Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63545
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏國彥(Kuo-Yen Wei)
dc.contributor.authorHo-Ya Linen
dc.contributor.author林荷雅zh_TW
dc.date.accessioned2021-06-16T17:13:48Z-
dc.date.available2014-08-20
dc.date.copyright2012-08-20
dc.date.issued2012
dc.date.submitted2012-08-20
dc.identifier.citation中文
何春蓀、詹新甫、潘志偉、楊應塘( 1954) 臺灣苗東南莊煤田地質。台灣省地質調查所彙刊,第六號,第1-36 頁。
周瑜敏、黃集宗(1959) 臺灣苗栗出磺坑煤田地質。臺灣出磺坑煤田採勘報告,經濟部煤礦探勸處, 第3-13 頁。
陳培源、陳琴(1955) 苗栗縣縣獅頭山汶水間之煤田地質。台灣礦業,第六卷,第四期,第35-44 頁。
黃廷章、丁志興(1981) 臺灣晚新第三紀淺海沉積超微化石生物地層。地質,第三卷,105-119頁。
謝凱旋、黃敦友(2003) 台灣第三系的地層層序。臺灣鑛業,第 55 卷,第 4 期,第17-32 頁。

英文
Backman, J. (1978) Late Miocene - Early Pliocene nannofossil biochronology and biogeography in the Vera Basin SE Spain. Acta Univ. Stockholm. Contrib. Geology. 32/2, 93-114.
Backman, J. (1980) Miocene - Pliocene nannofossils and sedimentation rates in the Hatton-Rockall Basin, NE Atlantic ocean. Acta Univ. Stockholm. Contrib. Geol., 36(1), 1-91.
Backman, J. and Shackleton, N. J. (1983) Quantitative biochronology of Pliocene and early Pleistocene calcareous nannofossils from the Atlantic, Indian and Pacific Oceans. Marine Micropaleontology. 8, 141-170.
Berggren, W. A., Hilgen, F. j., Langereis, C. G., Kent, D. V., Obradovich, J. D., Raffi, I., Raymo, M. E., and Shackleton, N. J. (1995) Late Neogene chronology: new perspectives in high-resolution stratigraphy. Geological Society of America Bulletin. 107, 1272-1287.
Bown, P. R. and Young, J. R. (1998) Calcareous nannofossil biostratigraphy. Kluwer Academic Publishers. 1-314.
Bralower, T. J., Premoli Silva, I., and Malone, M. J. (2001) Late Miocene-Holocene magnetic polarity stratigraphy and astrochronology, ODP Leg 198, Shatsky Rise. Proceeding of the Ocean Drilling Program, Scientific Results. 198.
Bralower, T.J., Premoli Silva, I. and Malone, M.J. (2002) Proceeding ODP, Initial Reports, 198: College Station, TX.
Bukry, D., (1973) Low-latitude coccolith biostratigraphic zonation. Initial Reports DSDP. 15, 685-703.
Cande, S. C. and Kent, D. V. (1995) Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research. 100, 6093-6095.
Chen, P.-H., Huang, T.-C., Huang, C.-Y. and Kuo, C.-L. (1977) Paleomagnetic and coccolith stratigraphy of Plio-Pleistocene shallow marine sediments, Chuhuangkeng, Miaoli. Petroleum Geology of Taiwan, 14, 219-239.
Chepstow-Lusty, A. J., Shackleton, N. J. and Backman, J. (1992) Upper Pliocene Discoaster abundance variations from the Atlantic, Pacific and Indian Ocean: the significance of productivity pressure at low latitudes. Memorie di Scienze Geologiche. XLIV, 357-373.
Dowsett, H. J. (1988) Diachrony of Neogene microfossils in the southwest Pacific Ocean: application of the Graphic Correlation method. Paleoceanography, 3, 209-222.
Gibbs, S. J., Young, J. R., Bralower, T. J. and Shackleton, N. J. (2005) Nannofossil evolutionary events in the mid-Pliocene: an assessment of the degree of synchrony in the extinctions of Reticulofenestra pseudoumbilicus and Sphenolithus abies. Palaeogeography, Palaeoclimatology, Palaeoecology. 217, 155-172.
Haq, B.U. and Berggren, W.A. (1978) Late Neogene calcareous plankton biochronology of the Rio Grande Rise (South Atlantic Ocean). Journal of Paleontology, 52, 1167-1194.
Huang, L. (1997) Calcareous nannofossil biostratigraphy in the Pearl River Mouth Basin, South China Sea, and Neogene reticulofenestrid coccoliths size distribution pattern. Marine Micropaleontology, 32, 31-57.
Huang, T.-C. (1976) Neogene calcareous nannoplankton biostratigraphy viewed from the Chuhuangkeng section, northwestern Taiwan. Proceedings of the Geological Society of China, 19, 7-24.
Kameo, K. and T. Takayama (1999) Biostratigraphic significance of sequential size variations of the calcareous nannofossil genus Reticulofenestra in the Upper Pliocene of the North Atlantic. Marine Micropaleontology, 37, 41-52.
Kennett, J.P. (1982) Marine Geology. Prentice-Hall, 1-813.
Kurt, R. G. (1972) The pleistocene calcareous nannoplankton of the subantarctic Pacific Ocean. Deep Sea Research and Oceanographic Abstracts. 19, 45-48.
Martini, E. (1971) Standard Tertiary and Quaternary calcareous nannoplankton zonation. A. Farinacci(ed.), Proceedings (2) Planktonic Conference, Roma, 1970, 2, 739-785.
Martini, E. and Muller, C. (1986) Current Tertiary and Quaternary calcareous nannoplankton stratigraphy and correlations. Newsletters on Stratigraphy. 16, 99-112.
Mizuno, K. and White, W. B. (1983) Annual and interannual variability in the Kuroshio current system. Journal of physical oceanography. 13, 1847-1867.
Okada, H. and Bukry, D. (1980) Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation. Marine Micropaleontology, 5, 321-325.
Perch-Nielsen, K. (1972) Remarks on Late Cretaceous to Pleistocene coccoliths from the North Atlantic. In: Laughton, A. S., Berggren, W. A. et al. Initial Reports DSDP, 12, 1003-1069.
Pujos, A. (1985) Late Eocene to Pleistocene medium-sized and small-sized Reticulofenestrids. In: Stradner, H., Perch-Nielsen, K. (Eds.). Proceeding INA meeting, Vienna 1985, Abh. Geology Bundesanst. 39, 239–277.
Pujos, A. (1988) Spatio-temporal distribution of some quaternary coccoliths. Oceanologica acta. 11, 65-77.
Raffi, I. (2002) Revision of the early-middle Pleistocene calcareous nannofossil biochronology (1.75-0.85 Ma). Marine Micropaleontology, 45, 3113-3137.
Raffi, I. and Flores, J.A. (1995) Pleistocene through Miocene calcareous nannofossils from Eastern Equatorial Pacific Ocean (Leg 138). In: Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A. and Van Handel, T.H. (Eds.). Proceedings of the ODP, Scientific Results. 138, 233–286.
Raffi, I., Backman, J., Fornaciari, E., Palike, H., Rio, D., Lourens, L. and Hilgen, F. (2006) A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quaternary Science Reviews. 25, 3113-3137.
Raffi, I., Backman, J., Rio, D. and Shankleton, N.J. (1993) Plio-Pleistocene nannofossil biostratigraphy and calibration to oxygen isotope stratigraphies from Deep Sea Drilling Project Site 607 and Ocean Drilling Program Site 677. Paleoceanography, 8, 387-408.
Rio, D. (1990) Late Oligocene through early Pleistocene calcareous nannofossils from western equatorial Indian Ocean (Leg 115). Proceedings of the Ocean Drilling Program, Scientific Results. 115, 175-236.
Rio, D., Raffi, I. and Villa, G. (1990) Pliocene-Pleistocene calcareous nannofossil distribution patterns in the western Mediterranean. Proceedings of the Ocean Drilling Program, Scientific Results. 107, 513-533.
Samtleben, C. (1980) Die Evolution der Coccolithophoriden-Gattung Gephyrocapsa nach Befunden im Atlantik. Palaontologische Zeitschrift. 54, 91-127.
Sato, T., Yuguchi, S., Takayama, T. and Kameo, K. (2004) Drastic change in the geographical distribution of the cold-water nannofossil Coccolithus pelagicus (Wallich) Schiller at 2.74 Ma in the late Pliocene, with special reference to glaciation in the Arctic Ocean, Marine Micropaleontology. 52, 181-193.
Shackleton, N.J., Crowhurst, S., Hagelberg, T., Pisias, N.G. and Schneider, D.A. (1995) A new late Neogene time scale: application to Leg 138 sites. In: Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A. and Van Handel, T.H. (Eds.). Proceedings of the ODP, Scientific Results, 138, 73–101.
Siesser, W.G. and de Kaenel, E.P. (1999) Neogene calcareous nannofossils: Western Mediterranean biostratigraphy and paleoclimatology. In: Zahn, R., Comas, M.C. and Klaus, A. (Eds). Proceedings of the Ocean Drilling Program, Scientific Results. 161, 223–237.
Siesser, W.G.. and Bralower, T.J. (1992) Cenozoic calcareous nannofossil biostratigraphy on the Exmouth Plateau, Eastern Indian Ocean. In von Rad, U. Haq, B.U.,et al., Proceedings of the ODP, Scientific Results, 122: College Station, TX(Ocean Drilling Program), 601–631.
Thierstein, H.R., Geitzenauer, K.R., Molfino, B., and Shackleton, N.J. (1977) Global synchroneity of late Quaternary coccolith datum levels: validation by oxygen isotopes. Geology. 5, 400-404.
Thompson, P. R. and Shackleton, N. J. (1980) North Pacific palaeoceanography: late Quaternary coiling variations of planktonic foraminifer Neogloboquadrina pachyderma. Nature. 287, 829-833.
Varol, O. (1983) Proposed calcareous nannofossil zonation scheme for the Miocene to Holocene of Southeast Asia. Geology Society Malaysia, Bulletin. 37-46.
Wei, W. (1993) Calibration of upper Pliocene-lower Pleistocene nannofossil events with oxygen isotope stratigraphy. Paleoceanography. 8, 85-99.
Wise, S. W. Jr. (1983) Mesozoic and Cenozoic calcareous nannofossils recovered by Deep Sea Drilling Project, Leg 71 in the Falkland Plateau Region, Southwest Atlantic Ocean. In: Ludwig, W. J., Krasheninnikov, V. A. et al. Initial Reports DSDP. 71, 481-550.
Yamane, M. (2003) Late Quaternary variations in water mass in the Shatsky Rise area, northwest Pacific Ocean. Marine Micropaleontology. 48, 205-223.
Young, J. R. (1990) Size variation of Neogene Reticulofenestra coccolith form Indian Ocean DSDP cores. Journal of Micropalaeontology. 9, 71-85.
Young, J. R. (1998) Neogene. In: Bown, P. (Ed.). Calcareous Nannofossil Biostratigraphy. British Micropalaeontological Society Publication, London, 225–265.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63545-
dc.description.abstract鈣質超微化石是地層學研究中極佳的年代對比工具。生物地層定年利用地層中的生物事件來界定出生物帶;生物事件包括生物的始現面(First Occurrence, FO or First Appearance Datum, FAD)及末現面(Last Occurrence, LO or Last Appearance Datum, LAD)等。我們運用鈣質超微化石生物定年時,傾向將這些生物事件視為等時性(synchronous)事件。然而,全球海洋面積廣大,各海域間的溫鹽條件、地理環境皆有差異,使得生物在各大洋間的演化情況不一,可能造成生物事件呈現「異時性」(diachronous)的問題。近年,隨著海洋鑽探研究資料的累積,再加上古地磁地層研究的發展,逐漸能分辨出各個生物事件在不同地區的「異時性」(diachroniety)。本研究分析西北太平洋ODP 1210岩芯晚中新世至早更新世的生物地層,辨認出十一個重要的生物事件,經與其他地區對比,對於數個鈣質超微化石生物帶的「異時性」現象有所評估。
ODP 1210岩芯 (32°13N, 158°15E,水深2573.6公尺,岩芯總長241.4公尺)位於日本東側海域的海底高原Shatsky Rise。本研究自岩芯深度32.38-95.36公尺,每間隔50公分採樣,作相對豐度分析。接近於生物界面則加密為間隔10公分取樣,並利用ODP 198航次報告中所提供的古地磁資料作為年代上的控制點,內插推估出各生物事件時間,建立本區域上新世的鈣質超微化石定年架構。研究結果顯示ODP 1210晚中新世至早更新世的沉積物樣本中可以辨識出十一個鈣質超微化石生物事件,年代由新到老依序如下:
(1) LCO of Discoaster brouweri (1.96 Ma)
(2) LO of Discoaster pentaradiatus (2.51 Ma)
(3) LO of Discoaster surculus (2.52 Ma)
(4) LO of Discoaster asymmetricus (2.81 Ma)
(5) LO of Discoaste tamalis (2.85 Ma)
(6) LCO of Reticulofenestra pseudoumbilica (3.82 Ma)
(7) FO of Discoaster tamalis (3.98Ma)
(8) LO of Amaurolithus spp. (4.00Ma)
(9) FO of Discoaster asymmetricus (4.12 Ma)
(10) FO of Ceratolithus spp. (5.00 Ma)
(11) LO of Discoaster quinqueramus(5.86 Ma)
其中,Discoaster brouweri LCO、Reticulofenestra pseudoumbilica LCO、Discoaster asymmetricus FO為絕佳的全球等時性事件。Discoaster surculus LO、Discoaster tamalis LO、Discoaster quinqueramus LO為異時性事件。
P. lacunose FO的年代為3.84 Ma,位在R. pseudoumbilica LO界面之下,P. lacunosa與R. pseudoumbilica (>7 μm)有短暫的共存期。R. pseudoumbilica的冷水型亞種R. gelida 在本研究中常見,LCO R. gelida與R. pseudoumbilica LCO同時發生,推論在西北太平洋水域中,控制R. gelida與R. pseudoumbilica絕滅的因子是相同的。R. pseudoumbilica LO為絕佳的全球等時性事件,但作為生物界面的指標化石,必須以形態大小超過7 μm作為標準,才具有等時性。本研究未有暖水種Sphenolithus abies連續出現,可能暗示Shatsky Rise在3.5 Ma時的海水條件,不適合S. abies生存。
ODP 1210的Amaurolithus與Ceratolithus兩個屬的豐度很低,僅能以Amaurolithus delicatus LO取代Amaurolithus tricorniculatus LO,作為NN14的上界事件。Ceratolithus rugosus FO在西北太平洋的生物地層應用上,可能不適用,僅能判定出Ceratolithus spp. FO。本文因此以Ceratolithus spp. FO作為NN12之上界。
運用ODP 1210的超微化石結果檢討出磺坑剖面的鈣質超微化石分帶的層界,依據早期的前人研究的資料作討論,有以下結論︰NN13/NN14界面在十六份頁岩中段,NN12/NN13實際界面無法確定。NN14/NN15的界面可以認定在魚藤坪砂岩段底部。利用P. lacunosa FO,認為NN15/NN16應修訂在錦水頁岩/魚藤坪砂岩之交界處。Matuyama/Gauss古地磁界面位於卓蘭層底部,綜合磁地層與超為化石資料,作者認為NN17的上界與下界皆在卓蘭層之中。
zh_TW
dc.description.abstractThe conventional nannofossil standard zonations of Martini (1971) and Okada & Bukry (1980) have been prime standards for biostratigraphic correlation of Neogene sediments. Advance in biochronology in the last four decades has further calibrated the first and last occurrences of index species in those schemes. However, these two zonations were mainly based upon low-latitudes stratigraphic sections of marine sediments. The diachroniety of each bioevent needs to be evaluated when such standard schemes are employed in middle latitudes. Particularly, the first and last occurrences of warm-water Discoaster spp. tend to be diachronous between low- and mid-latitudes.
This study analyzed the upper Miocene-lower Pleistocene calcareous nannofossil assemblages from a mid-latitude ODP site in the northern Pacific to address the fore-mentioned issues. The studied site is ODP 1210 (32°13N, 158°15E; water depth of 2574 m) which located on the Shatsky Rise.
This study examined the samples at 50 cm intervals with semi-quantitative abundance of nannofossils, and prepared all slides with processed standard techniques.All slides were analyzed under the light microscope at ×1600 magnification. Moreover, the bioevents were determined by higher resolution which was 10 cm sampling interval and counting the key fossil number within a total as 500 specimens.
The age of 11 nannofossil datums is estimated by interpolation between magnetic reversals. They are: LCO of Discoaster brouweri at 1.96 Ma, LO of D. pentaradiatus at 2.51 Ma, LO of D. surculus at 2.52 Ma, LO of D. asymmetricus at 2.81 Ma, LO of D. tamalis at 2.85 Ma, LCO of Reticulofenestra pseudoumbilica at 3.82 Ma, FO of D. tamalis at 3.98 Ma, LO of Amaurolithus spp. at 4.00 Ma, FO of D. asymmetricus at 4.12 Ma, FO of Ceratolithus spp. at 5.00 Ma, LO of D. quinqueramus at 5.86 Ma. Three bioevents are evaluated to be diachronous, including LO of D. surculus, LO of D. tamalis, and LO of D. quinqueramus.
3.84 Ma for the FO of Pseudoemiliania lacunosa recorded slightly below the LCO of R. pseudoumbilica. Amaurolithus spp.and Ceratolithus spp. are presented in rare numbers, hence the LO of A. tricorniculatus and the FO of C. rugosus are unavailable in ODP 1210. Especially, that the LCOs of R. gelida and R. pseudoumbilica at 3.82 Ma are identical suggested the fates of both morphotypes were controlled by the same factor. Reticulofenestra gelida may represented a winter morphovariant of R. pseudoumbilica. The absence of a warm-water species Sphenolithus abies implies that the water masses throughout the late Miocene-early Pliocene at this location were too cold for Sphenolithus abies to live, but still warm enough for various Discoaster species.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:13:48Z (GMT). No. of bitstreams: 1
ntu-101-R97224107-1.pdf: 3437711 bytes, checksum: 81bee62df6d249c2181fccd578aafaaa (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝........................................................Ⅰ
中文摘要....................................................Ⅱ
英文摘要....................................................Ⅳ
目錄...................................................... Ⅵ
圖目錄.....................................................Ⅷ
表目錄.....................................................Ⅸ

第一章 緒論
第一節 鈣質超微化石的應用...................................1
第二節 鈣質超微化石生物地層學的發展...........................2
第三節 研究動機...........................................4
第四節 研究目的...........................................4
第五節 研究區域...........................................5
第二章 研究材料
第一節 鑽井深度...........................................7
第二節 岩芯位置與描述......................................7
第三章 研究方法
第一節 標本取樣...........................................8
第二節 薄片製程...........................................8
第三節 半定量分析.........................................9
第四節 生物事件的定義....................................10
第四章 ODP1210結果
第一節 半定量相對豐度記錄................................11
第二節 鈣質超微化石生物地層..............................16
第五章 晚中新世至早更新世鈣質超微化石生物地層分帶標準之比較.......22
第六章 鈣質超微化石個論....................................27
第七章 由ODP1210岩芯上新世鈣質超微化石生物定年架構探討苗栗出磺坑剖面
生物地層之改進......................................42
第八章 結論 .............................................47
參考文獻...................................................49
附錄(一) 超微化石種屬鑑定列表................................55
附錄(二) ODP 1210鈣質超微化石之相對豐度記錄...................57
dc.language.isozh-TW
dc.subject異時性zh_TW
dc.subject鈣質超微化石生物定年zh_TW
dc.subject出磺坑剖面zh_TW
dc.subject上新統zh_TW
dc.subjectShatsky Risezh_TW
dc.subjectDiscoasteren
dc.subjectShatsky Riseen
dc.subjectnannofossil biochronologyen
dc.subjectPlioceneen
dc.subjectdiachronietyen
dc.title西北太平洋ODP 1210站位上中新統至下更新統鈣質超微化石生物地層研究與應用zh_TW
dc.titleUpper Miocene-lower Pleistocene calcareous nannofossil biostratigraphy of ODP 1210, northwestern Pacific and some applicationen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝凱旋(Kai-Shuan Shea),吳樂群(Leh-Chyun Wu),陳文山(Wen-Shan Chea)
dc.subject.keyword鈣質超微化石生物定年,上新統,異時性,Shatsky Rise,出磺坑剖面,zh_TW
dc.subject.keywordnannofossil biochronology,Pliocene,diachroniety,Discoaster,Shatsky Rise,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2012-08-20
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved