Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63530
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱士維(Shi-Wei Chu)
dc.contributor.authorWei-Lin Changen
dc.contributor.author張維麟zh_TW
dc.date.accessioned2021-06-16T17:13:38Z-
dc.date.available2012-08-22
dc.date.copyright2012-08-22
dc.date.issued2012
dc.date.submitted2012-08-20
dc.identifier.citation1. Goldberger, J.J. and J. Ng, Practical Signal and Image Processing in Clinical Cardiology. 2010: Springer.
2. Fercher, A.F., et al., Optical Coherence Tomography, in Encyclopedia of Analytical Chemistry. 2006, John Wiley & Sons, Ltd.
3. Reddick, R.C., R.J. Warmack, and T.L. Ferrell, New form of scanning optical microscopy. Physical Review B, 1989. 39(1): p. 767-770.
4. Alvarez-Román, R., et al., Visualization of skin penetration using confocal laser scanning microscopy. European Journal of Pharmaceutics and Biopharmaceutics, 2004. 58(2): p. 301-316.
5. M. SHOTTON, D., Confocal scanning optical microscopy and its applications for biological specimens. Journal of Cell Science, 1989. 94(2): p. 175-206.
6. Zipfel, W.R., R.M. Williams, and W.W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotech, 2003. 21(11): p. 1369-1377.
7. Chu, S.W., et al., Nonlinear bio-photonic crystal effects revealed with multimodal nonlinear microscopy. Journal of Microscopy, 2002. 208(3): p. 190-200.
8. Dunn, A.K., et al., Influence of optical properties on two-photon fluorescence imaging in turbid samples. Appl. Opt., 2000. 39(7): p. 1194-1201.
9. Sun, C.-K., et al., Higher harmonic generation microscopy for developmental biology. Journal of Structural Biology, 2004. 147(1): p. 19-30.
10. Dombeck, D.A., et al., Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy. Proceedings of the National Academy of Sciences, 2003. 100(12): p. 7081-7086.
11. Liu, Y.-C. and A.-S. Chiang, High-resolution confocal imaging and three-dimensional rendering. Methods, 2003. 30(1): p. 86-93.
12. Tseng, S.j., et al., Integration of optical clearing and optical sectioning microscopy for three-dimensional imaging of natural biomaterial scaffolds in thin sections. Journal of Biomedical Optics, 2009. 14(4): p. 044004-9.
13. Yeh, A.T., et al., Reversible Dissociation of Collagen in Tissues. 2003. 121(6): p. 1332-1335.
14. Spence, D.E., P.N. Kean, and W. Sibbett, 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett., 1991. 16(1): p. 42-44.
15. Morgner, U., et al., Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. Opt. Lett., 1999. 24(6): p. 411-413.
16. Dudley, J.M., G. Genty, and S. Coen, Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics, 2006. 78(4): p. 1135-1184.
17. Zheltikov, A.M., Let there be white light: supercontinuum generation by ultrashort laser pulses. Physics-Uspekhi, 2006. 49(6): p. 605-628.
18. Myers, L.E., et al., Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3. J. Opt. Soc. Am. B, 1995. 12(11): p. 2102-2116.
19. Myers, L.E. and W.R. Bosenberg, Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators. Quantum Electronics, IEEE Journal of, 1997. 33(10): p. 1663-1672.
20. Rotermund, F., Petrov, V., Noack, F., Wittmann, M., Korn, G., Laser-diode-seeded operation of a femtosecond optical parametric amplifier with MgO:LiNbO3 and generation of 5-cycle pulses near 3 μm. J. Opt. Soc. Am. B, 1999. 16(9): p. 1539-1545.
21. Cerullo, G. and S. De Silvestri, Ultrafast optical parametric amplifiers. Review of Scientific Instruments, 2003. 74(1): p. 1-18.
22. Tzeng, Y.-W., et al., Broadband tunable optical parametric amplification from a single 50 MHz ultrafast fiber laser. Opt. Express, 2009. 17(9): p. 7304-7309.
23. Bohren, C.F. and D.R. Huffman, Absorption and Scattering by an Arbitrary Particle, in Absorption and Scattering of Light by Small Particles. 2007, Wiley-VCH Verlag GmbH. p. 57-81.
24. Bohren, C.F. and D.R. Huffman, Absorption and Scattering by a Sphere, in Absorption and Scattering of Light by Small Particles. 2007, Wiley-VCH Verlag GmbH. p. 82-129.
25. Jackson, J.D., Classical Electrodynamics. 1999: Wiley.
26. Griffiths, D.J., Introduction to electrodynamics. 1999: Prentice Hall.
27. Paul, J.S. and G.M. Mateyko, Quantitative interference microscopy of polytene chromosomes: I. Cytophysical studies on refractive index and dry mass concentration. Experimental Cell Research, 1970. 59(2): p. 227-236.
28. Dunn, A. and R. Richards-Kortum, Three-dimensional computation of light scattering from cells. Selected Topics in Quantum Electronics, IEEE Journal of, 1996. 2(4): p. 898-905.
29. Boyd, R.W., Nonlinear Optics, Third Edition. 2008: Academic Press. 640.
30. Weis, R.S. and T.K. Gaylord, Lithium niobate: Summary of physical properties and crystal structure. Applied Physics A: Materials Science & Processing, 1985. 37(4): p. 191-203.
31. Iyi, N., et al., Comparative study of defect structures in lithium niobate with different compositions. Journal of Solid State Chemistry, 1992. 101(2): p. 340-352.
32. Jundt, D.H., Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate. Opt. Lett., 1997. 22(20): p. 1553-1555.
33. Gayer, O., et al., Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3. Applied Physics B: Lasers and Optics, 2008. 91(2): p. 343-348.
34. Hecht, E., Optics. 2002: Addison-Wesley.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63530-
dc.description.abstract生物材料因為軟物質的混濁性及複雜結構的光學散射,共軛焦螢光顯微鏡顯微鏡,光學穿透深度難以超過100微米,使得光學影像難以看到100微米以下的組織結構。根據散射理論,光波長越長散射強度越小,降低散射強度則可以提高穿透深度。因此,雙光子螢光顯微鏡與二倍頻顯微鏡基於兩倍的激發頻率而可以超過500微米、甚至達到1釐米的深度。所以紅外光的生物影像是有必要研究的。在材料方面,須選擇特定波長才能激發各種生物材料或染劑的螢光,使得螢光顯微術難以比較出該材料中,散射效應最小的波長。另一方面,二倍頻顯微術可以選擇任意波長做為激發光源,只要入射光波長遠離材料的吸收帶。在我們的實驗中,我們希望建立紅外光波段的多組紅外光光源。因此,我們利用光參數產生的方法,可以在極化反轉鈮酸鋰中取得紅外雷射光源,其擁有可調頻率的光譜、高光強度、超短脈衝的特性。在我們的系統裡,產生出來的調頻光源功率在1315至1650奈米的波至少都有60毫瓦,最高超過1瓦,十分適合做為二倍頻顯微術的光源。結合光參數產生與二倍頻顯微術,我們可以建立出特定生物材料的光譜性影像,進而找出該材料最佳穿透深度的波長。zh_TW
dc.description.abstractIn bio-materials, confocal fluorescence(CF) microscopy reaching penetration depth over 100μm is difficult because of turbidity of soft-material and scattering of complex structure. Based on scattering theory, the longer wavelength, the lower scattering effect. We can increase penetration depth by using larger wavelength with less scattering.  Because of double frequency of excitation, two-photon fluorescence (2PF) microscopy and second harmonic generation (SHG) microscopy can observe more deeper than 500 μm, even to reach 1 mm . Therefore, a bio-imaging system combined with an infrared (IR) source is required. However, only special wavelength can excite to fluorescence of bio-materials or stains, IR sources are not commonly applied to fluorescence microscopy. On the other hand, for imaging, SHG microscopy is free on excitation wavelength selection as far away resonance frequency. In our experiment, we expect to generate multi-frequencies laser source in IR. By optical parametric generation (OPG), we easily generate IR laser source on periodically poled lithium niobate (PPLN), which is tunable frequency, high intensity and ultrafast pulse duration. Commonly, in our system, the power of the tunable source is at least 60 mW from 1315 nm to 1650 nm, and the highest is over 1 W. The tunable IR source properly apply to SHG microscopy. Combined OPG with SHG microscopy, we can achieve spectral imaging.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:13:38Z (GMT). No. of bitstreams: 1
ntu-101-R98222029-1.pdf: 2237857 bytes, checksum: 3837c9e0d88ff409f38bb66acc447816 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
第一章 緒論 1
第一節 分子生物影像 1
第二節 非線性光學與倍頻顯微鏡 2
第三節 調頻式雷射 3
第二章 理論 4
第一節 散射理論 4
第一小節 散射與穿透深度 4
第二小節 米氏理論 5
第二節 非線性光學 8
第一小節 巨觀的非線性材料 8
第二小節 非線性電偏極化率的對稱性 10
第三小節 非線性材料中的電磁波 12
第三節 二倍頻 13
第四節 光參數產生 15
第一小節 準相位匹配 15
第二小節 頻率調節 17
第三小節 光參數產生的增益 18
第五節 群速度與色散現象 21
第一小節 色散對脈衝時間長度的影響 21
第三章 實驗架構 23
第一節 脈衝雷射光源 23
第二節 可調頻率光源系統 24
第一小節 鈮酸鋰的特性 24
第二小節 周期性極化反轉鈮酸鋰的準備 25
第三小節 可調頻率的計算 26
第四小節 光參數產生系統 27
第三節 掃描影像系統與物鏡 29
第四節 生物樣本的準備 31
第四章 結果與討論 32
第一節 光參數產生的頻率調節光源 32
第一小節 頻率調節的計算與測量 32
第二小節 信號光譜的計算與測量 34
第三小節 輸出功率的計算與測量 37
第四小節 預估輸出光源的脈衝寬度 39
第二節 生物樣本的二倍頻影像 41
第五章 結論 43
引用文獻 44
dc.language.isozh-TW
dc.subject超快雷射zh_TW
dc.subject二倍頻顯微術zh_TW
dc.subject光參數產生zh_TW
dc.subject周期性極化反轉鈮酸鋰zh_TW
dc.subject可調頻率光源zh_TW
dc.subjectultrafast laseren
dc.subjecttunable lighten
dc.subjectperiodically poled lithium niobateen
dc.subjectoptical parametric generationen
dc.subjectsecond harmonic generation microscopyen
dc.title利用週期性極化反轉鈮酸鋰產生1.3微米到1.8微米調頻脈衝雷射光源zh_TW
dc.titleTunable Pulse Laser Generation from 1.3μm to 1.8μm by Periodically Poled Lithium Niobateen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林彥穎(Yen-Yin Lin),詹明哲(Ming-Che Chan),林碩泰(Shou-Tai Lin)
dc.subject.keyword超快雷射,可調頻率光源,周期性極化反轉鈮酸鋰,光參數產生,二倍頻顯微術,zh_TW
dc.subject.keywordultrafast laser,tunable light,periodically poled lithium niobate,optical parametric generation,second harmonic generation microscopy,en
dc.relation.page46
dc.rights.note有償授權
dc.date.accepted2012-08-20
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved