請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63505完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林榮信 | |
| dc.contributor.author | Che-Chia Chang | en |
| dc.contributor.author | 張哲嘉 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:46:04Z | - |
| dc.date.available | 2014-09-19 | |
| dc.date.copyright | 2012-09-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-20 | |
| dc.identifier.citation | Reference
1. Herbst, R. S.; Heymach, J. V.; Lippman, S. M., Lung cancer. The New England journal of medicine 2008, 359 (13), 1367-80. 2. Ciardiello, F.; Tortora, G., EGFR antagonists in cancer treatment. The New England journal of medicine 2008, 358 (11), 1160-74. 3. Hirsch, F. R.; Varella-Garcia, M.; Bunn, P. A., Jr.; Di Maria, M. V.; Veve, R.; Bremmes, R. M.; Baron, A. E.; Zeng, C.; Franklin, W. A., Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2003, 21 (20), 3798-807. 4. Muhsin, M.; Graham, J.; Kirkpatrick, P., Gefitinib. Nature reviews. Drug discovery 2003, 2 (7), 515-6. 5. (a) Lynch, T. J.; Bell, D. W.; Sordella, R.; Gurubhagavatula, S.; Okimoto, R. A.; Brannigan, B. W.; Harris, P. L.; Haserlat, S. M.; Supko, J. G.; Haluska, F. G.; Louis, D. N.; Christiani, D. C.; Settleman, J.; Haber, D. A., Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. The New England journal of medicine 2004, 350 (21), 2129-39; (b) Paez, J. G.; Janne, P. A.; Lee, J. C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F. J.; Lindeman, N.; Boggon, T. J.; Naoki, K.; Sasaki, H.; Fujii, Y.; Eck, M. J.; Sellers, W. R.; Johnson, B. E.; Meyerson, M., EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004, 304 (5676), 1497-500; (c) Sasaki, H.; Endo, K.; Takada, M.; Kawahara, M.; Kitahara, N.; Tanaka, H.; Okumura, M.; Matsumura, A.; Iuchi, K.; Kawaguchi, T.; Yukiue, H.; Kobayashi, Y.; Yano, M.; Fujii, Y., L858R EGFR mutation status correlated with clinico-pathological features of Japanese lung cancer. Lung Cancer 2006, 54 (1), 103-8. 6. Wermuth, G.; Ganellin, C. R.; Lindberg, P.; Mitscher, L. A., Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998). Pure Appl Chem 1998, 70 (5), 1129-1143. 7. Wolber, G.; Langer, T., LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. Journal of chemical information and modeling 2005, 45 (1), 160-9. 8. Chiang, Y. K.; Kuo, C. C.; Wu, Y. S.; Chen, C. T.; Coumar, M. S.; Wu, J. S.; Hsieh, H. P.; Chang, C. Y.; Jseng, H. Y.; Wu, M. H.; Leou, J. S.; Song, J. S.; Chang, J. Y.; Lyu, P. C.; Chao, Y. S.; Wu, S. Y., Generation of Ligand-Based Pharmacophore Model and Virtual Screening for Identification of Novel Tubulin Inhibitors with Potent Anticancer Activity. J Med Chem 2009, 52 (14), 4221-4233. 9. Dong, X. L.; Ebalunode, J. O.; Yang, S. Y.; Zheng, W. F., Receptor-Based Pharmacophore and Pharmacophore Key Descriptors forVirtual Screening and QSAR Modeling. Curr Comput-Aid Drug 2011, 7 (3), 181-189. 10. Datta, S.; Grant, D. J., Crystal structures of drugs: advances in determination, prediction and engineering. Nature reviews. Drug discovery 2004, 3 (1), 42-57. 11. (a) Dixon, S. L.; Smondyrev, A. M.; Knoll, E. H.; Rao, S. N.; Shaw, D. E.; Friesner, R. A., PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aid Mol Des 2006, 20 (10-11), 647-671; (b) Dixon, S. L.; Smondyrev, A. M.; Rao, S. N., PHASE: A novel approach to pharmacophore modeling and 3D database searching. Chem Biol Drug Des 2006, 67 (5), 370-372. 12. Chen, I. J.; Foloppe, N., Conformational sampling of druglike molecules with MOE and catalyst: Implications for pharmacophore modeling and virtual screening. Journal of chemical information and modeling 2008, 48 (9), 1773-1791. 13. Guner, O.; Clement, O.; Kurogi, Y., Pharmacophore modeling and three dimensional database searching for drug design using catalyst: Recent advances. Curr Med Chem 2004, 11 (22), 2991-3005. 14. (a) Wolber, G.; Langer, T., LigandScout: Interactive automated pharmacophore model generation from ligand-target complexes. Abstr Pap Am Chem S 2005, 229, U611-U611; (b) Wolber, G.; Langer, T., LigandScout: 3-d pharmacophores derived from protein-bound Ligands and their use as virtual screening filters. Journal of chemical information and modeling 2005, 45 (1), 160-169. 15. Wolber, G.; Seidel, T.; Bendix, F.; Langer, T., Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov Today 2008, 13 (1-2), 23-29. 16. Ewing, T. J.; Makino, S.; Skillman, A. G.; Kuntz, I. D., DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 2001, 15 (5), 411-28. 17. Subramanian, G.; Paterlini, M. G.; Larson, D. L.; Portoghese, P. S.; Ferguson, D. M., Conformational analysis and automated receptor docking of selective arylacetamide-based kappa-opioid agonists. J Med Chem 1998, 41 (24), 4777-89. 18. McMartin, C.; Bohacek, R. S., QXP: Powerful, rapid computer algorithms for structure-based drug design. J Comput Aid Mol Des 1997, 11 (4), 333-344. 19. Abagyan, R.; Totrov, M.; Kuznetsov, D., Icm - a New Method for Protein Modeling and Design - Applications to Docking and Structure Prediction from the Distorted Native Conformation. J Comput Chem 1994, 15 (5), 488-506. 20. Claussen, H.; Buning, C.; Rarey, M.; Lengauer, T., FlexE: efficient molecular docking considering protein structure variations. J Mol Biol 2001,308 (2), 377-95. 21. McGann, M., FRED pose prediction and virtual screening accuracy. Journal of chemical information and modeling 2011, 51 (3), 578-96. 22. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R., Development and validation of a genetic algorithm for flexible docking. J Mol Biol 1997, 267 (3), 727-48. 23. Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S., Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004, 47 (7), 1739-49. 24. Venkatachalam, C. M.; Jiang, X.; Oldfield, T.; Waldman, M., LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model 2003, 21 (4), 289-307. 25. Lyne, P. D., Structure-based virtual screening: an overview. Drug Discov Today 2002, 7 (20), 1047-1055. 26. (a) Kuntz, I. D., Structure-based strategies for drug design and discovery. Science 1992, 257 (5073), 1078-82; (b) Lyne, P. D., Structure-based virtual screening: an overview. Drug Discov Today 2002, 7 (20), 1047-55. 27. (a) Schevitz, R. W.; Bach, N. J.; Carlson, D. G.; Chirgadze, N. Y.; Clawson, D. K.; Dillard, R. D.; Draheim, S. E.; Hartley, L. W.; Jones, N. D.; Mihelich, E. D.; et al., Structure-based design of the first potent and selective inhibitor of human non-pancreatic secretory phospholipase A2. Nature structural biology 1995, 2 (6), 458-65; (b) Shoichet, B. K.; Stroud, R. M.; Santi, D. V.; Kuntz, I. D.; Perry, K. M., Structure-Based Discovery of Inhibitors of Thymidylate Synthase. Science 1993, 259 (5100), 1445-1450; (c) Schevitz, R. W.; Bach, N. J.; Carlson, D. G.; Chirgadze, N. Y.; Clawson, D. K.; Dillard, R. D.; Draheim, S. E.; Hartley, L. W.; Jones, N. D.; Mihelich, E. D.; Olkowski, J. L.; Snyder, D. W.; Sommers, C.; Wery, J. P., Structure-Based Design of the First Potent and Selective Inhibitor of Human Nonpancreatic Secretory Phospholipase-a(2). Nature structural biology 1995, 2 (6), 458-465. 28. Wang, J.; Kang, X.; Kuntz, I. D.; Kollman, P. A., Hierarchical database screenings for HIV-1 reverse transcriptase using a pharmacophore model, rigid docking, solvation docking, and MM-PB/SA. J Med Chem 2005, 48 (7), 2432-44. 29. (a) Osterberg, F.; Morris, G. M.; Sanner, M. F.; Olson, A. J.; Goodsell, D. S., Automated docking to multiple target structures: Incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins-Structure Function and Genetics 2002, 46 (1), 34-40; (b) Park, H.; Lee, J.; Lee, S., Critical assessment of the automated AutoDock as a new docking tool for virtual screening. Proteins 2006, 65 (3), 549-554; (c) Morris, G. M.; Huey, R.;Lindstrom, W.; Li, C. L.; Zhao, Y.; Hart, W. E.; Belew, R.; Sanner, M. F.; Goodsell, D. S.; Olson, W. J., Recent advances in autodock: Search, representation and scoring. Abstr Pap Am Chem S 2004, 228, U508-U508. 30. Huey, R.; Morris, G. M.; Olson, A. J.; Goodsell, D. S., A semiempirical free energy force field with charge-based desolvation. J Comput Chem 2007, 28 (6), 1145-1152. 31. Gasteiger, J.; Marsili, M., Iterative Partial Equalization of Orbital Electronegativity - a Rapid Access to Atomic Charges. Tetrahedron 1980, 36 (22), 3219-3228. 32. Wang, J. C.; Lin, J. H.; Chen, C. M.; Perryman, A. L.; Olson, A. J., Robust Scoring Functions for Protein-Ligand Interactions with Quantum Chemical Charge Models. Journal of chemical information and modeling 2011, 51 (10), 2528-2537. 33. Roche, O.; Kiyama, R.; Brooks, C. L., 3rd, Ligand-protein database: linking protein-ligand complex structures to binding data. J Med Chem 2001, 44 (22), 3592-8. 34. Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.; Ghio, C.; Alagona, G.; Profeta, S.; Weiner, P., A New Force-Field for Molecular Mechanical Simulation of Nucleic-Acids and Proteins. Journal of the American Chemical Society 1984, 106 (3), 765-784. 35. (a) Tetko, I. V.; Gasteiger, J.; Todeschini, R.; Mauri, A.; Livingstone, D.; Ertl, P.; Palyulin, V. A.; Radchenko, E. V.; Zefirov, N. S.; Makarenko, A. S.; Tanchuk, V. Y.; Prokopenko, V. V., Virtual computational chemistry laboratory--design and description. J Comput Aided Mol Des 2005, 19 (6), 453-63; (b) Tetko, I. V., Computing chemistry on the web. Drug Discov Today 2005, 10 (22), 1497-500; (c) Tetko, I. V.; Tanchuk, V. Y., Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. J Chem Inf Comput Sci 2002, 42 (5), 1136-45; (d) Tetko, I. V.; Tanchuk, V. Y.; Villa, A. E. P., Prediction of n-octanol/water partition coefficients from PHYSPROP database using artificial neural networks and E-state indices. J Chem Inf Comp Sci 2001, 41 (5), 1407-1421. 36. AQUASOL database http://www.pharmacy.arizona.edu/outreach/aquasol/index.html. 37. PHYSPROP database. http://www.srcinc.com/what--‐we--‐do/product.aspx?id=133. 38. (a) Abad-Zapatero, C.; Metz, J. T., Ligand efficiency indices as guideposts for drug discovery. Drug Discov Today 2005, 10 (7), 464-469; (b) Hopkins, A. L.; Groom, C. R.; Alex, A., Ligand efficiency: a useful metric for lead selection. Drug Discov Today 2004, 9 (10), 430-431. 39. Garcia-Sosa, A. T.; Hetenyi, C.; Maran, U., Drug Efficiency Indices for Improvement of Molecular Docking Scoring Functions. J Comput Chem 2010, 31 (1), 174-184. 40. Lakowicz.J.R., Principes of Flurescence Spectroscopy. 1999.41. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E., The Protein Data Bank. Nucleic Acids Res 2000, 28 (1), 235-42. 42. Stamos, J.; Sliwkowski, M. X.; Eigenbrot, C., Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. The Journal of biological chemistry 2002, 277 (48), 46265-72. 43. Wood, E. R.; Truesdale, A. T.; McDonald, O. B.; Yuan, D.; Hassell, A.; Dickerson, S. H.; Ellis, B.; Pennisi, C.; Horne, E.; Lackey, K.; Alligood, K. J.; Rusnak, D. W.; Gilmer, T. M.; Shewchuk, L., A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer research 2004, 64 (18), 6652-9. 44. Zhang, X.; Gureasko, J.; Shen, K.; Cole, P. A.; Kuriyan, J., An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 2006, 125 (6), 1137-49. 45. Blair, J. A.; Rauh, D.; Kung, C.; Yun, C. H.; Fan, Q. W.; Rode, H.; Zhang, C.; Eck, M. J.; Weiss, W. A.; Shokat, K. M., Structure-guided development of affinity probes for tyrosine kinases using chemical genetics. Nat Chem Biol 2007, 3 (4), 229-238. 46. Yun, C. H.; Boggon, T. J.; Li, Y. Q.; Woo, M. S.; Greulich, H.; Meyerson, M.; Eck, M. J., Structures of lung cancer-derived EGFR mutants and inhibitor complexes: Mechanism of activation and insights into differential inhibitor sensitivity. Cancer cell 2007, 11 (3), 217-227. 47. Yun, C. H.; Mengwasser, K. E.; Toms, A. V.; Woo, M. S.; Greulich, H.; Wong, K. K.; Meyerson, M.; Eck, M. J., The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proceedings of the National Academy of Sciences of the United States of America 2008, 105 (6), 2070-2075. 48. Zhou, W. J.; Ercan, D.; Chen, L.; Yun, C. H.; Li, D. N.; Capelletti, M.; Cortot, A. B.; Chirieac, L.; Iacob, R. E.; Padera, R.; Engen, J. R.; Wong, K. K.; Eck, M. J.; Gray, N. S.; Janne, P. A., Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature 2009, 462 (7276), 1070-1074. 49. Brewer, M. R.; Choi, S. H.; Alvarado, D.; Moravcevic, K.; Pozzi, A.; Lemmon, M. A.; Carpenter, G., The Juxtamembrane Region of the EGF Receptor Functions as an Activation Domain. Mol Cell 2009, 34 (6), 641-651. 50. Jura, N.; Endres, N. F.; Engel, K.; Deindl, S.; Das, R.; Lamers, M. H.; Wemmer, D. E.; Zhang, X. W.; Kuriyan, J., Mechanism for Activation of the EGF Receptor Catalytic Domain by the Juxtamembrane Segment. Cell 2009, 137 (7), 1293-1307. 51. Klein, D. E.; Stayrook, S. E.; Shi, F. M.; Narayan, K.; Lemmon, M. A., Structural basis for EGFR ligand sequestration by Argos. Nature 2008, 453 (7199), 1271-U79.52. Mineev, K. S.; Bocharov, E. V.; Pustovalova, Y. E.; Bocharova, O. V.; Chupin, V. V.; Arseniev, A. S., Spatial Structure of the Transmembrane Domain Heterodimer of ErbB1 and ErbB2 Receptor Tyrosine Kinases. J Mol Biol 2010, 400 (2), 231-243. 53. Alvarado, D.; Klein, D. E.; Lemmon, M. A., Structural Basis for Negative Cooperativity in Growth Factor Binding to an EGF Receptor. Cell 2010, 142 (4), 568-579. 54. Yoshikawa, S.; Kukimoto-Niino, M.; Parker, L.; Handa, N.; Terada, T.; Fujimoto, T.; Terazawa, Y.; Wakiyama, M.; Sato, M.; Sano, S.; Kobayashi, T.; Tanaka, T.; Chen, L.; Liu, Z. J.; Wang, B. C.; Shirouzu, M.; Kawa, S.; Semba, K.; Yamamoto, T.; Yokoyama, S., Structural basis for the altered drug sensitivities of non-small cell lung cancer-associated mutants of human epidermal growth factor receptor. Oncogene 2012. 55. LigandScout 3.0. http://www.inteligand.com/ligandscout/. 56. Catalyst. Accelrys, Accelrys Inc. http://www.accelrys.com. 57. DiscoveryStudio 2.5, Accelrys, Accelrys Inc. http://accelrys.com/events/webinars/discovery--‐studio--‐25/index.html. 58. Irwin, J. J.; Sterling, T.; Mysinger, M. M.; Bolstad, E. S.; Coleman, R. G., ZINC: A Free Tool to Discover Chemistry for Biology. Journal of chemical information and modeling 2012. 59. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews 2001, 46 (1-3), 3-26. 60. Li, J.; Ehlers, T.; Sutter, J.; Varma-O'brien, S.; Kirchmair, J., CAESAR: a new conformer generation algorithm based on recursive buildup and local rotational symmetry consideration. Journal of chemical information and modeling 2007, 47 (5), 1923-32. 61. Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J., AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J Comput Chem 2009, 30 (16), 2785-2791. 62. O'Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R., Open Babel: An open chemical toolbox. J Cheminform 2011, 3, 33. 63. Gaussian 03, R. C., Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A, Gaussian03. 2004. 64. (a) Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A., A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges - the Resp Model. J Phys Chem-Us 1993, 97 (40), 10269-10280; (b) Zhang, W.; Hou, T. J.; Qiao, X. B.; Xu, X. J., Parameters for the generalized born model consistent with RESP atomic partial charge assignment protocol. J Phys Chem B 2003, 107 (34), 9071-9078. 65. David A. Case, T. A. D., T. E. Cheatham, Carlos L. Simmerling, J. Wang, Robert E. Duke, Ray Luo, Michael Crowley, Ross C. Walker, W. Zhang, K. M. Merz, B. Wang, S. Hayik, Adrian Roitberg, Gustavo Seabra, I. Kolossvary, K. F. Wong, F. Paesani, J. Vanicek, X. Wu, Scott R. Brozell, Tom Steinbrecher, Holger Gohlke, L. Yang, C. Tan, J. Mongan, V. Hornak, G. Cui, D. H. Mathews, M. G. Seetin, C. Sagui, V. Babin, Peter A. Kollman, AMBER11. Amber 11. University of California, San Francisco. 66. Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A., Development and testing of a general amber force field. J Comput Chem 2004, 25 (9), 1157-74. 67. Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C., Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 2006, 65 (3), 712-25. 68. (a) Lucasius, C. B.; Kateman, G., Understanding and Using Genetic Algorithms .1. Concepts, Properties and Context. Chemometr Intell Lab 1993, 19 (1), 1-33; (b) Lucasius, C. B.; Kateman, G., Understanding and Using Genetic Algorithms .2. Representation, Configuration and Hybridization. Chemometr Intell Lab 1994, 25 (2), 99-145. 69. Xiang, Z.; Soto, C. S.; Honig, B., Evaluating conformational free energies: the colony energy and its application to the problem of loop prediction. Proceedings of the National Academy of Sciences of the United States of America 2002, 99 (11), 7432-7. 70. (a) Dolinsky, T. J.; Nielsen, J. E.; McCammon, J. A.; Baker, N. A., PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 2004, 32, W665-W667; (b) Dolinsky, T. J.; Czodrowski, P.; Li, H.; Nielsen, J. E.; Jensen, J. H.; Klebe, G.; Baker, N. A., PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 2007,35, W522-W525. 71. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L., Comparison of Simple Potential Functions for Simulating Liquid Water. J Chem Phys 1983, 79 (2), 926-935. 72. Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C., Numerical-Integration of Cartesian Equations of Motion of a System with Constraints - Molecular-Dynamics of N-Alkanes. J Comput Phys 1977, 23 (3), 327-341. 73. (a) Darden, T.; York, D.; Pedersen, L., Particle Mesh Ewald - an N.Log(N) Method for Ewald Sums in Large Systems. J Chem Phys 1993, 98 (12), 10089-10092; (b) Petersen, H. G., Accuracy and Efficiency of the Particle Mesh Ewald Method. J Chem Phys 1995, 103 (9), 3668-3679; (c) Cheatham, T. E.; Miller, J. L.; Fox, T.; Darden, T. A.; Kollman, P. A., Molecular-Dynamics Simulations on Solvated Biomolecular Systems - the Particle Mesh Ewald Method Leads to Stable Trajectories of DNA, Rna, and Proteins. Journal of the American Chemical Society 1995, 117 (14), 4193-4194. 74. Karaman, M. W.; Herrgard, S.; Treiber, D. K.; Gallant, P.; Atteridge, C. E.; Campbell, B. T.; Chan, K. W.; Ciceri, P.; Davis, M. I.; Edeen, P. T.; Faraoni, R.; Floyd, M.; Hunt, J. P.; Lockhart, D. J.; Milanov, Z. V.; Morrison, M. J.; Pallares, G.; Patel, H. K.; Pritchard, S.; Wodicka, L. M.; Zarrinkar, P. P., A quantitative analysis of kinase inhibitor selectivity. Nature biotechnology 2008, 26 (1), 127-32. 75. Wheeler, D. L.; Dunn, E. F.; Harari, P. M., Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nature reviews. Clinical oncology 2010, 7 (9), 493-507. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63505 | - |
| dc.description.abstract | 肺癌的死亡率占所有癌症死亡率中的第一位,以非小細胞肺癌為主,
因為發現不易,且發現時已接近晚期,治療不易,傳統上是以不具選擇性 的癌症化療藥物來治療,但副作用大,治療的成效也不理想。表皮生長因 子受體在很多固癌裡有過度表現的情形,而在非小細胞肺癌的病人中也有 40∼80﹪會過度表現,因此被視為一藥物設計的重要標的。在2003 年, 美國的FDA 通過了第一個以表皮細胞生長因子受體蛋白酪氨酸激酶抑制 劑,可對體細胞的突變(取代白氨酸為精氨酸)L858R,在亞洲地區病人, 女性,不吸癌者有顯著良好的治療結果,然而此類藥物在施予幾個月後病 人皆會發展出抗藥性。鑒於新型藥物開發的迫切性,我們的目標是運用高 計算效率的藥效基團比對,對六百萬化合物資料庫進行篩選,以尋找不同 化學骨架的L858R 抑制劑。 | zh_TW |
| dc.description.abstract | Lung cancer is the first mortality rate of all carcinoma. The major part is Non--‐Small--‐Cell Lung Cancer(NSC--‐LC). The curative effect is not ideal for not easily diagnosis and almost in the late state when the tumor
was discovered. Pharmacotherapy of lung cancer traditionally is by chemotherapy, but the adverse effect is serious and the curative effect is not ideal. Epidermal growth factor receptor (EGFR), is over--‐expresed in many solid tumor including the non--‐small--‐cell lung cancer (NSC--‐LC) (40~80%). In 2003, the first epidermal growth factor receptor tyrosine kinase inhibitor (gefitinib) was approved by food and drug administration (FDA) in America. Dramatic therapeutic effect was discovered in Asia patient, non--‐smoker and women and is highly related to EGFR L858R (substitution of leucine 858 to arginine). However, drug resistance is occurred in several months after administration of this kind ofdrug. For the imperious demand of the new drug development, our goal is to discovery different scaffold EGFR L858R inhibitor (other than 4-anilinoquinazoline of gefitinib) by using the high performance pharmacophore based virtual screening to six million chemical database. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:46:04Z (GMT). No. of bitstreams: 1 ntu-101-R97423020-1.pdf: 3911403 bytes, checksum: 045d57b7f3efafa9b290782d8d15fa2d (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Table of Contents
口試委員會審定書………………………………………….....……………………….v 誌謝……………………………………………………………..……………………....vi Figure list……………………………………………………………………………..vii Table list…………………………………………………………………………….…ix 中文摘要…………………………………………………………...………………...…xi Abstract…………………………………………………………….…………………xii Chapter 1: Introduction 1.1 The Role of EGFR in Non--‐Small Cell Lung Cancer……..1 1.2 Pharmacotherapy of Non--‐Small Cell Lung Cancer……….3 1.3 Pharmacophore Method in Drug Discovery……………..……5 1.4 Docking Theory and Virtual Screening..................7 1.5 Autodock with Robust Scoring Function……………………11 1.6 Solubility Prediction…………………………………………13 1.7 Ligand Efficiency………………………………………………14 1.8 Ligand Binding Assay……………………………………………15 Chapter 2: Material and Methods 2.1 Pharmacophore Method …………………………………………………………..19 2.1.1 Receptor--‐based pharmacophore……………………………………..19 2.1.2 Generation of three--‐dimensional chemical database………………...…22 2.2 AutoDock with Robust Scoring Function 2.2.1 Preparation of ligand files for docking……………………………..……....…23 2.2.2 Preparation of receptor files for docking…………………………………......23 2.2.3 Preparation of grid parameter files………………………………………….....24 2.2.4 Preparation of docking parameter files………………………………….....….25 2.3 Prediction of Solubility of Candidates from Virtual Screening………...….26 2.4 Molecular Dynamic Simulations 2.4.1 Preparation of coordinate files and topology files…………………......…..27 2.4.2 Minimization…………………………………………………………………….…..28 2.4.3 Equilibration…………………………………………………………………….…...29 2.4.4 Productionrun………………………………………………………………………..30 2.5 Fluorescence Assay………........................…………………………………….31 Chapter 3: Results and Discussion 3.1 Receptor--‐Based Pharmacophore……………………….…………………….32 3.1.1 Pharmacophore from 2ITZ (EGFR L858R/Gefitinib)…….........……....…….32 3.1.2 Pharmacophore from 2ITT (EGFR L858R/AEE‐788)……....…….......…..…34 3.1.3 Pharmacophore from 2ITU (EGFR L858R/AFN-741)…….........……..…….35 3.1.4 Pharmacophore from 2ITV (EGFR L858R/AMP‐PNP)……....……..….........37 3.2 Common Candidate Set from Pharmacophore-Based Screening….....….43 3.2.1 The result of screened candidate and pharmacophore modification…………………………………………………………………….......38 3.2.2 The result of candidate intersection………………………………….......……47 3.3 Rescore and Re--‐Dock with AutoDock4 Robust Scoring Function……..48 3.4 Validation of AutoDock Results by Molecular Dynamic Simulation.........66 3.5 Results of Fluorescence Assay……………………………………….....……….74 Chapter 4: Discussion and Conclusion…………………………………………77 | |
| dc.language.iso | en | |
| dc.subject | 虛擬篩選 | zh_TW |
| dc.subject | 藥效基團 | zh_TW |
| dc.subject | 非小細胞肺癌 | zh_TW |
| dc.subject | 強固評分函數 | zh_TW |
| dc.subject | 分子動力學 | zh_TW |
| dc.subject | Virtual Screening | en |
| dc.subject | Pharmacophore | en |
| dc.subject | Non-small cell lung cancer | en |
| dc.subject | Molecular dynamic simulation | en |
| dc.subject | Robust scoring function | en |
| dc.title | 運用藥效基團集虛擬篩選以探索表皮生長因子受體抑制劑之新化學結構 | zh_TW |
| dc.title | Virtual Screening of Large Libraries with Pharmacophore Ensemble to Identify New Chemical Skeletons for Inhibitors of L858R Mutant Epidermal Growth Factor Receptor for Treating Non-Small Cell Lung Cancers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 顧記華,孫英傑,許世宜 | |
| dc.subject.keyword | 藥效基團,非小細胞肺癌,虛擬篩選,強固評分函數,分子動力學, | zh_TW |
| dc.subject.keyword | Pharmacophore,Non-small cell lung cancer,Virtual Screening,Robust scoring function,Molecular dynamic simulation, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-20 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
