resin-based filling materials after aging when cured with plasma or halogen light. Eur J Oral Sci. 2005;113(3):251–257. 54. Yan B, Wang Q-M. In situ composition and luminescence of terbium coordination polymers/PEMA hybrid thick films. Opt Mater. 2004;27(3):533–537. 55. Lee Y-K, Lu H, Powers JM. Changes in opalescence and fluorescence properties of resin composites after accelerated aging. Dent Mater. 2006;22(7):653–660. 56. Gale MS, Darvell BW. Thermal cycling procedures for laboratory testing of dental restorations. J Dent. 1999;27(2):89–99. 57. 李冠瑢、林政鞍與張恒雄,披上外套的奈米量子點,科學發展. 2008;431:6–9. 58. 張立德與牟季美,奈米材料和奈米結構,滄海書局;台北,民91。 59. Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc. 1993;115(19):8706–8715. 60. Peng ZA, Peng X. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. J Am Chem Soc. 2001;123(1):183–184. 61. 楊智惠、黃耿迷、王英基與林裕城,量子點—奈米彩虹標籤,科學發展. 2008;422:46–49. 62. Cao, Banin U. Growth and Properties of Semiconductor Core/Shell Nanocrystals with InAs Cores. J Am Chem Soc. 2000;122(40):9692–9702. 63. Hussain S, Won N, Nam J, Bang J, Chung H, Kim S. One-Pot Fabrication of High-Quality InP/ZnS (Core/Shell) Quantum Dots and Their Application to Cellular Imaging. ChemPhysChem. 2009;10:1466–1470. 64. Alves L, Pilla V, Murgo D, Munin E. Core-shell quantum dots tailor the fluorescence of dental resin composites. J Dent. 2009;38:149–152. 65. Wang Y, Quek CH, Leong KW. Synthesis and Cytotoxicity of Luminescent InP Quantum Dots. Mater Res Soc Symp Proc. 2010;1241:1–6. 66. 蘇怡今, 奈米磷化銦之合成與特性鑑定,國立交通大學應用化學系所碩士論文:台北,民98。 67. International Organization, ISO 10993-12: Biological evaluation of medical devices—Part 12: Sample preparation and reference materials. International Standard. Genevas, Switzerland. 2007. 68. International Organization, ISO 10993-5: Biological Evaluation of Medical Devices—Part 5: Tests for Cytotoxicity: In Vitro Methods. International Standard. Genevas, Switzerland. 2009. 69. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. 70. Ruyter IE, Nilner K, Moller B. Color stability of dental composite resin materials for crown and bridge veneers. Dent Mater. 1987;3(5):246–251. 71. Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998;281:2016–2018. 72. Li C, Ando M, Enomoto H, Murase N. Highly Luminescent Water-Soluble InP/ZnS Nanocrystals Prepared via Reactive Phase Transfer and Photochemical Processing. J Phys Chem C. 2008;112(51):20190–20199. 73. Powers JM, Dennison JB, Koran A. Color stability of restorative resins under accelerated aging. J Dent Res. 1978;57:964–970. 74. Douglas RD. Color stability of new-generation indirect resins for prosthodontic application. J Prosthet Dent. 2000;83(2):166–170. 75. Eliades G, Eliades T, William BA, David W. Dental materials in vivo : aging and related phenomena. 1st ed. Quintessence Publishing, Iillinois, USA; 2004. 76. Bagheri R, Tyas MJ, Burrow MF. Subsurface degradation of resin-based composites. Dent Mater. 2007;23(8):944–951. 77. Arikawa H, Kanie T, Fujii K, Ban S, Homma T, Takahashi H. Optical and color stabilities of paint-on resins for shade modification of restorative resins. Dent Mater J. 2004;23(2):155–160. 78. Catelan A, Briso ALF, Sundfeld RH, Goiato MC, Santos dos PH. Color stability of sealed composite resin restorative materials after ultraviolet artificial aging and immersion in staining solutions. J Prosthet Dent. 2011;105(4):236–241. 79. Buchalla W, Attin T, Hilgers R-D, Hellwig E. The effect of water storage and light exposure on the color and translucency of a hybrid and a microfilled composite. J Prosthet Dent. 2002;87(3):264–270. 80. Sarafianou A, Iosifidou S, Papadopoulos T, Eliades G. Color stability and degree of cure of direct composite restoratives after accelerated aging. Oper Dent. 2007;32(4):406–411. 81. Coe-Sullivan S, Woo W, Steckel J. Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices. Org Electron. 2003;(4):123-130. 82. Kim K, Woo JY, Jeong S, Han C-S. Photoenhancement of a Quantum Dot Nanocomposite via UV Annealing and its Application to White LEDs. Adv Mater. 2010;23(7):911–914. 83. Samia ACS, Chen X, Burda C. Semiconductor Quantum Dots for Photodynamic Therapy. J Am Chem Soc. 2003;125(51):15736–15737. 84. Ipe BI, Lehnig M, Niemeyer CM. On the Generation of Free Radical Species from Quantum Dots. Small. 2005;1(7):706–709. 85. Alivisatos A, Gu W. Quantum dots as cellular probes. Annu Rev Biomed Eng. 2005;7:55–76. 86. Chibli H, Carlini L, Park S, Dimitrijevic NM, Nadeau JL. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation. Nanoscale. 2011;3(6):2552. 87. Mićić OI, Nozik AJ, Lifshitz E, Rajh T, Poluektov OG, Thurnauer MC. Electron and Hole Adducts Formed in Illuminated InP Colloidal Quantum Dots Studied by Electron Paramagnetic Resonance. J Phys Chem B. 2002;106(17):4390–4395. 88. National Toxicology Program. Toxicology and carcinogenesis studies of indium phosphide (CAS No. 22398-90-7) in F344/N rats and B6C3F1 mice (inhalation studies). Natl Toxicol Program Tech Rep Ser. 2001;(499):7–340. 89. Yamazaki K, Tanaka A, Hirata M. Long term pulmonary toxicity of indium arsenide and indium phosphide instilled intratracheally in hamsters. J Occup Health. 2002;44:105–107. 90. Yong K-T, Ding H, Roy I, et al. Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano. 2009;3(3):502–510. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63570 | - |
| dc.description.abstract | 於現代審美牙科發展下,牙科複合樹脂廣泛地作為復形充填之材料。臨床使用之樹脂復形材料主要組成為樹脂基質及無機填料粒子,故稱之為複合樹脂,其它添加物為引起聚合反應、加強材料之臨床操作特性與耐久性,且經色料調配可達到與牙齒顏色相配合及美觀要求。於紫外光照下,自然牙放出淡藍色之螢光,由文獻回顧中可知自然牙之激發光譜介於 300~450 nm之間,波峰約 390 nm,放射光譜約介於 410~600 nm,波峰約 470 nm。然而牙科複合樹脂基質與填料分子並未發出螢光,須加入螢光物質。與自然牙螢光相近之元素多屬於週期表中III、IV、V族之元素,市售複合樹脂使用之螢光物質,推論為銪、鈰、鐿等稀土元素氧化物或有機分子,隨著填料分子分散在樹脂中。此螢光物質等混合後之螢光表現複雜,且其螢光表現與所在之基質材料有關。於紫外線照射下,不同廠牌之複合樹脂均有其激發與放射光譜與螢光強度。自然牙之激發光譜範圍較市售複合樹脂為寬廣,市售複合樹脂可被激發之範圍較有限。牙科復形材料必須要有良好穩定性,才能適用於口腔內潮溼與溫差大之環境。市售複合樹脂之螢光強度於紫外燈照射與加速老化試驗後均減弱,代表樹脂中螢光物質其穩定性不佳。2009年硒化鎘(CdSe)量子點首先被提出摻入牙科複合樹脂作為螢光物質,然,硒化鎘量子點具高毒性,並不適用於生醫材料之發展。
本實驗目的為利用磷化銦(InP)量子點之螢光亮度強、光穩定性佳、可利用粒徑大小調控螢光且無生物毒性等特性,作為牙科複合樹脂之螢光來源。實驗中利用螢光光譜儀測試八種市售牙科複合樹脂之螢光激發與放射光譜,比較其與自然牙之相異,經CIE 13.3 Color Rendering Index 色度座標分析軟體計算螢光之色度座標,比較顏色之差異。使用以溶劑熱法合成之磷化銦量子點,測試摻入不同重量(0.5、1.0、1.5 mg)及不同粒徑(放光波長分別為553 nm與520 nm)之磷化銦量子點於牙科複合樹脂,以光譜儀測是混合後之螢光表現。亦摻入量子效率較高之磷化銦/硫化鋅量子點,測試是否可以較低之量子點重量比例即可達到所之螢光強度。經由氙弧燈試驗箱之老化試驗 120 小時,測試摻入磷化銦量子點於牙科複合樹脂其螢光穩定性是否優於市售複合樹脂,且利用數位比色儀記錄CIE L*a*b*值並計算試驗前後之色彩變化,探討其螢光強度變化之相關性。並進行細胞存活檢測與細胞內活性氧物質之測定,測試磷化銦量子點之生物相容性。 實驗結果與結論: (ㄧ)市售牙科複合樹脂之螢光表現與自然牙有所差異。市售複合樹脂激發光譜落於 340~410 nm ,最強激發波長落於 382∼395 nm,波形強度各相異,且波形較自然牙狹窄;而放射光譜落於 420~600 nm,最強放射波長落於 438∼451 nm,較自然牙偏藍位移,且每種品牌之間螢光強度及波形不同,但各品牌不同色度之間,差異在於螢光強度。(二)於 CIE 色度座標,市售複合樹脂落於淡藍色範圍,較自然牙更偏藍色區域。(三)磷化銦量子點具碳鏈呈疏水性之表面,可用於與牙科複合樹脂作混合。(四)可利用量子點之螢光亮度強、光穩定性佳及不同粒徑大小具不同放光波段等特性,作為牙科複合樹脂之螢光來源。摻入不同重量之磷化銦量子點可調控複合樹脂之螢光強度,且摻入不同粒徑之磷化銦量子點可調控複合樹脂之螢光放光波段。摻入磷化銦量子點至具螢光反應之牙科複合樹脂中,可使其放射光譜變得較為寬廣,以擬合自然牙之放光特性。(五)摻入磷化銦量子點至具螢光反應之牙科複合樹脂後,其 CIE 色度座標由淡藍色區域移至白色區域。(六)摻入量子效率較高之磷化銦/硫化鋅量子點,所需摻入之量子點重量較少即可達到接近自然牙螢光之強度。(七)經氙弧燈試驗箱老化測試 120 小時,市售複合樹脂之螢光強度下降50∼70%,摻入磷化銦量子點之牙科複合樹脂,其螢光強度下降5∼30%,表示磷化銦量子點為穩定之螢光來源。(八)經氙弧燈試驗箱老化測試 120 小時,市售複合樹脂Filtek™ Z350 XT、Estelite Sigma Quick、Primisa、Shofu Beautifil II 之色彩變化超過 3.3 ∆E_ab^* 單位。以線性迴歸分析各組螢光強度變化與顏色變化關係,得到Gradia Direct Anterior與Primisa兩者之螢光強度變化與顏色變化有於迴歸分析中具統計上顯著線性關係(p < 0.05)。(九)經細胞存活檢測,摻入磷化銦量子點及磷化銦/硫化鋅殼核量子點之複合樹脂、磷化銦量子點粉末及磷化銦/硫化鋅殼核量子點粉末對人類牙齦造纖維母細胞無細胞毒性(p > 0.05)。(十)經細胞內活性氧物質測定,摻入磷化銦量子點之複合樹脂較對照組產生較多之活性氧,但未達統計上顯著相關(p > 0.05);而磷化銦量子點粉末及磷化銦/硫化鋅殼核量子點粉末較對照組產生較少之活性氧,同樣未達統計上顯著相關(p > 0.05)。(十一)磷化銦量子點具有良好之生物相容性。 | zh_TW |
| dc.description.abstract | In the development of modern esthetic dentistry, dental ceramics and composite resins are widely used as filling material of artificial crowns and restorations. The clinical resin-restorative materials are mainly composed of resin matrix and inorganic filler particles, and so called composite resins. Other additives in the composite resins are used to cause polymerization, ease the clinical operation and strengthen the durability of the materials. By adding pigments and stains, the restorative material can match the shade with natural teeth and achieve the esthetic requirements. Under the exposure to ultraviolet, the natural teeth emit blue fluorescence. Literature review shows the excitation spectra of the natural teeth are between 300~450 nm with peak at 390, and the emission spectra are between 410~600 nm with peak at 470 nm. However, the resin matrix and filler of dental composite resin do not fluoresce. Fluorescent substances must be added to mimic the blue fluorescence on natural teeth. The luminophores with similar fluorescence are elements of the periodic table III, IV and V group, and generally supposed to be europium, cerium, ytterbium and other rare earth oxide or organic molecules. Theses luminophores may be blended with filler and dispersed in the resin matrix. The fluorescent performances of these luminophores are more complex when they are mixed, and are affected the matrix. Under the exposure to ultraviolet, different brands of commercial dental composite resins have different excitation and emission spectra and fluorescent intensity. The excitation spectra of natural teeth are wider than those of composite resins’, which means that the composite resin can only be excited at a narrower range. Restorative materials must have good stability to endure the damp environment and fluctuate temperature of oral cavity. The fluorescence properties of commercial composite dental resins decay after ultraviolet-accelerated aging, which means the stability of the luminophores, may not be good enough. In 2009, semiconducting material, cadmium selenide quantum dots (CdSe QDs) are first used as luminophores in dental composite resin. However, CdSe QDs are not suitable for biomaterial due to its toxicity. The purpose of this study is to use the biocompatible indium phosphide quantum dots (InP QDs), which have bright, highly tunable fluorescence emission that depends sensitively on their size, as the luminophore for dental composite resins. By photoluminescence, eight different brands of dental composite resins were tested. The optical properties of composite resins were compared with natural teeth’s from the excitation, emission spectra, and CIE coordinates. The InP quantum dots were synthesized by solvothermal method. Different weight (0.5, 1.0 and 1.5 mg) and different size ( λem 520 nm and λem 553 nm) of InP QDs were blended into dental composite resins and tested by photoluminescence. InP/ZnS QDs, which had higher quantum yield, were bleded into composite resins in order to test if fewer amounts of QDs were needed to achieve the fluorescent intensity of natural teeth. The blended samples were tested by accelerated-aging in xenon test chamber for 120 hours to see if the fluorescence of InP QDs were more stable than the commercial resins. CIE L*a*b* coordinates were recorded before and after by colorimeter, in order to correlate the differences in color and fluorescent intensity. MTT assay and ROS assay were performed to confirm the biocompatibility of InP QDs.
Experimental results and conclusion: (1) The fluorescent property of commercial composite resins differ from natural teeth. The excitation spectra of composite resins are between 340~410 nm with peak at 382~395 nm. The shape and intensity of the spectra variate between groups and the excitation range are narrower than natural teeth’s. The emission spectra of composite resins are between 420~600 nm with peaks at 438~451 nm which are more blue-shifted than natural teeth’s. The shape and intensity variate between groups, and intensity differ between shade in the same brand. (2) The X and Y values of tristimulus calculated from the spectra located in blue region in the CIE color space, which are blue-shifted compared with natural teeth. (3) The carbon chains on the surface InP QDs made them hydrophobic, which make them suitable to blend with composite resins. (4) InP QDs, with bright, highly tunable fluorescence emission that depends sensitively on their size, can be used as the luminophores for dental composite resins. The intensity of fluorescence can be controlled by blending different amount of InP QDs and the emission range by different size of InP QDs. The emission spectra can be broadened by blending InP QDs into composite resins with fluorescence in order to simulate the spectra of natural teeth. (5) The coordinates of CIE color space of the composite resin blended with InP QDs shift to white region. (6) The composite resin blended with InP/ZnS QDs, which have better quantum yield than InP QDs, can achieve the fluorescent intensity with fewer amounts. (7) After accelerated-aging in xenon test chamber for 120 hours, the fluorescent intensity lowered 50~70% in commercial composite resins, but lowered 5~30% in composite resin blended with InP QDs, which means that the fluorescent property of InP QDs are stable. (7) The commercial composite resins, such as Filtek™ Z350 XT、Estelite Sigma Quick、Primisa、Shofu Beautifil II , show difference in color more than 3.3∆E_ab^* units after accelerated-aging in xenon test chamber for 120 hours. The difference in color and fluorescent intensity of Gradia Direct Anterior and Primisa show a significant relationship (p < 0.05). (8) The composite resin blended with InP QDs and InP/ZnS QDs, the powder of InP QDs and InP/ZnS QDs are biocompatible with Human gingival fibroblasts in MTT assays (p > 0.05). (9) The composite resins blended with InP QDs has more ROS production than the control group, but are not significantly different (p > ve.05). However, the powder of InP QDs and InP/ZnS have less ROS production, also are not significantly different (p > 0.05). (10) InP QDs are biocompatible. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:14:09Z (GMT). No. of bitstreams: 1 ntu-101-R98422007-1.pdf: 8904635 bytes, checksum: 4bb464203ce1c8e0e86b02056da3ea93 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書.............................................i
誌謝 .................................................... ii 中文摘要 ................................................ iii ABSTRACT.................................................vi 總目錄....................................................ix 圖目錄....................................................xii 表目錄....................................................xix Chapter 1 緒論............................................1 1.1 光與顏色 ..............................................2 1.1.1 可見光與紫外光 .......................................2 1.1.2 螢光與磷光之發光機制 ..................................5 1.1.3 顏色 ...............................................7 1.2 自然牙的螢光反應 .......................................12 1.3 牙科複合樹脂之螢光表現以及文獻回顧.........................16 1.3.1 牙科複合樹脂之組成 ...................................16 1.3.2 固體螢光材料之組成與其螢光發生原理 ......................18 1.3.3 牙科複合樹脂之螢光反應 ................................20 1.4 以量子點作為牙科樹脂之螢光來源之背景 .......................29 1.5 研究目的與假設 .........................................34 Chapter 2 實驗材料與方法 ...................................36 2.1 實驗用藥品、材料與樣品製備 ...............................36 2.1.1 磷化銦(InP)與磷化銦/硫化鋅(InP/ZnS)量子點 ...........36 2.1.2 牙科複合樹脂試片 .....................................39 2.1.3 自然牙樣品 ..........................................40 2.1.4 生物相容性—細胞培養 ...................................40 2.2 實驗器材 ..............................................42 2.2.1 發光二極體光聚機(LED curing light) ..................42 2.2.2 光激發光譜儀(photoluminescence excitation, PLE)......43 2.2.3 Q-sun 氙弧燈試驗箱(Q-sun xenon test chamber, Xe-1-S).45 2.2.4 數位比色機(colorimeter) ............................46 2.2.5 紫外線燈(fluorescent lamp, UV lamp).................47 2.2.6 盤式酵素免疫分析儀(ELISA reader) .....................48 2.2.7 微量盤螢光分光光譜儀(fluorescence microplate reader)..49 2.3 實驗流程與方法 .........................................50 2.3.1 市售牙科複合樹脂與自然牙螢光反應之比較 ....................50 2.3.2 以磷化銦及磷化銦/硫化鋅量子點做為牙科複合樹脂之螢光來源 ......50 2.3.3 老化測試 ............................................52 2.3.4 生物相容性測試 .......................................53 2.4 資料處理分析 ...........................................56 Chapter 3 實驗結果與討論 ...................................58 3.1 市售牙科複合樹脂與自然牙螢光反應之比較 ......................58 3.2 以磷化銦量子點做為牙科複合樹脂螢光光源 ......................68 3.2.1 加入不同重量之磷化銦量子點 .............................68 3.2.2 加入不同粒徑之磷化銦量子點 .............................69 3.2.3 加入不同重量之磷化銦/硫化鋅量子點 .......................75 3.3 老化試驗 ..............................................77 3.3.1 放射光譜與螢光強度之變化 ...............................77 3.3.2 色彩差異與螢光強度變化之關聯 ............................88 3.4 生物相容性測試 .........................................91 3.4.1 細胞存活檢測(MTT cell viability assay) ..............91 3.4.2 細胞內活性氧物質之測定(ROS Assay) ....................94 3.5 討論 ................................................ 98 Chapter 4 總結.......................................... 111 4.1 結論 ................................................111 4.2 未來研究方向 ..........................................112 參考資料..................................................114 | |
| dc.language.iso | zh-TW | |
| dc.subject | 磷化銦/硫化鋅量子點 | zh_TW |
| dc.subject | 磷化銦量子點 | zh_TW |
| dc.subject | 生物相容性 | zh_TW |
| dc.subject | 老化試驗 | zh_TW |
| dc.subject | 螢光 | zh_TW |
| dc.subject | 牙科複合樹脂 | zh_TW |
| dc.subject | Indium phosphide/Zinc sulfide quantum dots (InP/ZnS QDs) | en |
| dc.subject | Dental composite resin | en |
| dc.subject | Indium phosphide quantum dots (InP QDs) | en |
| dc.subject | Aceleraged-aging test | en |
| dc.subject | Biocompatiblity test | en |
| dc.subject | Fluorescence | en |
| dc.title | 利用磷化銦量子點作為牙科複合樹脂之螢光來源 | zh_TW |
| dc.title | Use Indium Phosphide Quantum Dots as Luminophores of Composite Dental Resins | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 劉如熹(Ru-Shi Liu) | |
| dc.contributor.oralexamcommittee | 蕭裕源(Yuh-Yuan Shiau) | |
| dc.subject.keyword | 磷化銦量子點,磷化銦/硫化鋅量子點,牙科複合樹脂,螢光,老化試驗,生物相容性, | zh_TW |
| dc.subject.keyword | Indium phosphide quantum dots (InP QDs),Indium phosphide/Zinc sulfide quantum dots (InP/ZnS QDs),Dental composite resin,Fluorescence,Aceleraged-aging test,Biocompatiblity test, | en |
| dc.relation.page | 121 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-20 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 8.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
