Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63491
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邵耀華
dc.contributor.authorJun-Yan Jiangen
dc.contributor.author江俊諺zh_TW
dc.date.accessioned2021-06-16T16:45:13Z-
dc.date.available2017-08-21
dc.date.copyright2012-08-21
dc.date.issued2012
dc.date.submitted2012-08-21
dc.identifier.citation[1] Brown, M.S., McNitt-Gray, M.F., Goldin, J.G., Suh, R.D., Sayre, J.W., Aberle, D.R., 2001. “Patient-specific models for lung nodule detection and surveillance in CT images.” IEEE Transactions on Medical Imaging 20 (12), 1242–1250.
[2] Ko, J.P., Betke, M., 2001. Chest CT: “automated nodule detection and assessment of change over time – preliminary experience.” Radiology 218 (1), 267–273.
[3] Shen, H., Fan, L., Qian, J., Odry, B.L., Novak, C.L., Naidich, D.P., 2002. Real-time and automatic matching of pulmonary nodules in follow-up multi-slice CT studies. In: Proceedings of the International Conference on Diagonostic Image and Analysis. Shanghai, China, pp. 101–106.
[4] Chang, S., Emoto, H., Metaxas, D.N., Axel, L., 2004. Pulmonary micronodule detection from 3D chest CT. In: Barillot, C., Haynor, D.R., Hellier, P. (Eds.), Medical Image Computing and Computer- Assisted Intervention – MICCAI 2004: Seventh International Conference, Saint-Malo, France, Proceedings, Part I, LNCS 3216. Springer- Verlag, Heidelberg, pp. 821–828.
[5] Farag, A., El-Baz, A., Gimelfarb, G.G., Falk, R., Hushek, S.G., 2004. Automatic detection and recognition of lung abnormalities in helical CT images using deformable templates. In: Barillot, C., Haynor, D.R., Hellier, P. (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004: Seventh International Conference, Saint-Malo, France, Proceedings, Part I, LNCS 3216. Springer-Verlag, Heidelberg, pp. 856–864.
[6] Mullally, W., Betke, M., Wang, J., Ko, J., 2004. “Segmentation of nodules on chest computed tomography for growth assessment. ”Medical Physics 31 (4), 839–848.
[7] Kuhnigk, J.-M., Dicken, V., Bornemann, L., Wormanns, D., Krass, S., Peitgen, H.-O., 2004. Fast automated segmentation and reproducible volumetry of pulmonary metastases in CT scans for therapy monitoring. In: Barillot, C., Haynor, D.R., Hellier, P. (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004: Seventh International Conference, Saint-Malo, France, Proceedings, Part I, LNCS 3216. Springer-Verlag, Heidelberg, pp. 933–941.
[8] Okada, K., Comaniciu, D., Krishnan, A., 2004. Robust 3D segmentation of pulmonary nodules in multislice CT images. In: Barillot, C., Haynor, D.R., Hellier, P. (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004: Seventh International Conference, Saint-Malo, France, Proceedings, Part I, LNCS 3216. Springer-Verlag, Heidelberg, pp. 881–889.
[9] Gierga, D.P., Chen, G.T.Y., Kung, J.H., Betke, M., Lombardi, J., Willett, C.G., 2004. “Quantification of respiration-induced abdominal tumor motion and the impact on IMRT dose distributions.” International Journal on Radiation Oncology – Biology – Physics 58 (5), 1584–1595.
[10] Rietzel, E., Chen, G.T., Doppke, K.P., Pan, T., Choi, N.C., Willett, C.G., 2003. “4D computed tomography for treatment planning.” International Journal of Radiation Oncology Biology Physics 57 (2), S232–S233.
[11] Adler Jr., J.R., Murphy, M.J., Chang, S.D., Hancock, S.L., 1999. Image guided robotic radio surgery. Neurosurgery 44 (6), 1299–1306.
[12] R. A. Maxfield, “New and emerging minimally invasive techniques for lung volume reduction,” Chest, vol. 125, no. 2, pp. 777–783, 2004.
[13] Golland, P., Kikinis, R., Halle, M., Umans, C., Grimson, W.E.L., Shenton, M.E., Richolt, J.A., 1999. “AnatomyBrowser: a novel approach to visualization and integration of medical information. ”International Journal of Computer Assisted Surgery 4, 129–143.
[14] Kikinis, R., Shenton, M.E., Iosifescu, D.V., McCarley, R.W., Saiviroonporn, P., Hokama, H.H., Robatino, A., Metcalf, D., Wible, C.G., Portas, C.M., Donnino, R., Jolesz, F.A., 1996. “A digital brain atlas for surgical planning, model driven segmentation and teaching.” IEEE Transactions on Visualization and Computer Graphics 2 (3), 232–241.
[15] K. Hayashi, A. Aziz, K. Ashizawa, H. Hayashi, K. Nagaoki, and H. Otsuji, “Radiographic and CT appearances of the major fissures,” Radio Graphics 21, pp. 861–874, 2001.
[16] X. Zhou : “Automatic segmentation and recognition of anatomical lung structures from high-resolution chest CT images.” Computerized Medical Imaging and Graphics 30 (2006) 299–313
[17] S. Hu, E. A. Hoffman and J. M. Reinhardt: “Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images,”IEEE Trans Med Imaging 20(6):490–498, 2001.
[18] Armato SG, Sensakovic WF: “Automated lung segmentation for thoracic CT: impact on computer-aided diagnosis.”Acad Radiol 11:1011–1021, 2004.
[19] Nunzio GD, Tommasi E: “Automatic Lung Segmentation in CT Images with Accurate Handling of the Hilar Region.” Journal of Digital Imaging, Vol 24, No 1 (February), 11-27, 2011.
[20] J. Wang, M. Betke, and J. P. Ko, “Pulmonary fissure segmentation on CT,” Med. Image Anal., vol. 10, no. 4, pp. 530–547, 2006.
[21] Li Zhang,“Atlas-Driven Lung Lobe Segmentation in Volumetric X-Ray CT Image,” IEEE Transactions on Medical Imaging, vol. 25, no. 1, January 2006.
[22] J. Pu, B. Zheng, J. K. Leader,F. Knollmann, C. Fuhrman, F. C. Sciurba, and D. Gur, “A computational geometry approach to automated pulmonary fissure segmentation in CT examinations,” IEEE Trans. Med. Imag., vol. 28, no. 5, pp. 710–719, May 2009.
[23] S. Ukil and J. M. Reinhardt, “Anatomy-guided lung lobe segmentation in x-ray CT images.,” IEEE Trans Med Imaging, vol. 28, no. 2, pp. 202–214, 2009.
[24] R. Wiemker T, T. Bulow: “Unsupervised extraction of the pulmonary interlobar fissures from high resolution thoracic CT data.” International Congress Series 1281, pp.1121–1126, 2005.
[25] S.-T. Chen, C.-Y. Huang, and C.-M. Chen, “Automatic Segmentation of Coronary Arteries based on Region Growing and Discrete Wavelet Transformation,” IEEE International Conference on Computing Measurement Control and Sensor Network (CMCSN-2012), pp.5-8, 2012.
[26] Shinsuke SAITA : “An Extraction Algorithm of Pulmonary Fissures from Multi-Slice CT Image.” Medical Imaging 2004
[27] Nunzio GD, Tommasi E: “Automatic Lung Segmentation in CT Images with Accurate Handling of the Hilar Region,”Journal of Digital Imaging, Vol 24, No 1 (February), 11-27, 2011.
[28] B. N. Raasch, E. W. Carsky, E. J. Lane, J. P. O’Callaghan, and E. R. Heitzman, “Radiographic anatomy of the interlobar fissures: A study of 100 specimens,” Am. J. Roentgenol., vol. 138, no. 6, pp. 1043–1049, 1982.
[29] A. Aziz, K. Ashizawa, K. Nagaoki, and K. Hayashi, “High resolution CT anatomy of the pulmonary fissures,”J. Thoracic Imag., vol. 19, no. 3, pp. 186–191, 2004.
[30] M. Gulsun, O. M. Ariyurek, R. B. Comert, and N. Karabulut, “Variability of the pulmonary oblique fissures presented by high-resolution computed tomography,” Surgical Radiologic Anatomy, vol. 28, no. 3, pp. 293–299, 2006.
[31] J. Pu, B. Zheng, J. K. Leader,F. Knollmann, C. Fuhrman, F. C. Sciurba, and D. Gur, “Pulmonary Lobe Segmentation in CT Examinations Using Implicit Surface Fitting,” IEEE Trans. Med. Imag., vol. 28, no. 12, pp. 710–719, December 2009
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63491-
dc.description.abstract肺葉分區不僅可以做為肺病良惡性診斷的輔助資訊,也可以用來評估肺部手術後的肺功能保存狀況,或者提供醫療教育等功能。雖然醫療專業人員可藉由形狀和位置的資訊找到肺葉的邊界,然而,胸腔的全肺CT掃描通常有數百張的切片影像,以人為手動的方式進行尋找肺裂並且描繪肺葉的分界,不僅耗時而且必須耗用大量人力,因此,藉由肺葉分割自動化能有效改善人為操作時間,間接提升醫療品質。
本研究演算法主要以解剖結構的形狀特徵為觀點,由肺區擷取逐步推展至肺裂搜尋。為排除非呼吸系統的器官,本研究採用波前擴張式三維區域成長演算法進行肺區擷取;接著,在左右肺分離的步驟,亦提出一種沿肺壁輪廓進行強迫分割的新演算法,此方法可有效排除左右肺交界處不屬於肺實質的組織,得到良好的分割效果;最後,考慮肺裂於空間中為板狀結構物的觀念,採用Wiemker所提出的板狀結構濾波器進行肺裂初步搜尋,再利用三維的 Neutrosophic (NS) 濾波器強化肺裂形態而得到更完整的肺裂分割。研究結果顯示,利用波前擴張式三維區域成長演算法的增長效益與肺壁輪廓進行左右肺分割的方法,我們得到良好的左右肺區擷取。基於這個良好的肺區分割,板狀結構濾波器與三維NS濾波器也順勢分割出有效的肺裂。
zh_TW
dc.description.abstractSegmentation of the pulmonary lobes is important to localize parenchyma disease inside the lungs and to quantify the distribution of a parenchyma disease. Since the proposed fissure segmentation system can provide a visualization of a patient’s upper and lower lungs, it also could be incorporated in teaching software for medical professionals. Although radiologists might be able to identify lobar boundaries on CT scans, manual delineation of over hundreds CT images is unthinkable in clinical routine. Therefore, computer-aided diagnosis (CAD) is strongly desired to assist radiologists in CT image interpretations.
This work proposed a fissure detection algorithm based on the physiological structure. Before the fissure detection, it is necessary to have a good lung region segmentation. Accordingly, we use 3D region growing to obtain a good lung region in the first step of the proposed algorithm. Next, we separate the lung region to right and left by following the lung wall. Finally, the fissure is segmented by using fissure filter and 3D neutrosophic (NS) filter. The experimental results show that we have proposed algorithm for fissure segmentation has good performance.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:45:13Z (GMT). No. of bitstreams: 1
ntu-101-R97543020-1.pdf: 3265803 bytes, checksum: 2a045756243499556e41a6f510ce02b6 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
英文摘要 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 肺葉及肺段解剖學簡介 1
1.2 電腦斷層掃描影像原理簡介 2
1.3 研究動機與目的 5
1.4 文獻探討 6
1.4.1 肺區擷取 6
1.4.2 肺裂搜尋 9
1.5 論文架構 11
第二章 材料與方法 12
2.1 初步肺區擷取 12
2.1.1 影像強度閥值設定 13
2.1.2 種子點選取 14
2.1.3 區域成長模式 14
2.2 左右肺分離 16
2.2.1 氣管重建 16
2.2.2 分割左右肺交界 17
2.3 肺裂搜尋 21
2.3.1 Wiemker filter偵測板狀結構物 21
2.3.2 三維Neutrosophic 濾波器消除非肺裂雜訊 25
第三章 結果與討論 28
3.1 三維區域成長法效能評估 28
3.2 左右肺分離結果與討論 29
3.3 肺裂搜尋結果 33
第四章 未來工作計劃 40
REFERENCE 41
dc.language.isozh-TW
dc.subject肺裂搜尋zh_TW
dc.subject肺裂搜尋zh_TW
dc.subject左右肺分離zh_TW
dc.subject三維區域成長zh_TW
dc.subject肺葉分區zh_TW
dc.subjectNS濾波器zh_TW
dc.subject肺葉分區zh_TW
dc.subject左右肺分離zh_TW
dc.subjectNS濾波器zh_TW
dc.subject三維區域成長zh_TW
dc.subjectLobe segmentationen
dc.subject3D region growingen
dc.subjectRight and left lung separationen
dc.subjectFissure Detectionen
dc.subjectNS filteren
dc.title以解剖結構形狀特徵為基礎之自動化肺區擷取及肺裂搜尋演算法zh_TW
dc.titleAutomatic Lung Segmentation and Fissure Detection Based on Anatomical Shape Characteristics in CT Imagesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.coadvisor陳中明
dc.contributor.oralexamcommittee張家歐
dc.subject.keyword肺葉分區,三維區域成長,左右肺分離,肺裂搜尋,NS濾波器,zh_TW
dc.subject.keywordLobe segmentation,3D region growing,Right and left lung separation,Fissure Detection,NS filter,en
dc.relation.page45
dc.rights.note有償授權
dc.date.accepted2012-08-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved