Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63519
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉丙成
dc.contributor.authorYa-Ping Hsiehen
dc.contributor.author謝亞平zh_TW
dc.date.accessioned2021-06-16T17:13:31Z-
dc.date.available2017-08-22
dc.date.copyright2012-08-22
dc.date.issued2012
dc.date.submitted2012-08-20
dc.identifier.citationReferences
[1] Claude E. Shannon, “A mathematical theory of communication,” Bell System Tech- nical Journal, vol. 27, pp. 379–423, 1948.
[2] Ian F. Akyildiz and Josep Miquel Jornet, “The internet of nano-things,” Wireless Commun., vol. 17, pp. 58–63, 2010.
[3] Andrew W Eckford, “Nanoscale communication with brownian motion,” Informa- tion Sciences and Systems CISS 07 41st Annual Conference on, p. 6, 2007.
[4] Massimiliano Pierobon and Ian F. Akyildiz, “A physical end-to-end model for molecular communication in nanonetworks,” IEEE J.Sel. A. Commun., vol. 28, pp. 602–611, May 2010.
[5] Ian F. Akyildiz, Josep M. Jornet, and Massimiliano Pierobon, “Nanonetworks: a new frontier in communications,” Communications of the ACM, vol. 54, no. 11, pp. 84–89, 2011.
[6] Baris Atakan and Ozgur B. Akan, “An information theoretical approach for molecu- lar communication,” in 2007 2nd Bio-Inspired Models of Network, Information and Computing Systems. 2007, pp. 33–40, IEEE.
[7] Baris Atakan and Ozgur B. Akan, “On molecular multiple-access, broadcast, and relay channels in nanonetworks,” in Proceedings of the 3rd International Confer- ence on Bio-Inspired Models of Network, Information and Computing Sytems. 2008, BIONETICS ’08, pp. 16:1–16:8, ICST (Institute for Computer Sciences, Social- Informatics and Telecommunications Engineering).
35
[8] Ling San Meng, Ping Cheng Yeh, Kwang Cheng Chen, and Ian F. Akyildiz, “Binary detection of diffusion-based molecular communications,” Submitted to IEEE ICC 2012.
[9] Vincent H. Poor, An Introduction to Signal Detection and Estimation, Springer- Verlag, 1998.
[10] A.W. Eckford, “Achievable information rates for molecular communication with distinct molecules,” in Bio-Inspired Models of Network, Information and Computing Systems, 2007. Bionetics 2007. 2nd, dec. 2007, pp. 313 –315.
[11] L. C. G. Rogers and David Williams, Diffusions, Markov Processes, and Martin- gales. Vol. 1, Cambridge University Press, Cambridge, 2000.
[12] Thomas M. Cover and Joy A. Thomas, Elements of information theory, Wiley- Interscience, New York, NY, USA, 1991.
[13] Ron Weiss and Thomas Knight, “Engineered communications for microbial robotics,” in DNA Computing, vol. 2054 of Lecture Notes in Computer Science, chapter 1, pp. 1–16–16. Springer Berlin / Heidelberg, 2001.
[14] Tadashi Nakano, Tatsuya Suda, Takako Koujin, Tokuko Haraguchi, and Yasushi Hiraoka, “Molecular Communication Through Gap Junction Channels: System De- sign, Experiments and Modeling,” in Bio-Inspired Models of Network, Information and Computing Systems, (BIONETICS ’07). 2nd International Conference on, Dec. 2007, pp. 139–146.
36
[15] R. M. Dudley, Real Analysis and Probability, Cambridge University Press, 2nd edition, Aug. 2002.
[16] James O. Berger, Statistical Decision Theory and Bayesian Analysis, Springer, 2nd edition, 1985.
[17] Baris Atakan and Ozgur B. Akan, “On channel capacity and error compensation in molecular communication,” in Transactions on Computational Systems Biology, pp. 59–80. Springer-Verlag, 2008.
[18] Raymond W. Yeung, A First Course in Information Theory (Information Technol- ogy: Transmission, Processing and Storage), Springer-Verlag New York, Inc., Se- caucus, NJ, USA, 2006.
[19] Samuel Karlin and Howard M. Taylor, A First Course in Stochastic Processes, Second Edition, Academic Press, 2 edition, Apr. 1975.
[20] Solomon Kullback, Information Theory and Statistics, Wiley, 1959.
[21] Michelle Effros, “Capacity definitions of general channels with receiver side in- formation,” in in Proceedings of International Symposium on Information Theory, 2007, pp. 921–925.
[22] Michelle Effros, Andrea J. Goldsmith, and Yifan Liang, “Generalizing capacity: new definitions and capacity theorems for composite channels,” IEEE Transactions on Information Theory, pp. 3069–3087, 2010.
[23] S. Verdu and Te S. Han, “A general formula for channel capacity,” Information Theory, IEEE Transactions on, vol. 40, pp. 1147–1157, 1994.
37
[24] I. Csisza ́r and J. Ko ̈rner, Information theory: coding theorems for discrete memory- less systems, Probability and mathematical statistics. Academic Press, 1981.
[25] R. Hill, A First Course in Coding Theory, Oxford Applied Mathematics and Com- puting Science Series. Oxford University Press, USA, 1990.
[26] A.Y. Khinchin, Mathematical Foundations of Information Theory, Dover Books on advanced mathematics. Dover Publications, 1957.
[27] K. V. Srinivas, Raviraj S. Adve, and Andrew W. Eckford, “Molecular communi- cation in fluid media: The additive inverse gaussian noise channel,” CoRR, vol. abs/1012.0081, 2010.
[28] Omar Fawzi, Patrick Hayden, Ivan Savov, Pranab Sen, and Mark M. Wilde, “Clas- sical communication over a quantum interference channel.,” IEEE Transactions on Information Theory, vol. 58, no. 6, pp. 3670–3691, 2012.
[29] Lukasz Debowski, “Mixing, ergodic, and nonergodic processes with rapidly grow- ing information between blocks,” CoRR, vol. abs/1103.3952, 2011.
[30] Yue Zhao, Chee Wei Tan, Amir Salman Avestimehr, Suhas N. Diggavi, and Gre- gory J. Pottie, “On the maximum achievable sum-rate with successive decoding in interference channels.,” IEEE Transactions on Information Theory, vol. 58, no. 6, pp. 3798–3820, 2012.
[31] Tim Holliday, Andrea Goldsmith, and et al., “Capacity of finite state markov chan- nels with general inputs,” 2003.
38
[32] N. Jacobson, Basic Algebra I: Second Edition, Dover Books on Mathematics Series. Dover Publications, 2009.
[33] R. A. Silverman, “On Binary Channels and their Cascades,” IRE Trans. on Inform. Theory, vol. 1, pp. 19–27, 1955.
[34] T. Holliday, A. Goldsmith, and P. Glynn, “Capacity of finite state channels based on lyapunov exponents of random matrices,” IEEE Trans. Inf. Theor., vol. 52, no. 8, pp. 3509–3532, Aug. 2006.
[35] S. Shamai and R. Laroia, “The intersymbol interference channel: lower bounds on capacity and channel precoding loss,” Information Theory, IEEE Transactions on, vol. 42, no. 5, pp. 1388–1404, Sept. 1996.
[36] Daniela Tuninetti, “K-user interference channels: General outer bound and sum- capacity for certain gaussian channels,” CoRR, vol. abs/1102.3235, 2011.
[37] R.P. Stanley and G.C. Rota, Enumerative Combinatorics:, Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2000.
[38] Imre Csisza ́r and Paul C. Shields, “Information theory and statistics: a tutorial,” Commun. Inf. Theory, vol. 1, no. 4, pp. 417–528, Dec. 2004.
[39] John Proakis, Digital Communications, McGraw-Hill Science/Engineering/Math, 4 edition, Aug. 2000.
[40] Shu Lin and Daniel J. Costello, Error Control Coding, Second Edition, Prentice- Hall, Inc., Upper Saddle River, NJ, USA, 2004.
39
[41] J. MacLaren Walsh and S. Weber, “Capacity region of the permutation channel,”
Communication, Control, and Computing, 2008 46th Annual Allerton Conference on, pp. 642–652, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63519-
dc.description.abstractWe consider a very general setup where channels are assumed to be an arbitrary conditional distribution. For such channels, we conduct capacity analysis, derive various performance measures in terms of achievable and asymptotically achievable rate, and discuss the application principles. Besides capacity analysis, we consider a specific type of systems called molecular communication systems and take it as an application example of our theorems.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:13:31Z (GMT). No. of bitstreams: 1
ntu-101-R99942101-1.pdf: 372622 bytes, checksum: 1b9512e413528a9ef0931daf9a1e929c (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsContents
1 Introduction .................................... 1
2 SystemStructure.................................. 4 2.1 MessageSource............................... 4 2.2 Encoder................................... 4 2.3 Channel................................... 5 2.4 Decoder................................... 7
3 Theorems and Applications for Maximum Achievable Transmission Rate . . . . 9
3.1 Motivation.................................. 9
3.2 TheTheorems................................ 9
3.3 Discussions and Applications of Theorem 2 and Theorem 3 . . . . . . . 19
3.3.1 TheNon-ConstructiveNature ................... 19
3.3.2 The Di↵erence Between Achievable and Asymptotically Achiev- ableRate .............................. 19
3.3.3 Application Principle of Theorem 2 and Theorem 3 and Variations 21
4 CodingTheoremsfor✏-RobustCodebooks.................... 24
5 Theoretical and Practical Molecular Communication Channels . . . . . . . . . 27
5.1 PreliminariesandTerminologies ...................... 27
5.2 Channel Properties in Molecular Communications . . . . . . . . . . . . . 29
5.3 TheoreticalAnalysisofMolecularChannels . . . . . . . . . . . . . . . . 31 5.3.1 Philosophy ............................. 31 5.3.2 DetailedAnalysis.......................... 31
6 ConclusionandFutureWorks........................... 34
References....................................... 36
dc.language.isozh-TW
dc.subject通道容量zh_TW
dc.subjectchannel capacityen
dc.title刻劃廣義通道的最大可及速率及其應用於分子通訊zh_TW
dc.titleA Characterization of Maximum Achievable Rate for General Channels with an Application toward Molecular Communicationsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳光禎,李佳翰
dc.subject.keyword通道容量,zh_TW
dc.subject.keywordchannel capacity,en
dc.relation.page40
dc.rights.note有償授權
dc.date.accepted2012-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
363.89 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved