Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6351
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 林慧玲(Fe-Lin Lin Wu) | |
dc.contributor.author | Chih-Fen Huang | en |
dc.contributor.author | 黃織芬 | zh_TW |
dc.date.accessioned | 2021-05-16T16:26:50Z | - |
dc.date.available | 2018-03-04 | |
dc.date.available | 2021-05-16T16:26:50Z | - |
dc.date.copyright | 2013-03-04 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-02-05 | |
dc.identifier.citation | 1. Umar, A., B.K. Dunn, and P. Greenwald, Future directions in cancer prevention. Nat Rev Cancer, 2012. 12(12): p. 835-48.
2. Rosenbaum, E. and M.A. Carducci, Pharmacotherapy of hormone refractory prostate cancer: new developments and challenges. Expert Opin Pharmacother, 2003. 4(6): p. 875-87. 3. Tu, S.M. and S.H. Lin, Clinical aspects of bone metastases in prostate cancer. Cancer Treat Res, 2004. 118: p. 23-46. 4. Jacobs, S.C., Spread of prostatic cancer to bone. Urology, 1983. 21(4): p. 337-44. 5. Shah, R.B., et al., Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res, 2004. 64(24): p. 9209-16. 6. Lee, Y.C., et al., Androgen depletion up-regulates cadherin-11 expression in prostate cancer. J Pathol, 2010. 221(1): p. 68-76. 7. Tantivejkul, K., L.M. Kalikin, and K.J. Pienta, Dynamic process of prostate cancer metastasis to bone. J Cell Biochem, 2004. 91(4): p. 706-17. 8. Lehr, J.E. and K.J. Pienta, Preferential adhesion of prostate cancer cells to a human bone marrow endothelial cell line. J Natl Cancer Inst, 1998. 90(2): p. 118-23. 9. Sikes, R.A., et al., Cellular interactions in the tropism of prostate cancer to bone. Int J Cancer, 2004. 110(4): p. 497-503. 10. Taichman, R.S., et al., Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res, 2002. 62(6): p. 1832-7. 11. Koeneman, K.S., F. Yeung, and L.W. Chung, Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate, 1999. 39(4): p. 246-61. 12. Okazaki, M., et al., Molecular cloning and characterization of OB-cadherin, a new member of cadherin family expressed in osteoblasts. J Biol Chem, 1994. 269(16): p. 12092-8. 13. Takeichi, M., Morphogenetic roles of classic cadherins. Curr Opin Cell Biol, 1995. 7(5): p. 619-27. 14. Gumbiner, B.M., Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol, 2005. 6(8): p. 622-34. 15. Wheelock, M.J., et al., Cadherin switching. J Cell Sci, 2008. 121(Pt 6): p. 727-35. 16. Tomita, K., et al., Cadherin switching in human prostate cancer progression. Cancer Res, 2000. 60(13): p. 3650-4. 17. Schmidmaier, R. and P. Baumann, ANTI-ADHESION evolves to a promising therapeutic concept in oncology. Curr Med Chem, 2008. 15(10): p. 978-90. 18. Ye, X.C., et al., Biology and clinical management of prostate cancer bone metastasis. Front Biosci, 2007. 12: p. 3273-86. 19. Chu, K., et al., Cadherin-11 promotes the metastasis of prostate cancer cells to bone. Mol Cancer Res, 2008. 6(8): p. 1259-67. 20. Kawaguchi, J., et al., Targeted disruption of cadherin-11 leads to a reduction in bone density in calvaria and long bone metaphyses. J Bone Miner Res, 2001. 16(7): p. 1265-71. 21. Tamura, D., et al., Cadherin-11-mediated interactions with bone marrow stromal/osteoblastic cells support selective colonization of breast cancer cells in bone. Int J Oncol, 2008. 33(1): p. 17-24. 22. Ortiz, A. and S.H. Lin, Osteolytic and osteoblastic bone metastases: two extremes of the same spectrum? Recent Results Cancer Res, 2012. 192: p. 225-33. 23. Roudier, M.P., et al., Bone histology at autopsy and matched bone scintigraphy findings in patients with hormone refractory prostate cancer: the effect of bisphosphonate therapy on bone scintigraphy results. Clin Exp Metastasis, 2003. 20(2): p. 171-80. 24. Frixen, U.H., et al., E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol, 1991. 113(1): p. 173-85. 25. Mariotti, A., et al., N-cadherin as a therapeutic target in cancer. Expert Opin Investig Drugs, 2007. 16(4): p. 451-65. 26. Syrigos, K.N. and A.J. Karayiannakis, Adhesion molecules as targets for the treatment of neoplastic diseases. Curr Pharm Des, 2006. 12(22): p. 2849-61. 27. Blaschuk, O.W., et al., Identification of a cadherin cell adhesion recognition sequence. Dev Biol, 1990. 139(1): p. 227-9. 28. Nose, A., K. Tsuji, and M. Takeichi, Localization of specificity determining sites in cadherin cell adhesion molecules. Cell, 1990. 61(1): p. 147-55. 29. Chappuis-Flament, S., et al., Multiple cadherin extracellular repeats mediate homophilic binding and adhesion. J Cell Biol, 2001. 154(1): p. 231-43. 30. Pittet, P., et al., Fibrogenic fibroblasts increase intercellular adhesion strength by reinforcing individual OB-cadherin bonds. J Cell Sci, 2008. 121(Pt 6): p. 877-86. 31. Zhu, B., et al., Functional analysis of the structural basis of homophilic cadherin adhesion. Biophys J, 2003. 84(6): p. 4033-42. 32. Wu, T.T., et al., Establishing human prostate cancer cell xenografts in bone: induction of osteoblastic reaction by prostate-specific antigen-producing tumors in athymic and SCID/bg mice using LNCaP and lineage-derived metastatic sublines. Int J Cancer, 1998. 77(6): p. 887-94. 33. Lira, C.B., et al., Expression of the extracellular domain of OB-cadherin as an Fc fusion protein using bicistronic retroviral expression vector. Protein Expr Purif, 2008. 61(2): p. 220-6. 34. Galfione, M., et al., Expression and purification of the angiogenesis inhibitor 16-kDa prolactin fragment from insect cells. Protein Expr Purif, 2003. 28(2): p. 252-8. 35. Partridge, N.C., et al., Morphological and biochemical characterization of four clonal osteogenic sarcoma cell lines of rat origin. Cancer Res, 1983. 43(9): p. 4308-14. 36. Majeska, R.J., B.C. Nair, and G.A. Rodan, Glucocorticoid regulation of alkaline phosphatase in the osteoblastic osteosarcoma cell line ROS 17/2.8. Endocrinology, 1985. 116(1): p. 170-9. 37. Sudo, H., et al., In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol, 1983. 96(1): p. 191-8. 38. Rodan, S.B., et al., Characterization of a human osteosarcoma cell line (Saos-2) with osteoblastic properties. Cancer Res, 1987. 47(18): p. 4961-6. 39. Katagiri, T., et al., Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol, 1994. 127(6 Pt 1): p. 1755-66. 40. Finnemann, S., et al., Uncoupling of XB/U-cadherin-catenin complex formation from its function in cell-cell adhesion. J Biol Chem, 1997. 272(18): p. 11856-62. 41. Yap, A.S., C.M. Niessen, and B.M. Gumbiner, The juxtamembrane region of the cadherin cytoplasmic tail supports lateral clustering, adhesive strengthening, and interaction with p120ctn. J Cell Biol, 1998. 141(3): p. 779-89. 42. Nagafuchi, A. and M. Takeichi, Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J, 1988. 7(12): p. 3679-84. 43. Nagafuchi, A. and M. Takeichi, Transmembrane control of cadherin-mediated cell adhesion: a 94 kDa protein functionally associated with a specific region of the cytoplasmic domain of E-cadherin. Cell Regul, 1989. 1(1): p. 37-44. 44. Kimura, Y., H. Matsunami, and M. Takeichi, Expression of cadherin-11 delineates boundaries, neuromeres, and nuclei in the developing mouse brain. Dev Dyn, 1996. 206(4): p. 455-62. 45. Lee, D.M., et al., Cadherin-11 in synovial lining formation and pathology in arthritis. Science, 2007. 315(5814): p. 1006-10. 46. Pishvaian, M.J., et al., Cadherin-11 is expressed in invasive breast cancer cell lines. Cancer Res, 1999. 59(4): p. 947-52. 47. Shibata, T., et al., Simultaneous expression of cadherin-11 in signet-ring cell carcinoma and stromal cells of diffuse-type gastric cancer. Cancer Lett, 1996. 99(2): p. 147-53. 48. Klymkowsky, M.W. and P. Savagner, Epithelial-mesenchymal transition: a cancer researcher's conceptual friend and foe. Am J Pathol, 2009. 174(5): p. 1588-93. 49. Monahan, T.S., et al., A novel function for cadherin 11/osteoblast-cadherin in vascular smooth muscle cells: modulation of cell migration and proliferation. J Vasc Surg, 2007. 45(3): p. 581-9. 50. Boscher, C. and R.M. Mege, Cadherin-11 interacts with the FGF receptor and induces neurite outgrowth through associated downstream signalling. Cell Signal, 2008. 20(6): p. 1061-72. 51. Kiener, H.P., et al., The cadherin-11 cytoplasmic juxtamembrane domain promotes alpha-catenin turnover at adherens junctions and intercellular motility. Mol Biol Cell, 2006. 17(5): p. 2366-76. 52. Nieman, M.T., et al., N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol, 1999. 147(3): p. 631-44. 53. Ozawa, M. and R. Kemler, Molecular organization of the uvomorulin-catenin complex. J Cell Biol, 1992. 116(4): p. 989-96. 54. Shibamoto, S., et al., Association of p120, a tyrosine kinase substrate, with E-cadherin/catenin complexes. J Cell Biol, 1995. 128(5): p. 949-57. 55. Vleminckx, K., et al., Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell, 1991. 66(1): p. 107-19. 56. Perl, A.K., et al., A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 1998. 392(6672): p. 190-3. 57. Baki, L., et al., Presenilin-1 binds cytoplasmic epithelial cadherin, inhibits cadherin/p120 association, and regulates stability and function of the cadherin/catenin adhesion complex. Proc Natl Acad Sci U S A, 2001. 98(5): p. 2381-6. 58. Fujita, Y., et al., Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol, 2002. 4(3): p. 222-31. 59. Pece, S. and J.S. Gutkind, E-cadherin and Hakai: signalling, remodeling or destruction? Nat Cell Biol, 2002. 4(4): p. E72-4. 60. Takeichi, M., Cadherins: a molecular family important in selective cell-cell adhesion. Annu Rev Biochem, 1990. 59: p. 237-52. 61. Sivasankar, S., et al., Direct molecular force measurements of multiple adhesive interactions between cadherin ectodomains. Proc Natl Acad Sci U S A, 1999. 96(21): p. 11820-4. 62. Patel, S.D., et al., Type II cadherin ectodomain structures: implications for classical cadherin specificity. Cell, 2006. 124(6): p. 1255-68. 63. Chang, S.K., et al., Cadherin-11 regulates fibroblast inflammation. Proc Natl Acad Sci U S A, 2011. 108(20): p. 8402-7. 64. Shapiro, L., et al., Structural basis of cell-cell adhesion by cadherins. Nature, 1995. 374(6520): p. 327-37. 65. Boggon, T.J., et al., C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science, 2002. 296(5571): p. 1308-13. 66. Tamura, K., et al., Structure-function analysis of cell adhesion by neural (N-) cadherin. Neuron, 1998. 20(6): p. 1153-63. 67. Tsuiji, H., et al., Cadherin conformations associated with dimerization and adhesion. J Biol Chem, 2007. 282(17): p. 12871-82. 68. Shi, Q., et al., Allosteric cross talk between cadherin extracellular domains. Biophys J, 2010. 99(1): p. 95-104. 69. Zhang, S., et al., Modulation of prostate cancer cell gene expression by cell-to-cell contact with bone marrow stromal cells or osteoblasts. Clin Exp Metastasis, 2009. 26(8): p. 993-1004. 70. Noss, E.H., et al., Modulation of matrix metalloproteinase production by rheumatoid arthritis synovial fibroblasts after cadherin 11 engagement. Arthritis Rheum, 2011. 63(12): p. 3768-78. 71. Yap, A.S., et al., Lateral clustering of the adhesive ectodomain: a fundamental determinant of cadherin function. Curr Biol, 1997. 7(5): p. 308-15. 72. Valencia, X., et al., Cadherin-11 provides specific cellular adhesion between fibroblast-like synoviocytes. J Exp Med, 2004. 200(12): p. 1673-9. 73. Schneider, D.J., et al., Cadherin-11 contributes to pulmonary fibrosis: potential role in TGF-beta production and epithelial to mesenchymal transition. FASEB J, 2012. 26(2): p. 503-12. 74. Burden, R.E., et al., Recent advances in the application of antibodies as therapeutics. Future Med Chem, 2012. 4(1): p. 73-86. 75. Cheng, S.L., et al., Human osteoblasts express a repertoire of cadherins, which are critical for BMP-2-induced osteogenic differentiation. J Bone Miner Res, 1998. 13(4): p. 633-44. 76. Hadeball, B., A. Borchers, and D. Wedlich, Xenopus cadherin-11 (Xcadherin-11) expression requires the Wg/Wnt signal. Mech Dev, 1998. 72(1-2): p. 101-13. 77. Borchers, A., R. David, and D. Wedlich, Xenopus cadherin-11 restrains cranial neural crest migration and influences neural crest specification. Development, 2001. 128(16): p. 3049-60. 78. Backer, S., et al., Trio controls the mature organization of neuronal clusters in the hindbrain. J Neurosci, 2007. 27(39): p. 10323-32. 79. Tanaka, H., et al., Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nat Med, 2010. 16(12): p. 1414-20. 80. Cooper, C.R., et al., Preferential adhesion of prostate cancer cells to bone is mediated by binding to bone marrow endothelial cells as compared to extracellular matrix components in vitro. Clin Cancer Res, 2000. 6(12): p. 4839-47. 81. Hall, C.L., et al., Type I collagen receptor (alpha 2 beta 1) signaling promotes the growth of human prostate cancer cells within the bone. Cancer Res, 2006. 66(17): p. 8648-54. 82. Shiozawa, Y., et al., Annexin II/annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer. J Cell Biochem, 2008. 105(2): p. 370-80. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6351 | - |
dc.description.abstract | 前列腺癌 (prostate cancer, PCa) 特別傾向於轉移至骨骼,且骨轉移為其死亡的相關主要原因,主導前列腺癌細胞與成骨細胞 (osteoblast) 間交互作用的黏附分子 (adhesion molecular) 可能扮演了重要角色。Cadherin-11,又稱為OB-cadherin,即為黏附分子之一,且在前列腺癌細胞株上有高度的表現。
Cadherin-11已被證實在前列腺癌骨轉移扮演重要角色,但其藉由何種機轉而在此癌細胞轉移的過程中作用則尚不清楚。本研究利用未表現有cadherin-11的 C4-2B4 細胞株使其表面表現cadherin-11,可促使其細胞擴展作用 (spreading) 並嵌入 (intercalation) 成骨細胞層,並刺激C4-2B4細胞的移行 (migration) 及侵襲 (invasion) 現象。對於已表現有cadherin-11之PC3細胞株進行cadherin-11負調控 (downregulation) 則減少其細胞的活動及侵襲作用。更進一步證實,cadherin-11胞質區域尾端的juxtamembrane及β-catenin結合區域皆為細胞移行與侵襲作用所必需。這些結果顯示,cadherin-11不僅提供前列腺癌細胞與成骨細胞間的連結,也透過其細胞質區域的訊息傳遞增加細胞活動及侵襲作用,且可能促使前列腺癌細胞骨轉移後的移生 (colonization)。 本研究也同時發現cadherin-11的黏附基序 (adhesion motif) 在其同類親合性(homophilic) 的細胞間黏附扮演重要角色,透過抑制此基序可干擾cadherin-11介導的前列腺癌細胞與成骨細胞黏附作用,並避免或減緩前列腺癌細胞發生骨轉移。 Cadherin 介導的細胞黏附作用為鈣離子依賴性,本研究發現cadherin-11的黏附基序主要在其細胞外區域的第三區塊 (EC3)。針對cadherin-11細胞外區域製備21株單株抗體,其中mAb 2C7 與 1A5 主要結合至EC3,並可抑制細胞與細胞間的聚集作用,當2C7在EC3的抗原決定位 (epitope) 發生突變時,cadherin-11促使的細胞黏附作用則大幅降低。 在前列腺癌細胞中,cadherin-11的異常表達提高了其在體外成骨細胞的黏附作用,且在活體試驗也增加發生骨轉移的機率。過去對於阻擋此黏附作用是否會抑制前列腺癌細胞的骨轉移並不清楚,但透過癌細胞轉移的實驗模式,將前列腺癌細胞直接注入老鼠心臟, mAb 2C7全身性給藥可顯著的減少擴散的前列腺癌細胞株PC3-mm2發生骨轉移的機率。綜合以上結果,透過干擾cadherin-11介導的黏附作用,可預防前列腺癌或其它癌細胞發生骨轉移。 | zh_TW |
dc.description.abstract | Prostate cancer (PCa) has propensity to metastasize to bone and bone metastasis is the major cause of PCa related mortality. Cell adhesion molecules that mediate the interactions between metastatic PCa cells and osteoblasts, a major cell type in bone, may play a role in the metastasis of PCa cells to bone. Cadherin-11, also known as OB-cadherin, is one such adhesion molecule and highly expressed in a PCa cell line.
Cadherin-11 has been shown to play a role in the metastasis of PCa cells to bone but the mechanism by which cadherin-11 is involved in this process is not known. In this study, we show that expression of cadherin-11 in cadherin-11-negative C4-2B4 cells increases their spreading and intercalation into an osteoblast layer, and stimulates C4-2B4 cell migration and invasiveness. Downregulation of cadherin-11 in cadherin-11-expressing metastatic PC3 cells decreases cell motility and invasiveness. Further, both the juxtamembrane and β-catenin binding domains in the cytoplasmic tail of cadherin-11 are required for cell migration and invasion. These observations suggest that cadherin-11 not only provides a physical link between PCa cells and osteoblasts but also increases PCa cell motility and invasiveness through its cytoplasmic domain that may facilitate the metastatic colonization of PCa cells in bone. We also identify a novel adhesion motif that mediates cadherin-11 homophilic cell-cell adhesion. We show that interfering cadherin-11-mediated PCa cell and osteoblast adhesion through inhibition of this motif may be developed for preventing or delaying prostate cancer bone metastasis. The cadherin family of cell adhesion molecules mediates Ca2+-dependent cell-cell adhesion. We identified a novel adhesion motif in the EC3 domain in cadherin-11. We generated 21 monoclonal antibodies against cadherin-11 EC domains. Among them, mAb 2C7 and 1A5 were found to inhibit cadherin-11-mediated cell aggregation. Mutation of the mAb 2C7 epitope in the EC3 domain abolished cadherin-11-mediated adhesion. In PCa cells, the aberrant expression of cadherin-11 increases their adhesion to osteoblasts in vitro and metastasis to bone in vivo. Whether blocking this adhesion will inhibit PCa metastasis to bone was previously unknown. Using an experimental metastasis model by injecting PCa cells intracardially, we showed that systemic delivery of mAb 2C7 significantly reduced the metastasis of disseminated PC3-mm2 to bone. Our studies suggest that perturbing cadherin-11-mediated adhesion may prevent bone metastasis from prostate or other cancers. | en |
dc.description.provenance | Made available in DSpace on 2021-05-16T16:26:50Z (GMT). No. of bitstreams: 1 ntu-102-D96423004-1.pdf: 4076224 bytes, checksum: a5688521af43f0fb5e090f717832a530 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 中文摘要 III
ABSTRACT V 第 1 章 文獻探討 1 第 2 章 研究目的 5 第 3 章 實驗方法與材料 6 3.1 細胞株 6 3.2 細胞培養 6 3.3 CADHERIN-11-FC製備 7 3.4 西方墨點法 (WESTERN BLOT)分析 7 3.5 製備表現有CADHERIN-11的L-CELL及C4-2B4前列腺癌細胞株 8 3.6 製備抑制 (KNOCKDOWN) CADHERIN-11表現的PC3-MM2細胞 8 3.7 細胞擴展(SPREADING)分析 9 3.8 C4-2B4前列腺癌細胞與成骨細胞的共培養 9 3.9 免疫細胞化學 (IMMUNOCYTOCHEMISTRY) 染色分析 9 3.10 細胞移行 (MIGRATION) 分析 10 3.11 細胞侵襲 (INVASION) 分析 10 3.12 免疫沉澱法 (IMMUNOPRECIPITATION) 分析 10 3.13 微陣列 (MICROARRAY) 基因分析 11 3.14 FACS (FLUORESCENCE-ACTIVATED CELL SORTING)分析 11 3.15 細胞增殖、存活與DOCETAXEL敏感性分析 11 3.16 非附著依賴性生長 (ANCHORAGE-INDEPENDENT GROWTH) 分析 12 3.17 細胞聚合 (AGGREGATION) 分析 12 3.18 CADHERIN-11-HIS7重組蛋白及ANTI-CADHERIN-11單株抗體製備 12 3.19 製備用於單株抗體結合位置分析之CADHERIN-11細胞外結構區域 13 3.20 製備表達突變CADHERIN-11序列的L-CELL細胞株 13 3.21 老鼠心臟內注射法及其生物光學 (BIOLUMINESCENCE) 測量分析 14 3.22 統計分析 14 第 4 章 第一部分 15 4.1 結果 16 4.1.1 表現有CADHERIN-11的前列腺癌細胞可促使其在CADHERIN-11- FC塗層培養板的細胞擴展作用。 16 4.1.2 CADHERIN-11促使前列腺癌細胞與成骨細胞間黏附作用 17 4.1.3 CADHERIN-11促使前列腺癌細胞嵌入 (INTERCALATION) 成骨細胞 17 4.1.4 CADHERIN-11在前列腺癌細胞移行 (MIGRATION) 作用之影響 18 4.1.5 CADHERIN-11在前列腺癌細胞侵襲 (INVASION) 作用上之影響 19 4.1.6 CADHERIN-11對於前列腺癌細胞的增殖、存活、DOCETAXEL治療敏感性,以及非附著依賴性生長的影響 19 4.1.7 CADHERIN-11介導的前列腺癌細胞移行與侵襲作用與其細胞內區域 (CYTOPLASMIC DOMAIN) 相關 19 4.1.8 CADHERIN-11對於C4-2B4細胞基因表現的影響 21 4.2 討論 22 第 5 章 第二部分 24 5.1 結果 25 5.1.1 CADHERIN-11促成的細胞聚集 (AGGREGATION) 作用可被抗體抑制 25 5.1.2 ANTI-CADHERIN-11單株抗體篩選 25 5.1.3 ANTI-CADHERIN-11單株抗體MAB 2C7與1A5之親和性及專一性 26 5.1.4 鑑別MAB 2C7在CADHERIN-11的結合區域 26 5.1.5 MAB 2C7之抗原決定位參與CADHERIN-11促使的細胞黏附作用 27 5.1.6 MAB 2C7抑制PC3-MM2與MC3T3-E1成骨細胞間的聚集作用 29 5.1.7 在老鼠骨轉移的實驗模式MAB 2C7可減少前列腺癌細胞轉移機率 29 5.2 討論 31 第 6 章 總結 35 第 7 章 參考文獻 36 圖 1. CADHERIN-11 對於細胞擴展作用之影響 45 圖 2. CADHERIN-11在各種成骨細胞株上的表現及對細胞吸附作用之影響 46 圖 3. CADHERIN-11促使前列腺癌細胞吸附於成骨細胞並改變細胞的形狀表現 47 圖 4. CADHERIN-11介導前列腺癌細胞與成骨細胞間的吸附作用 48 圖 5. CADHERIN-11促使前列腺癌細胞嵌入成骨細胞層 49 圖 6. CADHERIN-11對於細胞移行 (MIGRATION) 及侵襲 (INVASION)作用之影響 50 圖 8.表現完整CADHERIN-11及其突變序列之C4-2B4細胞鑑別分析 52 圖 9. CADHERIN-11 細胞內區域對細胞擴展 (SPREADING) 作用之影響 53 圖 10. CADHERIN-11 細胞內區域對細胞移行 (MIGRATION) 及侵襲 (INVASION) 作用之影響 54 圖 11. CADHERIN-11的表現對C4-2B4細胞侵襲 (INVASION) 作用相關基因表現之影響 55 圖 12. CADHERIN-11的表現對C4-2B4細胞移行 (MIGRATION) 作用相關基因表現之影響 56 圖 13. CADHERIN-11及其多株抗體對細胞聚集 (AGGREGATION) 作用之影響 57 圖 14. ANTI-CADHERIN-11單株抗體對於細胞聚集作用之影響 58 圖 15. ANTI-CADHERIN-11單株抗體2C7及1A5之FACS分析 59 圖 16. ANTI-CADHERIN-11單株抗體2C7與1A5之親和性及專一性 60 圖 17.單株抗體1A5及2C7結合區域確認 61 圖 18.單株抗體1A5及2C7抗體決定位 (EPITOPE) 確認 62 圖 19. CADHERIN-11突變體及其抗體辨識分析 63 圖 20. FACS分析CADHERIN-11野生型及突變體之抗體作用活性 64 圖 21. 2C7之抗原決定位突變將抑制細胞聚集作用 65 圖 22. MAB 2C7可阻斷PC3-MM2與MC3T3-E1間的細胞聚集作用 66 圖 23. 在老鼠骨轉移的試驗模式MAB 2C7可降低前列腺癌細胞骨轉移機率 68 表 1. 細胞株清單 69 表 2.CADHERIN-11抗體試驗使用之OLIGONUCLEOTIDE 序列清單 70 表 3.ANTI-CADHERIN-11抗體篩選結果 72 附圖 1. 表現CADHERIN-11-FC 之293FT細胞製備、篩選及鑑別 73 附圖 2. CADHERIN-11核甘酸及胺基酸序列-1 74 附圖 3.CADHERIN-11核甘酸及胺基酸序列-2 75 附圖 4. CADHERIN-11核甘酸及胺基酸序列-3 76 附圖 5. CADHERIN-11核甘酸及胺基酸序列-4 77 附圖 6. 4B6抗體選擇性辨識人類CADHERIN-11 78 | |
dc.language.iso | zh-TW | |
dc.title | 探討前列腺癌骨轉移作用分子及其臨床應用 | zh_TW |
dc.title | Study of the Molecular in Bone Metastasis of Prostate Cancer and the Clinical Application | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-1 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 林淑華(Sue-Hwa Lin) | |
dc.contributor.oralexamcommittee | 顧記華,許麗卿,沈麗娟,簡伯武 | |
dc.subject.keyword | 前列腺癌,癌症轉移,鈣黏蛋白-11,黏附,移行,侵襲,單株抗體, | zh_TW |
dc.subject.keyword | prostate cancer,metastasis,cadherin-11,adhesion,migration,invasion,monoclonal antibody, | en |
dc.relation.page | 78 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2013-02-05 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
Appears in Collections: | 藥學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-102-1.pdf | 3.98 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.