請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63567完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王淑珍(Shu-Jen Wang) | |
| dc.contributor.author | Ping Chung | en |
| dc.contributor.author | 鍾萍 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:14:06Z | - |
| dc.date.available | 2013-08-20 | |
| dc.date.copyright | 2012-08-20 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-20 | |
| dc.identifier.citation | 陳佳宜 (2007) 水稻種子發芽時期胚中蔗糖轉運蛋白基因之表現調控機制。國立台灣大學生物資源暨農學院系碩士論文。
陳懷如 (2009) 水稻葉鞘在抽穗期間由儲存組織轉換成供源組織之分子調控機制。國立台灣大學生物資源暨農學院系博士論文。 蕭惠心 (2011) 水稻蔗糖轉運蛋白質基因OsSUT2及OsSUT4之表現分析。國立台灣大學生物資源暨農學院系碩士論文。 Aoki NH, T., Scofield GN, Whitfeld PR, Furbank RT (2003) The sucrose transporter gene family in rice. Plant & Cell Physiology 44: 223-232 Aoki N, Scofield GN, Wang XD, Offler CE, Patrick JW, Furbank RT (2006) Pathway of sugar transport in germinating wheat seeds. Plant Physiology 141: 1255-1263 Baud S, Wuilleme S, Lemoine R, Kronenberger J, Caboche M, Lepiniec L, Rochat C (2005) The AtSUC5 sucrose transporter specifically expressed in the endosperm is involved in early seed development in Arabidopsis. The Plant Journal : for cell and molecular biology 43: 824-836 Bewley JD, Black M (1994) Seeds. Physiology of development and germination (2nd edition). Plenum Press, New York Bush DR (1993) Proton-coupled sugar and amino acid transporter in plants. Annual Review of Plant Physiology and Plant Molecular Biology 44: 513-542 Campbell WH (1999) Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annual Review of Plant Physiology and Plant Molecular Biology 50: 277-303 Carpaneto A, Geiger D, Bamberg E, Sauer N, Fromm J, Hedrich R (2005) Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force. The Journal of Biological Chemistry 280: 21437-21443 Chen H-J, Wang S-J (2008) Molecular regulation of sink–source transition in rice leaf sheaths during the heading period. Acta Physiologiae Plantarum 30: 639-649 Chen L-Q, Qu X-Q, Hou B-H, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335: 207 Coruzzi G, Bush DR (2001) Nitrogen and carbon nutrient and metabolite signaling in plants. Plant Physiology 125: 61-64 Datta R, Chamusco KC, Chourey PS (2002) Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize. Plant Physiology 130: 1645-1656 DeWitt ND, Sussman MR (1995) lmmunocytological localization of an epitope-tagged plasma membrane proton pump (H+-ATPase) in phloem companion cells. The Plant Cell 7: 2053-2067 Edelman J, Shibko SI, Keys AJ (1959) The role of the scutellum of cereal seedlings in the synthesis and transport of sucrose. Journal of Experimental Botany 10: 178-189 Farrar J, Pollock C, Gallagher J (2000) Sucrose and the integration of metabolism in vascular plants. Plant Science 154: 1-11 Foyer CH, Parry H, Noctor G (2003) Markers and sugnals associated with nitrogen assimilation in higher plants. Journal of Experimental Botany 54: 585-593 Foyer CH, Noctor G, Lelandais M, Lescure JC, Valadier MH, Boutin JP, Horton P (1994) Short-term effects of nitrate, nitrite and ammonium assimilation on photosynthesis, carbon partitioning and protein phosphorylation in maize. Planta 192: 211-220 Furbank RT, Scofield GN, Hirose T, Wang XD, Patrick JW, Offler CE (2001) Cellular localisation and function of a sucrose transporter OsSUT1 in developing rice grains. Australian Journal of Plant Physiology 28: 1187-1196 Hackel A, Schauer N, Carrari F, Fernie AR, Grimm B, Kuhn C (2006) Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. The Plant Journal 45: 180-192 Hirose T, Imaizumi N, Scofield GN, Furbank RT, Ohsugi R (1997) cDNA cloning and tissue specific expression of a gene for sucrose transporter from rice (Oryza sativa L.). Plant & Cell Physiology 38: 1389-1396 Hirose T, Zhang Z, Miyao A, Hirochika H, Ohsugi R, Terao T (2010) Disruption of a gene for rice sucrose transporter, OsSUT1, impairs pollen function but pollen maturation is unaffected. Journal of Experimental Botany 61: 3639-3646 Ishimaru K, Hirose T, Aoki N, Takahashi S, Ono K, Yamamoto S, Wu J, Saji S, Baba T, Ugaki M, Matsumoto T, Ohsugi R (2001) Antisense expression of a rice sucrose transporter OsSUT1 in rice (Oryza sativa L.). Plant & Cell Physiology 42: 1181-1185 Ito N, Hayase H, Satake T, Nishiyama I (1970) Male sterility caused by cooling treatment at the meiotic stage in rice plants. 3. Male abnormalities at antithesis. 4. Respiratory activity of anthers following cooling treatments at the meiotic stage. Proceedings of the Crop Science Society of Japan 39: 60-64; 65-70 Jain M, Prasad PV, Boote KJ, Hartwell AL, Jr., Chourey PS (2007) Effects of season-long high temperature growth conditions on sugar-to-starch metabolism in developing microspores of grain sorghum (Sorghum bicolor L. Moench). Planta 227: 67-79 Ji XM, Raveendran M, Oane R, Ismail A, Lafitte R, Bruskiewich R, Cheng SH, Bennett J (2005) Tissue-specific expression and drought responsiveness of cell-wall invertase genes of rice at flowering. Plant Molecular Biology 59: 945-964 Kühn C (2003) A comparison of the sucrose transporter systems of different plant species. Plant Biology 5: 215-232 Kühn C, Grof CPL (2010) Sucrose transporters of higher plants. Current Opinion in Plant Biology 13: 288-298 Kühn C (2011) Sucrose transporters and plant development. Transporters and Pumps in Plant Signaling 7: 225-251 Kong J, Li Z, Tan Y-P, Wan C-X, Li S-Q, Zhu Y-G (2007) Different gene expression patterns of sucrose-starch metabolism during pollen maturation in cytoplasmic male-sterile and male-fertile lines of rice. Physiologia Plantarum 130: 136-147 Lauterbach C, Niedermeier M, Besenbeck R, Stadler R, Sauer N (2007) Immunolocalization of the PmSUC1 sucrose transporter in Plantago major flowers and reporter-gene analyses of the PmSUC1 promoter suggest a role in sucrose release from the inner integument. Plant Biology 9: 357-365 Lemoine R (2000) Sucrose transporters in plants: update on funtion and structure. Biochimica et Biophysica Acta 1465: 246-262 Lemoine R, Bürkleb L, Barkerb L, Sakra S, Kühnb C, Regnacqa M, Gaillarda C, Delrota S, Frommerb WB (1999) Identification of a pollen-specific sucrose transporter-like protein NtSUT3 from tobacco. FEBS Letters 454: 325-330 Liu S-L, Siao W, Wang S-J (2010) Changing sink demand of developing shoot affects transitory starch biosynthesis in embryonic tissues of germinating rice seeds. Seed Science Research 20: 137-144 Marschner H, Kirkby EA, Cakmak I (1996) Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. Journal of Experimental Botany 47: 1255-1263 Masumoto C, Miyazawa S, Ohkawa H, Fukuda T, Taniguchi Y, Murayama S, Kusano M, Saito K, Fukayama H, Miyao M (2010) Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proceedings of the National Academy of Sciences of the United States of America 107: 5226-5231 Matsukura C, Saitoh T, Hirose T, Ohsugi R, P. P, Yamaguchi J (2000) Sugar uptake and transport in rice embryo. Expression of companion cell-specific sucrose transporter (OsSUT1) induced by sugar and light. Plant Physiology 124: 85-93 Mena M, Cejudo FJ, Isabel-LamonedaI, Carbonero P (2002) A role for the DOF transcription factor BPBF in the regulation of gibberellin-responsive genes in barley aleurone. Plant Physiology 130: 111-119 Morcuende R, Krapp A, Hurry V, Stitt M (1998) Sucrose-feeding leads to increased rates of nitrate assimilation, increased rates of α-oxoglutarate synthesis, and increased synthesis of a wide spectrum of amino acids in tobacco leaves. Planta 206: 394-409 Morita A, Umemura T, Kuroyanagi M, Futsuhara Y, Perata P, Yamaguchi J (1998) Functional dissection of a sugar-repressed alpha-amylase gene (Ramy1A) promoter in rice embryos. FEBS Letters 423: 81-85 Murata T (1968) Enzymic mechanism of starch breakdown ingerminating rice seeds I. An analytical study. Plant Physiology 43: 1899-1905 Nishiyama I (1983) Male sterility caused by cooling treatment at the young microspore stage in rice plants. Japanese Journal of Crop Science 52: 307-313 Nomura T, Kono Y, Akazawa T (1969) Enzymic mechanism of starch breakdown in germinating rice seeds II. Scutellum as the site of sucrose synthesis. Plant Physiology 44: 765-769 Oliver SN, Dennis ES, Dolferus R (2007) ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant & Cell Physiology 48: 1319-1330 Oliver SN, Van Dongen JT, Alfred SC, Mamun EA, Zhao X, Saini HS, Fernandes SF, Blanchard CL, Sutton BG, Geigenberger P, Dennis ES, Dolferus R (2005) Cold-induced repression of the rice anther-specific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and pollen sterility. Plant, Cell and Enviroment 28: 1534-1551 Perez CM, Palmiano EP, Baun LC, O. JB (1971) Starch metabolism in the leaf sheaths and culm of rice. Plant Physiology 47: 404-408 Pressman E, Peet MM, Mason Pharr D (2002) The effects of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentraction in the developing anthers. Annals of Botany 90: 631-636 Quy LV, Foryer C, Champigny ML (1991) Effect of light and NO3- on wheat leaf phosphoenolpyruvate carboxylase activity. Plant Physiology 97: 1476-1482 Raghavan V (1988) Anther and pollen development in rice (Oryza sativa). America Journal of Botany 75: 183-196 Sakata T, Takahashi H, Nishiyama I, Higashitani A (2000) Effects of high temperature on the development of pollen mother cells and microspores in barley Hordeum vulgare L. Journal of Plant Research 113: 395-402 Samonte SOP, Wilsonb LT, McClungc AM, Tarpleyd L (2001) Seasonal dynamics of nonstructural carbohydrate partitioning in 15 diverse rice genotypes. Crop Science 41: 902-909 Satake T, Hayase H (1970) Male sterility caused by cooling treatment at the young micro-spore stage in rice plants. 5. Estimations of pollen developmental stage and the most sensitive stage to coolness. Proceedings of the Crop Science Society of Japan 39: 468-473 Satake T, Koike S (1983) Determination of the most sensitive stage to sterile-type cool injury in rice plants. Japanese Journal of Crop Science 52: 207-214 Sauer N (2007) Molecular physiology of higher plant sucrose transporters. FEBS Letters 581: 2309-2317 Scofield GN, Aoki N, Hirose T, Takano M, Jenkins CL, Furbank RT (2007) The role of the sucrose transporter, OsSUT1, in germination and early seedling growth and development of rice plants. Journal of Experimental Botany 58: 483-495 Scofield GN, Hirose T, Gaudorn JA, Upadhyaya NM, Ohsugi R, Furbank RT (2002) Antisense suppression of the rice sucrose transporter gene, OsSUT1, leads to impaired grain filling and germination but does not affect photosynthesis. Functional Plant Biology 29: 815-826 Sheoran IS, Saini HS (1996) Drought-induced male sterility in rice: changes in carbohydrate levels and enzyme activities associated with the inhibition of starch accumulation in pollen. Sex Plant Reprod 9: 161-169 Siao W, Chen J-Y, Hsiao H-H, Chung P, Wang S-J (2011) Characterization of OsSUT2 expression and regulation in germinating embryos of rice seeds. rice 4: 39-49 Sonnewald U (2011) SWEETS-The missing sugar efflux carriers. Frontiers in Plant Science 2: 7 Stitt M (2002) Steps towards an integrated view of nitrogen metabolism. Journal of Experimental Botany 53: 959-970 Sugiharto B, Sugiyama T (1992) Effects of nitrate and ammonium on gene expression of phosphoenolpyruvate carboxylase and nitrogen metabolism in maizeleaf tissue during recovery from nitrogen stress. Plant Physiology 98: 1403-1408 Sun C, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell 15: 2076-2092 Toyofuku K, Umemura T, Yamaguchi J (1998) Promoter elements required for sugar-repression of the RAmy3D gene for α-amylase in rice. FEBS Letters 428:275-280 Truernit E, Stadler R, Baier K, Sauer N (1999) A male gametophyte-specific monosaccharide transporter in Arabidopsis. The Plant Journal 17: 191-201 Zhang D, Wilson Z (2009) Stamen specification and anther development in rice. Chinese Science Bulletin 54: 2342-2353 Zhang H, Liang W, Yang X, Luo X, Jiang N, Ma H, Zhang D (2010) Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. The Plant Cell 22: 672-689 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63567 | - |
| dc.description.abstract | 蔗糖為高等植物醣類長距離運輸的主要形式。蔗糖由細胞間質裝載入韌皮部進行運送及由韌皮部卸載至周圍細胞的過程中,蔗糖轉運蛋白 (sucrose transporters; SUTs) 扮演非常重要的角色。而水稻 (Oryza sativa L.) 蔗糖轉運蛋白基因家族成員有OsSUT1、OsSUT2、OsSUT3、OsSUT4及OsSUT5。本研究之目的為探討溫度及氮源對水稻SUT基因表現之影響。研究結果顯示於種子發芽時期,種子胚部的OsSUT1、OsSUT2及OsSUT4在30℃與37℃處理下的基因表現量較20℃處理下高,而在不同溫度處理下分離胚的OsSUT1、OsSUT2及OsSUT4基因表現則與完整種子胚部的表現不同,推測胚乳可提供調控胚中OsSUT基因表現之因子 (例如醣類)。分析OsSUT2及OsSUT4的啟動子活性,結果顯示只有OsSUT4啟動子活性對溫度之反應與基因表現結果相似。另於水稻花粉成熟過程,15/13℃的低溫處理會抑制水稻花藥中OsSUT1、OsSUT3及OsSUT4的表現,進而影響花藥及花粉粒的澱粉累積。在營養因子之相關試驗顯示,在水稻幼苗時期進行缺氮處理會促進其地上部OsSUT1、OsSUT2及OsSUT4的基因表現。另一方面,根部OsSUT1的基因表現則會隨著銨態氮源濃度增加而明顯上升。 | zh_TW |
| dc.description.abstract | Sucrose is the major carbohydrate for long-distance transport in higher plants. Sucrose transporter (SUT) plays an important role to load sucrose into phloem for further transport, and it is also in charge of sucrose unloading from phloem. Rice SUT gene family are composed of five members (i.e. OsSUT1, OsSUT2, OsSUT3, OsSUT4 and OsSUT5). This study was focused on temperature and nitrogen nutrient effects on OsSUT gene expressions at seed germination, seedling growth and pollen maturation stages. The result showed that expressions of OsSUT1, 2 and 4 in embryos of germinating seeds at 30℃ and 37℃ were higher than that at 20℃. Since the effects of temperature on OsSUT1, 2 and 4 expressions in isolated embryos were different with that in embryos of whole seeds, it was suggested that endosperms might provide some factors such as sugars to regulate OsSUT gene expressions in embryos. In addition, the promoter analysis data showed that the OsSUT4 promoter activity responsed to different temperatures were consistent to the gene expression patterns. During pollen maturation, the expressions of OsSUT1, 3 and 4 in anthers were lower at 15/13℃ compared with that at 30/25℃ and 35/30℃. In the study related to nutrient effect on OsSUT expressions, it was indicated nitrogen starvation would enhance OsSUT1, 2 and 4 expressions in shoots. On the other hand, ammonium function as a positive factor to regulate OsSUT1 expression in root tissues. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:14:06Z (GMT). No. of bitstreams: 1 ntu-101-R98621117-1.pdf: 1369821 bytes, checksum: d8856e9013b7cac49836a2329250d93e (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 誌謝………………………………………………………………… i
中文摘要……………………………………………………………ii Abstract……………………………………………………………iii 目錄…………………………………………………………………iv 圖目錄………………………………………………………………vii 附表及附圖目錄……………………………………………………viii 縮寫字對照…………………………………………………………ix 一、 前言 1. 水稻蔗糖轉運蛋白生理功能及其分類 ………………………1 2. 水稻種子發芽時期內部之醣類變化及運輸………………… 4 3. 水稻花粉發育成熟過程及醣類之轉運……………………… 6 4. 銨態氮對植物體碳素代謝之影響…………………………… 8 5. 本論文研究主題……………………………………………… 9 二、材料與方法 1. 植物材料及消毒處理………………………………………… 10 1.1. 植物材料…………………………………………………… 10 1.2. 種子消毒與發芽處理……………………………………… 10 2. 溫度對水稻種子發芽時期之分析…………………………… 10 2.1. 不同溫度處理……………………………………………10 2.2. 水稻胚可溶性醣類含量測定……………………………11 2.3. α-amylase活性測定……………………………………14 3. 銨態氮對水稻營養生長時期之分析………………………… 15 3.1. 不同銨態氮濃度處理……………………………………15 4. 溫度對水稻生殖生長時期之分析…………………………… 15 4.1. 水稻抽穗期間時間點之估計……………………………15 4.2. 不同溫度處理……………………………………………15 5. 轉殖水稻GUS活性之組織化學染色分析………………………15 6. 轉殖水稻GUS活性定量分析……………………………………16 6.1. 水稻蛋白質之萃取………………………………………16 6.2. 蛋白質定量………………………………………………16 6.3. 轉殖水稻GUS活性測定………………………………… 17 7. 基因表現分析………………………………………………… 17 7.1. 水稻總RNA的萃取……………………………………… 17 7.2. TURBO DNase處理……………………………………… 18 7.3. RNA電泳………………………………………………… 18 7.4. 反轉錄聚合酶連鎖反應…………………………………19 7.5. 即時反轉錄聚合酶連鎖反應……………………………19 三、結果 1. 溫度對水稻種子發芽時期OsSUTs基因表現及醣類代謝之分析…21 1.1. 不同溫度處理下水稻種子胚中OsSUT1、OsSUT2及OsSUT4基因表現分析………………………………………………………………… 21 1.2. 不同溫度處理對水稻種子發芽時種子中澱粉累積之影響……21 1.3. 不同溫度處理對水稻胚乳α-amylase活性及胚中可溶性醣類含量之影響……………………………………………………………… 22 1.4. 不同溫度處理下OsSUT2及OsSUT4啟動子於胚中之活性定量分析 ………………………………………………………………………… 22 2. OsSUT1、OsSUT2及OsSUT4基因於銨態氮處理下之表現分析……23 3. 溫度對水稻花粉成熟過程其澱粉累積及OsSUTs基因表現之分析 ………………………………………………………………………… 24 3.1. 不同溫度處理對花粉成熟過程澱粉累積之影響………………24 3.2. 不同溫度處理下水稻花藥OsSUT1 ~ OsSUT5基因之表現分析 ………………………………………………………………………… 24 四、討論 1. OsSUTs基因於胚部表現之調控機制………………………………26 2. 銨態氮對植株地上部與地下部OsSUTs基因影響之探討…………27 3. OsSUTs基因於水稻花粉成熟過程之表現探討……………………28 4. 結語及未來展望……………………………………………………30 五、參考文獻………………………………………………………… 47 | |
| dc.language.iso | zh-TW | |
| dc.subject | 蔗糖轉運蛋白 | zh_TW |
| dc.subject | 水稻 | zh_TW |
| dc.subject | 溫度 | zh_TW |
| dc.subject | 銨態氮源 | zh_TW |
| dc.subject | 缺氮 | zh_TW |
| dc.subject | sucrose transporter | en |
| dc.subject | rice(Oryza sativa L.) | en |
| dc.subject | temperature | en |
| dc.subject | ammonium nitrogen | en |
| dc.subject | nitrogen starvation | en |
| dc.title | 不同溫度及營養元素對水稻蔗糖轉運蛋白基因表現之影響 | zh_TW |
| dc.title | Effect of Temperature and Nutrient on the Expression of Rice Sucrose Transporter Genes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 洪傳揚(Chwan-Yang Hong),陳仁治(Jen-Chin Chen),張孟基(Men-Chi Chang),黃文理(Wen-Lii Huang) | |
| dc.subject.keyword | 蔗糖轉運蛋白,水稻,溫度,銨態氮源,缺氮, | zh_TW |
| dc.subject.keyword | sucrose transporter,rice(Oryza sativa L.),temperature,ammonium nitrogen,nitrogen starvation, | en |
| dc.relation.page | 52 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
