Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63561
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王一中(I-Jong Wang)
dc.contributor.authorWei-Ting Hoen
dc.contributor.author何威廷zh_TW
dc.date.accessioned2021-06-16T17:14:01Z-
dc.date.available2025-08-26
dc.date.copyright2020-08-26
dc.date.issued2019
dc.date.submitted2020-04-13
dc.identifier.citationAmano M, Nakayama M, & Kaibuchi K. Rho-kinase/ROCK: A key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken).2010 Sep;67(9):545-54.
Arbelaez J G, Price M O, & Price F W, Jr. Long-term follow-up and complications of stripping descemet membrane without placement of graft in eyes with Fuchs endothelial dystrophy. Cornea.2014 Dec;33(12):1295-9.
Baydoun L, Ham L, Borderie V, Dapena I, Hou J, Frank L E, . . . Melles G R. Endothelial Survival After Descemet Membrane Endothelial Keratoplasty: Effect of Surgical Indication and Graft Adherence Status. JAMA Ophthalmol.2015 Nov;133(11):1277-85.
Bhogal M, Lwin C N, Seah X Y, Peh G, & Mehta J S. Allogeneic Descemet's Membrane Transplantation Enhances Corneal Endothelial Monolayer Formation and Restores Functional Integrity Following Descemet's Stripping. Invest Ophthalmol Vis Sci.2017 Aug 1;58(10):4249-60.
Bonanno J A. Molecular mechanisms underlying the corneal endothelial pump. Exp Eye Res.2012 Feb;95(1):2-7.
Bourne W. Biology of the corneal endothelium in health and disease. Eye (Lond).2003 17(8):912.
Cao J, Chiarelli C, Richman O, Zarrabi K, Kozarekar P, & Zucker S. Membrane type 1 matrix metalloproteinase induces epithelial-to-mesenchymal transition in prostate cancer. J Biol Chem.2008 Mar 7;283(10):6232-40.
Chahdi A, & Raufman J-P. The Cdc42/Rac Nucleotide Exchange Factor Protein β1Pix (Pak-interacting Exchange Factor) Modulates β-Catenin Transcriptional Activity in Colon Cancer Cells: EVIDENCE FOR DIRECT INTERACTION OF β1PIX WITH β-CATENIN. Journal of Biological Chemistry.2013 November 22, 2013;288(47):34019-29.
Chahdi A, Sorokin A, & Heldin C-H. Endothelin-1 Couples βPix to p66Shc: Role of βPix in Cell Proliferation through FOXO3a Phosphorylation and p27kip1 Down-Regulation Independently of Akt. Mol Biol Cell.2008 19(6):2609-19.
Chen W L, Hu F R, & Wang I J. Changing indications for penetrating keratoplasty in Taiwan from 1987 to 1999. Cornea.2001 Mar;20(2):141-4.
Cheng S, & Lovett D H. Gelatinase A (MMP-2) is necessary and sufficient for renal tubular cell epithelial-mesenchymal transformation. Am J Pathol.2003 Jun;162(6):1937-49.
Clark A G, & Vignjevic D M. Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol.2015 2015/10/01/;36:13-22.
Dapena I, Ham L, Droutsas K, van Dijk K, Moutsouris K, & Melles G R. Learning Curve in Descemet's Membrane Endothelial Keratoplasty: First Series of 135 Consecutive Cases. Ophthalmology.2011 Nov;118(11):2147-54.
Dirisamer M, van Dijk K, Dapena I, Ham L, Oganes O, Frank L E, & Melles G R J. Prevention and Management of Graft Detachment in Descemet Membrane Endothelial Keratoplasty. Arch Ophthalmol.2012 130(3):280-91.
Doller A, Badawi A, Schmid T, Brauss T, Pleli T, zu Heringdorf D M, . . . Eberhardt W. The cytoskeletal inhibitors latrunculin A and blebbistatin exert antitumorigenic properties in human hepatocellular carcinoma cells by interfering with intracellular HuR trafficking. Exp Cell Res.2015 Jan 1;330(1):66-80.
Even-Ram S, Doyle A D, Conti M A, Matsumoto K, Adelstein R S, & Yamada K M. Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk. Nat Cell Biol.2007 Mar;9(3):299-309.
Feizi S. Corneal endothelial cell dysfunction: etiologies and management. Ther Adv Ophthalmol.2018 Jan-Dec;10:2515841418815802.
Flockerzi E, Maier P, Böhringer D, Reinshagen H, Kruse F, Cursiefen C, . . . Seitz B. Trends in Corneal Transplantation from 2001 to 2016 in Germany: A Report of the DOG–Section Cornea and its Keratoplasty Registry. Am J Ophthalmol.2018 2018/04/01/;188:91-98.
Gain P, Jullienne R, He Z, Aldossary M, Acquart S, Cognasse F, & Thuret G. Global Survey of Corneal Transplantation and Eye Banking. JAMA Ophthalmol.2016 Feb;134(2):167-73.
Giannone G, Dubin-Thaler B J, Dobereiner H G, Kieffer N, Bresnick A R, & Sheetz M P. Periodic lamellipodial contractions correlate with rearward actin waves. Cell.2004 Feb 6;116(3):431-43.
Giannone G, Dubin-Thaler B J, Rossier O, Cai Y, Chaga O, Jiang G, . . . Sheetz M P. Lamellipodial Actin Mechanically Links Myosin Activity with Adhesion-Site Formation. Cell.2007 2007/02/09/;128(3):561-75.
Giasson C J, Solomon L D, & Polse K A. Morphometry of corneal endothelium in patients with corneal guttata. Ophthalmology.2007 Aug;114(8):1469-75.
Goffin J R, Anderson I C, Supko J G, Eder Jr J P, Shapiro G I, Lynch T J, . . . Skarin A T. Phase I Trial of the Matrix Metalloproteinase Inhibitor Marimastat Combined with Carboplatin and Paclitaxel in Patients with Advanced Non–Small Cell Lung Cancer. Clinical cancer research.2005 11(9):3417-24.
Goley E D, & Welch M D. The ARP2/3 complex: an actin nucleator comes of age. Nature Reviews Molecular Cell Biology.2006 10/01/online;7:713.
Gorelik R, & Gautreau A. Quantitative and unbiased analysis of directional persistence in cell migration. Nat Protoc.2014 Aug;9(8):1931-43.
Groeneveld-van Beek E A, Lie J T, van der Wees J, Bruinsma M, & Melles G R. Standardized 'no-touch' donor tissue preparation for DALK and DMEK: harvesting undamaged anterior and posterior transplants from the same donor cornea. Acta Ophthalmol.2013 Mar;91(2):145-50.
Hamuro J, Toda M, Asada K, Hiraga A, Schlotzer-Schrehardt U, Montoya M, . . . Kinoshita S. Cell Homogeneity Indispensable for Regenerative Medicine by Cultured Human Corneal Endothelial Cells. Invest Ophthalmol Vis Sci.2016 Sep 01;57(11):4749-61.
Hamuro J, Ueno M, Asada K, Toda M, Montoya M, Sotozono C, & Kinoshita S. Metabolic Plasticity in Cell State Homeostasis and Differentiation of Cultured Human Corneal Endothelial Cells. Invest Ophthalmol Vis Sci.2016 Aug 01;57(10):4452-63.
Hamuro J, Ueno M, Toda M, Sotozono C, Montoya M, & Kinoshita S. Cultured Human Corneal Endothelial Cell Aneuploidy Dependence on the Presence of Heterogeneous Subpopulations With Distinct Differentiation Phenotypes. Invest Ophthalmol Vis Sci.2016 Aug 01;57(10):4385-92.
Harms B D, Bassi G M, Horwitz A R, & Lauffenburger D A. Directional persistence of EGF-induced cell migration is associated with stabilization of lamellipodial protrusions. Biophys J.2005 Feb;88(2):1479-88.
Hatanaka H, Koizumi N, Okumura N, Takahashi H, Tanioka H, Young R D, . . . Kinoshita S. A study of host corneal endothelial cells after non-Descemet stripping automated endothelial keratoplasty. Cornea.2013 Jan;32(1):76-80.
Hayashi T, Yamaguchi T, Yuda K, Kato N, Satake Y, & Shimazaki J. Topographic characteristics after Descemet's membrane endothelial keratoplasty and Descemet's stripping automated endothelial keratoplasty. PLoS One.2017 12(11):e0188832.
Heuberger J, & Birchmeier W. Interplay of Cadherin-Mediated Cell Adhesion and Canonical Wnt Signaling. Cold Spring Harb Perspect Biol.2010 February 1, 2010;2(2).
Hoffman B D, Grashoff C, & Schwartz M A. Dynamic molecular processes mediate cellular mechanotransduction. Nature.2011 Jul 20;475(7356):316-23.
Huang R Y, Guilford P, & Thiery J P. Early events in cell adhesion and polarity during epithelial-mesenchymal transition. J Cell Sci.2012 Oct 1;125(Pt 19):4417-22.
Ichijima H, Petroll W M, Barry P A, Andrews P M, Dai M, Cavanagh H D, & Jester J V. Actin filament organization during endothelial wound healing in the rabbit cornea: comparison between transcorneal freeze and mechanical scrape injuries. Invest Ophthalmol Vis Sci.1993 Aug;34(9):2803-12.
Inagaki E, Hatou S, Yoshida S, Miyashita H, Tsubota K, & Shimmura S. Expression and distribution of claudin subtypes in human corneal endothelium. Invest Ophthalmol Vis Sci.2013 Nov;54(12):7258-65.
Innocenti M. New insights into the formation and the function of lamellipodia and ruffles in mesenchymal cell migration. Cell Adh Migr.2018 12(5):401-16.
Iovieno A, Neri A, Soldani A M, Adani C, & Fontana L. Descemetorhexis Without Graft Placement for the Treatment of Fuchs Endothelial Dystrophy: Preliminary Results and Review of the Literature. Cornea.2017 Jun;36(6):637-41.
Ishii N, Yamaguchi T, Yazu H, Satake Y, Yoshida A, & Shimazaki J. Factors associated with graft survival and endothelial cell density after Descemet's stripping automated endothelial keratoplasty. Sci Rep.2016 Apr 28;6:25276.
Itoh M, Tsukita S, Yamazaki Y, & Sugimoto H. Rho GTP exchange factor ARHGEF11 regulates the integrity of epithelial junctions by connecting ZO-1 and RhoA-myosin II signaling. Proc Natl Acad Sci U S A.2012 Jun 19;109(25):9905-10.
Jakobiec F A, & Bhat P. Retrocorneal membranes: a comparative immunohistochemical analysis of keratocytic, endothelial, and epithelial origins. Am J Ophthalmol.2010 Aug;150(2):230-42 e2.
Jordan N V, Johnson G L, & Abell A N. Tracking the intermediate stages of epithelial-mesenchymal transition in epithelial stem cells and cancer. Cell Cycle.2011 Sep 1;10(17):2865-73.
Joyce N. Proliferative capacity of the corneal endothelium. Progress in Retinal and Eye Research.2003 22(3):359-89.
Kaneko Y, Ohta M, Inoue T, Mizuno K, Isobe T, Tanabe S, & Tanihara H. Effects of K-115 (Ripasudil), a novel ROCK inhibitor, on trabecular meshwork and Schlemm's canal endothelial cells. Sci Rep.2016 Jan 19;6:19640.
Kessenbrock K, Plaks V, & Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell.2010 141(1):52-67.
Kim D-H, & Wirtz D. Focal adhesion size uniquely predicts cell migration. The FASEB Journal.2013 09/24/received
12/04/accepted;27(4):1351-61.
Kinoshita S, Koizumi N, Ueno M, Okumura N, Imai K, Tanaka H, . . . Hamuro J. Injection of Cultured Cells with a ROCK Inhibitor for Bullous Keratopathy. N Engl J Med.2018 Mar 15;378(11):995-1003.
Ko M K, & Kay E P. Regulatory role of FGF-2 on type I collagen expression during endothelial mesenchymal transformation. Invest Ophthalmol Vis Sci.2005 Dec;46(12):4495-503.
Kocaba V, Katikireddy K R, Gipson I, Price M O, Price F W, & Jurkunas U V. Association of the Gutta-Induced Microenvironment With Corneal Endothelial Cell Behavior and Demise in Fuchs Endothelial Corneal Dystrophy. JAMA Ophthalmol.2018 Aug 1;136(8):886-92.
Koenig S B. Planned Descemetorhexis Without Endothelial Keratoplasty in Eyes With Fuchs Corneal Endothelial Dystrophy. Cornea.2015 Sep;34(9):1149-51.
Koizumi N, Okumura N, Ueno M, Nakagawa H, Hamuro J, & Kinoshita S. Rho-associated kinase inhibitor eye drop treatment as a possible medical treatment for Fuchs corneal dystrophy. Cornea.2013 Aug;32(8):1167-70.
Kolega J. Phototoxicity and photoinactivation of blebbistatin in UV and visible light. Biochem Biophys Res Commun.2004 Jul 30;320(3):1020-5.
Krause M, & Gautreau A. Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat Rev Mol Cell Biol.2014 Sep;15(9):577-90.
Kuo J C, Han X, Hsiao C T, Yates J R, 3rd, & Waterman C M. Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for beta-Pix in negative regulation of focal adhesion maturation. Nat Cell Biol.2011 Apr;13(4):383-93.
Kwok L S, & Klyce S D. Theoretical basis for an anomalous temperature coefficient in swelling pressure of rabbit corneal stroma. Biophysical Journal.1990 1990/03/01/;57(3):657-62.
Lamouille S, Xu J, & Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol.2014 Mar;15(3):178-96.
Lass J H, Gal R L, Dontchev M, Beck R W, Kollman C, Dunn S P, . . . Verdier D D. Donor age and corneal endothelial cell loss 5 years after successful corneal transplantation. Specular microscopy ancillary study results. Ophthalmology.2008 Apr;115(4):627-32.e8.
Lee H T, & Kay E P. FGF-2 induced reorganization and disruption of actin cytoskeleton through PI 3-kinase, Rho, and Cdc42 in corneal endothelial cells. Mol Vis.2003 Dec 8;9:624-34.
Lee H T, Lee J G, Na M, & Kay E P. FGF-2 induced by interleukin-1 beta through the action of phosphatidylinositol 3-kinase mediates endothelial mesenchymal transformation in corneal endothelial cells. J Biol Chem.2004 Jul 30;279(31):32325-32.
Lee J G, & Kay E P. FGF-2-mediated signal transduction during endothelial mesenchymal transformation in corneal endothelial cells. Exp Eye Res.2006 Dec;83(6):1309-16.
Li C, Dong F, Jia Y, Du H, Dong N, Xu Y, . . . Li W. Notch signal regulates corneal endothelial-to-mesenchymal transition. Am J Pathol.2013 Sep;183(3):786-95.
Li S, Wang C, Dai Y, Yang Y, Pan H, Zhong J, & Chen J. The stimulatory effect of ROCK inhibitor on bovine corneal endothelial cells. Tissue Cell.2013 Dec;45(6):387-96.
Li V S, Ng S S, Boersema P J, Low T Y, Karthaus W R, Gerlach J P, . . . Clevers H. Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex. Cell.2012 Jun 8;149(6):1245-56.
Liu C, Li Y, Semenov M, Han C, Baeg G H, Tan Y, . . . He X. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell.2002 Mar 22;108(6):837-47.
Liu Z, Tan J L, Cohen D M, Yang M T, Sniadecki N J, Ruiz S A, . . . Chen C S. Mechanical tugging force regulates the size of cell-cell junctions. Proc Natl Acad Sci U S A.2010 Jun 1;107(22):9944-9.
MacDonald B T, Tamai K, & He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell.2009 Jul;17(1):9-26.
Maher M T, Flozak A S, Stocker A M, Chenn A, & Gottardi C J. Activity of the beta-catenin phosphodestruction complex at cell-cell contacts is enhanced by cadherin-based adhesion. J Cell Biol.2009 Jul 27;186(2):219-28.
Maiuri P, Rupprecht J F, Wieser S, Ruprecht V, Benichou O, Carpi N, . . . Voituriez R. Actin flows mediate a universal coupling between cell speed and cell persistence. Cell.2015 Apr 9;161(2):374-86.
Meekins L C, Rosado-Adames N, Maddala R, Zhao J J, Rao P V, & Afshari N A. Corneal Endothelial Cell Migration and Proliferation Enhanced by Rho Kinase (ROCK) Inhibitors in In vitro and In vivo Models. Invest Ophthalmol Vis Sci.2016 Dec 01;57(15):6731-38.
Melles G R, Ong T S, Ververs B, & van der Wees J. Descemet membrane endothelial keratoplasty (DMEK). Cornea.2006 Sep;25(8):987-90.
Mimura T, Shimomura N, Usui T, Noda Y, Kaji Y, Yamgami S, . . . Araie M. Magnetic attraction of iron-endocytosed corneal endothelial cells to Descemet's membrane. Exp Eye Res.2003 Jun;76(6):745-51.
Moloney G, Petsoglou C, Ball M, Kerdraon Y, Hollhumer R, Spiteri N, . . . Devasahayam R N. Descemetorhexis Without Grafting for Fuchs Endothelial Dystrophy-Supplementation With Topical Ripasudil. Cornea.2017 Jun;36(6):642-48.
Nakagawa S, & Takeichi M. Neural crest cell-cell adhesion controlled by sequential and subpopulation-specific expression of novel cadherins. Development.1995 May;121(5):1321-32.
Nakahara M, Okumura N, Kay E P, Hagiya M, Imagawa K, Hosoda Y, . . . Koizumi N. Corneal endothelial expansion promoted by human bone marrow mesenchymal stem cell-derived conditioned medium. PLoS One.2013 8(7):e69009.
Nakayama M, Amano M, Katsumi A, Kaneko T, Kawabata S, Takefuji M, & Kaibuchi K. Rho-kinase and myosin II activities are required for cell type and environment specific migration. Genes Cells.2005 Feb;10(2):107-17.
Nanda G G, & Alone D P. REVIEW: Current understanding of the pathogenesis of Fuchs' endothelial corneal dystrophy. Mol Vis.2019 25:295-310.
Newell-Litwa K A, Horwitz R, & Lamers M L. Non-muscle myosin II in disease: mechanisms and therapeutic opportunities. Disease Models & Mechanisms.2015 8(12):1495-515.
Nishino T, Kobayashi A, Yokogawa H, Mori N, Masaki T, & Sugiyama K. A 10-year review of underlying diseases for endothelial keratoplasty (DSAEK/DMEK) in a tertiary referral hospital in Japan. Clin Ophthalmol.2018 12:1359-65.
Nistico P, Bissell M J, & Radisky D C. Epithelial-mesenchymal transition: general principles and pathological relevance with special emphasis on the role of matrix metalloproteinases. Cold Spring Harb Perspect Biol.2012 Feb;4(2).
Okumura N, Inoue R, Okazaki Y, Nakano S, Nakagawa H, Kinoshita S, & Koizumi N. Effect of the Rho Kinase Inhibitor Y-27632 on Corneal Endothelial Wound Healing. Invest Ophthalmol Vis Sci.2015 Sep;56(10):6067-74.
Okumura N, Kakutani K, Numata R, Nakahara M, Schlotzer-Schrehardt U, Kruse F, . . . Koizumi N. Laminin-511 and -521 enable efficient in vitro expansion of human corneal endothelial cells. Invest Ophthalmol Vis Sci.2015 May;56(5):2933-42.
Okumura N, Kay E P, Nakahara M, Hamuro J, Kinoshita S, & Koizumi N. Inhibition of TGF-β Signaling Enables Human Corneal Endothelial Cell Expansion In vitro for Use in Regenerative Medicine. PLoS One.2013 8(2):e58000.
Okumura N, Koizumi N, Kay E P, Ueno M, Sakamoto Y, Nakamura S, . . . Kinoshita S. The ROCK inhibitor eye drop accelerates corneal endothelium wound healing. Invest Ophthalmol Vis Sci.2013 Apr;54(4):2493-502.
Okumura N, Koizumi N, Ueno M, Sakamoto Y, Takahashi H, Hamuro J, & Kinoshita S. The new therapeutic concept of using a rho kinase inhibitor for the treatment of corneal endothelial dysfunction. Cornea.2011 Oct;30 Suppl 1:S54-9.
Okumura N, Koizumi N, Ueno M, Sakamoto Y, Takahashi H, Hirata K, . . . Kinoshita S. Enhancement of corneal endothelium wound healing by Rho-associated kinase (ROCK) inhibitor eye drops. Br J Ophthalmol.2011 Jul;95(7):1006-9.
Okumura N, Koizumi N, Ueno M, Sakamoto Y, Takahashi H, Tsuchiya H, . . . Kinoshita S. ROCK inhibitor converts corneal endothelial cells into a phenotype capable of regenerating in vivo endothelial tissue. Am J Pathol.2012 Jul;181(1):268-77.
Okumura N, Okazaki Y, Inoue R, Kakutani K, Nakano S, Kinoshita S, & Koizumi N. Effect of the Rho-Associated Kinase Inhibitor Eye Drop (Ripasudil) on Corneal Endothelial Wound Healing. Invest Ophthalmol Vis Sci.2016 Mar;57(3):1284-92.
Okumura N, Sakamoto Y, Fujii K, Kitano J, Nakano S, Tsujimoto Y, . . . Koizumi N. Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction. Sci Rep.2016 May 18;6:26113.
Okumura N, Ueno M, Koizumi N, Sakamoto Y, Hirata K, Hamuro J, & Kinoshita S. Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor. Invest Ophthalmol Vis Sci.2009 Aug;50(8):3680-7.
Pan Y R, Chen C C, Chan Y T, Wang H J, Chien F T, Chen Y L, . . . Yang M H. STAT3-coordinated migration facilitates the dissemination of diffuse large B-cell lymphomas. Nat Commun.2018 Sep 12;9(1):3696.
Pasapera A M, Schneider I C, Rericha E, Schlaepfer D D, & Waterman C M. Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J Cell Biol.2010 188(6):877-90.
Pascolini D, & Mariotti S P. Global estimates of visual impairment: 2010. Br J Ophthalmol.2012 May;96(5):614-8.
Peh G S, Beuerman R W, Colman A, Tan D T, & Mehta J S. Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview. Transplantation.2011 Apr 27;91(8):811-9.
Peh G S, Chng Z, Ang H P, Cheng T Y, Adnan K, Seah X Y, . . . Mehta J S. Propagation of Human Corneal Endothelial Cells ? A Novel Dual Media Approach. Cell Transplant.2013 Nov 21.
Peh G S L, Toh K-P, Wu F-Y, Tan D T, & Mehta J S. Cultivation of Human Corneal Endothelial Cells Isolated from Paired Donor Corneas. PLoS One.2011 6(12):e28310.
Petrie R J, Doyle A D, & Yamada K M. Random versus directionally persistent cell migration. Nat Rev Mol Cell Biol.2009 Aug;10(8):538-49.
Pillar S, Tessler G, Dreznik A, Bor E, Kaiserman I, & Bahar I. First 100: learning curve for Descemet stripping automated endothelial keratoplasty. Eur J Ophthalmol.2013 Nov-Dec;23(6):865-9.
Pipparelli A, Arsenijevic Y, Thuret G, Gain P, Nicolas M, & Majo F. ROCK Inhibitor Enhances Adhesion and Wound Healing of Human Corneal Endothelial Cells. PLoS One.2013 8(4):e62095.
Price D A, Kelley M, Price F W, Jr., & Price M O. Five-Year Graft Survival of Descemet Membrane Endothelial Keratoplasty (EK) versus Descemet Stripping EK and the Effect of Donor Sex Matching. Ophthalmology.2018 May 3.
Price F W, Jr., & Price M O. Descemet's stripping with endothelial keratoplasty in 50 eyes: a refractive neutral corneal transplant. J Refract Surg.2005 Jul-Aug;21(4):339-45.
Pricopie S, Istrate S, Voinea L, Leasu C, Paun V, & Radu C. Pseudophakic bullous keratopathy. Rom J Ophthalmol.2017 Apr-Jun;61(2):90-94.
Provenzano P P, Inman D R, Eliceiri K W, & Keely P J. Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK-ERK linkage. Oncogene.2009 Dec 10;28(49):4326-43.
Radisky D C, Levy D D, Littlepage L E, Liu H, Nelson C M, Fata J E, . . . Bissell M J. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature.2005 Jul 7;436(7047):123-7.
Rasmussen H S, & McCann P P. Matrix metalloproteinase inhibition as a novel anticancer strategy: a review with special focus on batimastat and marimastat. Pharmacol Ther.1997 75(1):69-75.
Rauscher A A, Gyimesi M, Kovacs M, & Malnasi-Csizmadia A. Targeting Myosin by Blebbistatin Derivatives: Optimization and Pharmacological Potential. Trends Biochem Sci.2018 Sep;43(9):700-13.
Reiss K, Maretzky T, Ludwig A, Tousseyn T, de Strooper B, Hartmann D, & Saftig P. ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and beta-catenin nuclear signalling. EMBO J.2005 Feb 23;24(4):742-52.
Ridley Anne J. Life at the Leading Edge. Cell.2011 145(7):1012-22.
Rosenbaum E, Zahurak M, Sinibaldi V, Carducci M A, Pili R, Laufer M, . . . Eisenberger M A. Marimastat in the treatment of patients with biochemically relapsed prostate cancer: a prospective randomized, double-blind, phase I/II trial. Clinical cancer research.2005 11(12):4437-43.
Roszkowska A M, Colosi P, D'Angelo P, & Ferreri G. Age-related modifications of the corneal endothelium in adults. Int Ophthalmol.2004 May;25(3):163-6.
Roy O, Leclerc V B, Bourget J M, Theriault M, & Proulx S. Understanding the process of corneal endothelial morphological change in vitro. Invest Ophthalmol Vis Sci.2015 Feb;56(2):1228-37.
Sarnicola C, Farooq A V, & Colby K. Fuchs Endothelial Corneal Dystrophy: Update on Pathogenesis and Future Directions. Eye Contact Lens.2019 Jan;45(1):1-10.
Sheppard D. Integrin-mediated activation of latent transforming growth factor beta. Cancer Metastasis Rev.2005 Sep;24(3):395-402.
Shoval I, Ludwig A, & Kalcheim C. Antagonistic roles of full-length N-cadherin and its soluble BMP cleavage product in neural crest delamination. Development.2007 Feb;134(3):491-501.
Soh Y Q, Kocaba V, Pinto M, & Mehta J S. Fuchs endothelial corneal dystrophy and corneal endothelial diseases: East meets West. Eye (Lond).2019 Jul 2.
Soh Y Q, Peh G, George B L, Seah X Y, Primalani N K, Adnan K, & Mehta J S. Predicative Factors for Corneal Endothelial Cell Migration. Invest Ophthalmol Vis Sci.2016 Feb;57(2):338-48.
Song W, Jackson K, & McGuire P G. Degradation of type IV collagen by matrix metalloproteinases is an important step in the epithelial-mesenchymal transformation of the endocardial cushions. Dev Biol.2000 Nov 15;227(2):606-17.
Srinivas S P. Dynamic regulation of barrier integrity of the corneal endothelium. Optom Vis Sci.2010 Apr;87(4):E239-54.
Srinivas S P. Cell signaling in regulation of the barrier integrity of the corneal endothelium. Exp Eye Res.2011 Sep 24.
Sun Z, Guo S S, & Fassler R. Integrin-mediated mechanotransduction. J Cell Biol.2016 Nov 21;215(4):445-56.
Tan D T, Dart J K, Holland E J, & Kinoshita S. Corneal transplantation. Lancet.2012 May 5;379(9827):1749-61.
Terry M A, & Ousley P J. Deep lamellar endothelial keratoplasty in the first United States patients: early clinical results. Cornea.2001 Apr;20(3):239-43.
Terry S J, Zihni C, Elbediwy A, Vitiello E, Leefa Chong San I V, Balda M S, & Matter K. Spatially restricted activation of RhoA signalling at epithelial junctions by p114RhoGEF drives junction formation and morphogenesis. Nat Cell Biol.2011 Feb;13(2):159-66.
Thiery J P, Acloque H, Huang R Y, & Nieto M A. Epithelial-mesenchymal transitions in development and disease. Cell.2009 Nov 25;139(5):871-90.
Tourtas T, Laaser K, Bachmann B O, Cursiefen C, & Kruse F E. Descemet membrane endothelial keratoplasty versus descemet stripping automated endothelial keratoplasty. Am J Ophthalmol.2012 Jun;153(6):1082-90.e2.
Ulrich T A, de Juan Pardo E M, & Kumar S. The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res.2009 May 15;69(10):4167-74.
Valenta T, Hausmann G, & Basler K. The many faces and functions of beta-catenin. EMBO J.2012 Jun 13;31(12):2714-36.
Vallin J, Girault J M, Thiery J P, & Broders F. Xenopus cadherin-11 is expressed in different populations of migrating neural crest cells. Mech Dev.1998 Jul;75(1-2):171-4.
Vicente-Manzanares M, Ma X, Adelstein R S, & Horwitz A R. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol.2009 Nov;10(11):778-90.
Vicente-Manzanares M, Zareno J, Whitmore L, Choi C K, & Horwitz A F. Regulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cells. J Cell Biol.2007 Feb 26;176(5):573-80.
Várkuti B H, Képiró M, Horváth I Á, Végner L, Ráti S, Zsigmond Á, . . . Málnási-Csizmadia A. A highly soluble, non-phototoxic, non-fluorescent blebbistatin derivative. Sci Rep.2016 05/31/online;6:26141.
Walsh S V, Hopkins A M, Chen J, Narumiya S, Parkos C A, & Nusrat A. Rho kinase regulates tight junction function and is necessary for tight junction assembly in polarized intestinal epithelia. Gastroenterology.2001 Sep;121(3):566-79.
Woo J H, Ang M, Htoon H M, & Tan D T. Descemet Membrane Endothelial Keratoplasty versus Descemet Stripping Automated Endothelial Keratoplasty and Penetrating Keratoplasty. Am J Ophthalmol.2019 Jun 19.
Wu C, Asokan S B, Berginski M E, Haynes E M, Sharpless N E, Griffith J D, . . . Bear J E. Arp2/3 is critical for lamellipodia and response to extracellular matrix cues but is dispensable for chemotaxis. Cell.2012 Mar 2;148(5):973-87.
Yang J, & Weinberg R A. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell.2008 Jun;14(6):818-29.
Yang M H, Hsu D S, Wang H W, Wang H J, Lan H Y, Yang W H, . . . Wu K J. Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol.2010 Oct;12(10):982-92.

Yang M H, Wu M Z, Chiou S H, Chen P M, Chang S Y, Liu C J, . . . Wu K J. Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol.2008 Mar;10(3):295-305.
Yu W Y, Sheridan C, Grierson I, Mason S, Kearns V, Lo A C, & Wong D. Progenitors for the corneal endothelium and trabecular meshwork: a potential source for personalized stem cell therapy in corneal endothelial diseases and glaucoma. J Biomed Biotechnol.2011 2011:412743.
Zhao Y, Lin Y, Zhang H, Mañas A, Tang W, Zhang Y, . . . Xiang J. Ubl4A is required for insulin-induced Akt plasma membrane translocation through promotion of Arp2/3-dependent actin branching. Proceedings of the National Academy of Sciences.2015 112(31):9644-49.
Zhu C, Rawe I, & Joyce N C. Differential protein expression in human corneal endothelial cells cultured from young and older donors. Mol Vis.2008 14:1805-14.
Zhu Y T, Chen H C, Chen S Y, & Tseng S C G. Nuclear p120 catenin unlocks mitotic block of contact-inhibited human corneal endothelial monolayers without disrupting adherent junctions. J Cell Sci.2012 125(15):3636-48.
Zhu Y T, Hayashida Y, Kheirkhah A, He H, Chen S Y, & Tseng S C. Characterization and comparison of intercellular adherent junctions expressed by human corneal endothelial cells in vivo and in vitro. Invest Ophthalmol Vis Sci.2008 Sep;49(9):3879-86.
Zihni C, Mills C, Matter K, & Balda M S. Tight junctions: from simple barriers to multifunctional molecular gates. Nature Reviews Molecular Cell Biology.2016 06/29/online;17:564.
Zygoura V, Baydoun L, Ham L, Bourgonje V J A, van Dijk K, Lie J T, . . . Melles G R J. Quarter-Descemet membrane endothelial keratoplasty (Quarter-DMEK) for Fuchs endothelial corneal dystrophy: 6 months clinical outcome. Br J Ophthalmol.2018 Oct;102(10):1425-30.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63561-
dc.description.abstract角膜內皮細胞對於調節角膜含水量及維持透明度十分重要,嚴重功能失調將造成角膜水腫,需要接受移植手術以恢復視力,雖然近年來手術技術持續進步,但是仍面臨器官來源不足及術後細胞數持續下降等問題,因此需要發展其它治療方式。
近年研究發現,對於不同程度及原因的角膜內皮疾病,可使用不同替代治療方式。早期的福斯氏角膜內皮失養症,由於病灶集中於角膜中央,因此可直接刮除中央病變區域,輔以促進細胞遷移藥物,使週邊功能相對健全的細胞往中央爬行。在嚴重角膜內皮疾病,則可使用體外培養角膜內皮細胞輔以細胞注射重建角膜內皮功能。然而,此兩種治療策略都有需要克服的問題。對於細胞注射治療而言,成功的關鍵在於培養出足夠數量及品質的細胞。人類角膜內皮細胞生長不易,雖可於培養過程中加入促進生長之藥物或激素,但此舉會導致角膜內皮細胞間質化,影響細胞產品的型態及功能。對於角膜內皮刮除治療而言,成功的關鍵在於促進細胞爬行,雖然近年發現Rho相關蛋白酶抑制劑有此作用,但其機轉不明,此外Rho相關蛋白酶抑制劑會影響細胞連結組成,破壞角膜內皮細胞屏障功能,因此尋找其它治療標的實屬必要。
本研究發現,角膜內皮細胞培養過程中會有間質化的現象,且基質金屬蛋白酶的表現有相對應的增加,若加入馬立馬司他此廣效型基質金屬蛋白酶抑制劑,可抑制角膜內皮細胞間質化,且神經鈣粘蛋白的切斷有相對應的減少,顯示兩者的關聯性。此效果另可與鹼性成纖維細胞生長因子結合,在促進角膜內皮細胞生長後,抑制其造成之細胞間質化的現象。在促進角膜內皮細胞遷移方面,本研究發現Rho相關蛋白酶及肌蛋白抑制劑都可促進角膜內皮細胞遷移及其方向性,機轉則是透過抑制細胞收縮,增加板狀偽足伸出持續時間,相較於Rho相關蛋白酶抑制劑,肌蛋白抑制劑能保留細胞連結份子及維持屏障功能完整,於動物模式中,肌蛋白抑制劑也較Rho相關蛋白酶抑制劑能消除角膜內皮傷害後的水腫。
基於上述研究成果,我們發現不同小分子藥物可分別應用於促進角膜內皮細胞培養品質,以應用於後續細胞注射治療,以及促進角膜內皮病灶刮除後的細胞遷移。此成果將有助於角膜內皮疾病的治療。
zh_TW
dc.description.abstractThe corneal endothelium plays an important role in maintaining corneal clarity through regulating the hydration status of the corneal stroma. Severely dysfunctional corneal endothelium will lead to irreversible corneal edema that necessitates corneal transplantation to restore vision. Despite the advancement in surgical technique, there are still unmet needs, such as organ shortage and continuous corneal endothelial cells (CECs) loss postoperatively.
Recently, different strategies have been developed to treat different corneal endothelial diseases. Early Fuchs dystrophy can be treated by simple descematorhexis to remove centrally-located lesions followed by migration-stimulating agents. For those afflicted with severe corneal endothelial diseases, in vitro culture of CECs followed by cell injection therapy has been shown to regenerate corneal endothelium. However, several issues remain to be addressed for these alternative treatments. Human CECs are known to have limited proliferative potential. Stimulating the growth of CECs often accompanies endothelial-mesenchymal transition (EnMT) and loss of endothelial function. On the other hand, rho-associated protein kinase (ROCK) inhibitor has been shown to promote CEC migration after descematorhexis, but the mechanism remains elusive. Furthermore, disruption of cell junction and thus barrier function are still concerns.
In the first part of my study, I found that during in vitro culture, bovine CECs underwent EnMT and had an up-regulated expression and activity of matrix metalloproteinases (MMPs). Inhibition of MMP activity by marimastat, a broad-spectrum MMP inhibitor, in confluent bovine CECs suppressed the cleavage of N-cadherin and the EnMT process. Marimastat also suppressed EnMT triggered by basic fibroblast factor both in vitro and in vivo. In the second part of my study, I found that inhibition of either ROCK or non-muscle myosin II (NMII) promotes migration and directional persistence through increasing lamellipodial protrusion persistence, thus accelerated wound healing in vivo. Unlike ROCK inhibitor, directly targeting NMII preserves junctional integrity and barrier function upon reaching cellular confluence, which resulted in more rapid deturgescence in vivo.
Based on these findings, we proposed that MMP inhibitor can be used to suppress EnMT, thereby enhancing the quality of the cell product designated for cell therapy. In addition, NMII inhibitor can be used to promote CEC migration following descematorhexis. These results will facilitate alternative treatment approaches for corneal endothelial diseases.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:14:01Z (GMT). No. of bitstreams: 1
ntu-108-Q00421015-1.pdf: 5587149 bytes, checksum: 8bbee00e9350087f80042b93492c7ba6 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract v
Schema 1
Abbreviation 3
Chapter 1 Introduction 5
1.1 Corneal endothelium 5
1.2 Limited proliferative capacity of human CECs 5
1.3 Corneal endothelial diseases 6
1.4 Corneal transplantation for corneal endothelial diseases 7
1.5 Limitations of corneal transplantation 9
1.6 Corneal endothelial regeneration by in vitro culture of HCECs 10
1.7 Implantation of in vitro cultured HCECs-tissue engineered sheet vs cell injection approach 11
1.8 Endothelial-mesenchymal transition (EnMT) of ex vivo cultured CECs 13
1.9 EnMT signaling and the role of Wnt/β-catenin pathway 14
1.10 MMPs as the potential trigger of EnMT 15
1.11 Corneal endothelial regeneration by in vivo stimulation approach-focusing on ROCK inhibitor 16
1.12 Simple descematorhexis followed by topical ROCK inhibitor to treat corneal endothelial diseases 18
1.13 Factors determining the outcome of simple descematorhexis approach 19
1.14 Using ROCK inhibitor to enhance corneal endothelial cell migration and its impact on tight junctions 20
1.15 Non-muscle myosin as the potential regulator of CEC migration 21
Chapter 2 Materials and Methods 25
2.1 Bovine corneal endothelial cell culture 25
2.2 RNA extraction and real-time PCR 26
2.3 RNA sequencing and bioinformatics analysis 26
2.4 MMP activity assay 27
2.5 Immunofluorescence microscopy 27
2.6 Western blotting analysis 28
2.7 Live cell microscopy 29
2.8 Transwell permeability assay 30
2.9 In vivo corneal endothelial wounding model 31
Chapter 3 Results 35
3.1 Nuclear translocation of EnMT markers during in vitro culture of BCECs 35
3.2 Upregulation of EMT profiling of in vitro cultured BCECs 35
3.3 MMP activity is activated during in vitro culture of BCECs 36
3.4 Marimastat suppresses the EnMT process of in vitro BCECs 36
3.5 Marimastat promotes β-catenin degradation through phosphorylation 37
3.6 The effect of marimastat in promoting β-catenin degradation depends on the cellular confluence 38
3.7 Marimastat inhibits N-cadherin cleavage in confluent BCECs 39
3.8 Marimastat inhibits EnMT in vivo 40
3.9 ROCK inhibitor and NMII inhibitor suppressed cell contraction in BCECs 41
3.10 NMII inhibition enhances directional migration and in vitro wound healing of BCECs 42
3.11 NMII inhibition increases lamellipodial protrusion persistence and decreases actin retrograde flow in BCECs 43
3.12 Lamellipodial protrusion is crucial for increased migration after NMII inhibition 44
3.13 Selective NMII inhibitor preserves, while ROCK inhibitor impairs, junctional integrity of wound repairing BCECs 45
3.14 NMII inhibition enhances CEC wound healing in vivo 46
Chapter 4 Discussion 48
4.1 BCECs undergo EnMT during in vitro culture 48
4.2 MMP activity in promoting EnMT 50
4.3 Marimastat suppresses β-catenin signaling in BCECs 51
4.4 Marimastat suppresses β-catenin signaling through inhibiting N-cadherin cleavage 53
4.5 Marimastat reverses bFGF-induced EnMT 55
4.6 Other EnMT suppressing agents 57
4.7 Mode of CEC migration 57
4.8 Role of NMII activity in CEC migration 59
4.9 CEC migration accelerated by NMII inhibition depends on lamellipodial protrusion 60
4.10 The effect of NMII inhibition on junctional integrity of CECs 62
4.11 Utilizing NMII inhibitor in CEC regeneration 63
4.12 Blebbistatin and its derivatives 64
4.13 Other possible effects of NMII inhibition on CECs 66
Chapter 5 Perspectives 68
5.1 Different regenerative strategies in different scenario of corneal endothelial diseases 68
5.2 Incorporating MMP inhibitor into HCEC culture and cell therapy 71
5.3 The mechanism of MMP activity in triggering EMT and other possible applications 72
5.4 Using NMII inhibitor in treating early Fuchs dystrophy 73
5.5 The potential role of NMII inhibitor in promoting CEC proliferation 76
References 78
Figures 96
Figure 1 Activation of EnMT marker during in vitro culture of BCECs 96
Figure 2 Transcriptomic analyses of in situ and in vitro BCECs 97
Figure 3 Upregulation of MMP activity during in vitro culture of BCECs 99
Figure 4 Inhibition of MMP activity by marimastat suppresses EnMT profile in BCECs 101
Figure 6 β-catenin degradation induced by marimastat depends on the cellular confluence level 103
Figure 7 Marimastat inhibits N-cadherin cleavage 105
Figure 8 Marimastat attenuates EnMT after bFGF treatment in vitro and in vivo 107
Figure 9 Inhibition of NMII activity induces tail retraction defect in migrating BCECs 109
Figure 10 NMII inhibition enhances directional migration of BCECs 111
Figure 11 NMII inhibition increases lamellipodial protrusion persistence through decreasing actin retrograde flow 113
Figure 12 Enhanced migration after NMII inhibition depends on lamellipodial protrusion 115
Figure 13 ROCK inhibitor and myosin inhibitor differentially affect junctional integrity of confluent BCECs 117
Figure 14 NMII inhibition enhanced CEC migration in vivo 120
Appendix 123
dc.language.isozh-TW
dc.subject肌蛋白抑制劑zh_TW
dc.subject細胞間質化zh_TW
dc.subject角膜內皮細胞zh_TW
dc.subject角膜zh_TW
dc.subject細胞遷移zh_TW
dc.subject細胞治療zh_TW
dc.subject板狀偽足zh_TW
dc.subject基質金屬蛋白?zh_TW
dc.subjectnon-muscle myosin inhibitoren
dc.subjectcorneal endothelial cellen
dc.subjectmesenchymal transitionen
dc.subjectmatrix metalloproteinaseen
dc.subjectcell therapyen
dc.subjectcell migrationen
dc.subjectcorneaen
dc.subjectlamellipodiaen
dc.title以體外培養及體內刺激重建角膜內皮zh_TW
dc.titleCorneal endothelial regeneration through in vitro culture and in vivo stimulation approachesen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.coadvisor周祖述(Tzuu-Shuh Jou)
dc.contributor.oralexamcommittee楊慕華(Muh-Hwa Yang),張淑雯(Shu-Wen Chang),陳佑宗(You-Tzung Chen)
dc.subject.keyword角膜,角膜內皮細胞,細胞間質化,基質金屬蛋白?,細胞治療,細胞遷移,肌蛋白抑制劑,板狀偽足,zh_TW
dc.subject.keywordcornea,corneal endothelial cell,mesenchymal transition,matrix metalloproteinase,cell therapy,cell migration,non-muscle myosin inhibitor,lamellipodia,en
dc.relation.page123
dc.identifier.doi10.6342/NTU202000742
dc.rights.note有償授權
dc.date.accepted2020-04-13
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
5.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved