Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63479
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張耀乾(Yao-Chien Alex Chang)
dc.contributor.authorYi-Ai Kuoen
dc.contributor.author郭宜靄zh_TW
dc.date.accessioned2021-06-16T16:44:28Z-
dc.date.available2017-08-28
dc.date.copyright2012-08-28
dc.date.issued2012
dc.date.submitted2012-08-20
dc.identifier.citation王恆隆、鍾振德、葉開溫. 2003. 文心蘭花器發育過程中當代假球莖內碳水化合物與自由態胺基酸的變化. 中華農學會報 4:476-488.
李孟惠. 1998. 溫度、光度及肥料濃度對文心蘭花序發育之影響. 國立臺灣大學園藝學研究所碩士論文.
李昱輝. 2008. 文心蘭分級選別標準. 文心蘭生產作業手冊:3-6.
林瑞松、徐懷恩、賴淑芬. 1999. 硝酸態氮與銨態氮比例對文心蘭植物無機元素含量與開花之影響. 中國園藝 45:43-52.
徐懷恩. 1997. 不同光照、氮源肥料及花梗修剪對文心蘭開花之影響. 國立中興大學園藝學研究所碩士論文.
張允瓊. 1996. 溫度、光度及肥料濃度對文心蘭生長與開花之影響. 國立臺灣大學園藝學研究所碩士論文.
張采蘋. 2006. 產業分析. 文心蘭產業經營管理專輯. 行政院農業委員會. 台北:1-22.
陳筱薇. 2007. 環境因子對文心蘭光合作用之影響. 國立臺灣大學園藝學研究所碩士論文.
彭宗仁、劉滄棽、林幸助. 2006. 穩定同位素在農業及生態環境上之應用. 台灣農業研究 55:79-90.
彭穎君. 2008. 大白花蝴蝶蘭‘V3’對氮素之吸收、運移及利用. 國立臺灣大學園藝學研究所碩士論文.
雷欣怡. 2007. 蝴蝶蘭開花期礦物元素組成變化與肥料需求. 國立臺灣大學園藝學研究所碩士論文.
蔡佩芬. 2000. 溫度、光度、栽培介質及肥料濃度對文心蘭苗生育之影響. 國立臺灣大學園藝學研究所碩士論文.
行政院農業委員會. 2012. 農產貿易統計. 21 June 2012. <http://agrapp.coa.gov.tw/TS2/TS2Jsp/Index.jsp>.
Awasthi, O.P., E. Sharma, and L.M.S. Palni. 1995. Stemflow: A source of nutrients in some naturally growing epiphytic orchids of the Sikkim Himalaya. Ann. Bot. 75:5-11.
Barker, A.V. and H.A. Mills. 1980. Ammonium and nitrate nutrition of horticultural crops. Hort. Rev. 2:395-423.
Beevers, L. and R.H. Hageman. 1969. Nitrate reduction in higher plants. Annu. Rev. Plant Physiol. 20:495-522.
Cabrera, R.I., R.Y. Evans, and J.L. Paul. 1995. Nitrogen partitioning in rose plants over a flowering cycle. Scientia Hort. 63:67-76.
Campbell, W.H. 1999. Nitrate reductase structure, function and regulation: Bridging the gap between biochemistry and physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:277-303.
Fry, B. 2006. Stable Isotope Ecology. Springer Science, New York.
Grasmanis, V.O. and D.J.D. Nicholas. 1971. Annual uptake and distribution of N15-labelled ammonia and nitrate in young Jonathan/MM104 apple trees grown in solution cultures. Plant Soil 35:95-112.
Hageman, R.H. and D. Flesher. 1960. Nitrate reductase activity in corn seedlings as affected by light and nitrate content of nutrient media. Plant Physiol. 35:700-708.
Hew, C.S., L.Y. Lim, and C.M. Low. 1993. Nitrogen uptake by tropical orchids. Environ. Expt. Bot. 33:273-281.
Hew, C.S. and C.K.Y. Ng. 1996. Changes in mineral and carbohydrate content in pseudobulbs of the C3 epiphytic orchid hybrid Oncidium Goldiana at different growth stages. Lindleyana 11(3):125-134.
Hew, C.S. and J.W.H. Yong. 1994. Growth and photosynthesis of Oncidium Goldiana. J. Hort. Sci. 69:809-819.
Hew, C.S. and J.W.H. Yong. 2004. The physiology of tropical orchids in relation to the industry. second ed. World Scientific Publishing, Singapore.
Higaki, T. and J.S. Imamura. 1987. NPK requirements of Vanda Miss Joaquim orchid plants. Research Extension Series 087, 5 pp. College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu.
Hill-Cottingham, D.G. and C.P. Lloyd-Jones. 1975. Nitrogen-15 in apple nutrition investigations. J. Trop. Agric. Food Sci. 26:165-173.
Johnson, C.M., P.R. Stout, T.C. Broyer, and A.B. Carlton. 1957. Comparative chlorine requirements of different plant species. Plant Soil 8:337-353.
Junk, G. and H.J. Svec. 1958. The absolute abundance of the nitrogen isotopes in the atmosphere and compressed gas from various sources. Geochimica et Cosmochimica Acta 14:234-243.
Karr, J.D., W.J. Showers, J.W. Gilliam, and A.S. Andres. 2001. Tracing nitrate transport and environmental impact from intensive swine farming using delta Nitrogen-15. J. Environ. Qual. 30:1163-1175.
Kaufman, J.E., J.B. Beard, and D. Penner. 1971. The influence of temperature on nitrate reductase activity of Agrostis palustris and Cynodon dactylon. Physiol. Plant. 25:378-381.
Komamura, K. 1991. Traces of 15N applied to deciduous fruit tree. Jpn. Agr. Res. Quart. 25:141-147.
Lea-Cox, J.D. and J.P. Syvertsen. 1995. Nitrogen uptake by Citrus leaves. J. Amer. Soc. Hort. Sci. 120:505-509.
Munoz, N., J. Guerri, F. Legaz, and E. Primo-Millo. 1993. Seasonal uptake of 15N-nitrate and distribution of absorbed nitrogen in peach trees. Plant Soil 150:263-269.
Oaks, A. 1994. Primary nitrogen assimilation in higher plants and its regulation. Can. J. Bot. 72:739-750.
Oaks, A., W. Wallace, and D. Stevens. 1972. Synthesis and turnover of nitrate reductase in corn roots. Plant Physiol. 50:649-654.
Poole, H.A. and J.G. Seeley. 1978. Nitrogen, potassium and magnesium nutrition of three orchid genera. J. Amer. Soc. Hort. Sci. 103:485-488.
Sandrock, D.R., T.L. Righetti, and A.N. Azarenko. 2005. Isotopic and nonisotopic estimation of nitrogen uptake efficiency in container-grown woody ornamentals. HortScience 40:665-669.
Sheehan, T.J. 1961. Effects of nutrition and potting media on growth and flowering of certain epiphytic orchids. Amer. Orchid Soc. Bul. 30:289-292.
Srivastava, H.S. 1980. Regulation of nitrate reductase activity in higher plants. Phytochemistry 19:725-733.
Stewart, G.R., S. Schmidt, L.L. Handley, M.H. Turnbull, P.D. Erskine, and C.A. Joly. 1995. 15N natural abundance of vascular rainforest epiphytes: implications for nitrogen source and acquisition. Plant Cell Environ. 18:85-90.
Taiz, L. and E. Zeiger. 2006a. Assimilation of mineral nutrients, p. 289-313. Plant Physiol., Sinauer Associates, Sunderland, MA.
Taiz, L. and E. Zeiger. 2006b. Mineral Nutrition, p. 73-91. Plant Physiol., Sinauer Associates, Sunderland, MA. .
Tanaka, M., S. Yamada, and M. Goi. 1986. Morphological observation on vegetative growth and flower bud formation in Oncidium Boissiense. Scientia Horticulturae 28:133-146.
Throop, P.A. and E.J. Hanson. 1997. Effect of application date on absorption of 15Nitrogen by highbush bluberry. J. Amer. Soc. Hort. Sci. 122:422-426.
Wang, Y.T. 2008. High NO3-N to NH4-N ratios promote growth and flowering of a hybrid Phalaenopsis grown in two root substrates. HortScience 43:350-353.
Wang, Y.T. 2010. Phalaenopsis mineral Nutrition. Acta Hortic. 878:321-333.
Westerman, R.L. and L.T. Kurtz. 1974. Isotopic and nonisotopic estimations of fertilizer nitrogen uptake by sudangrass in field experiments. Soil Sci. Soc. Amer. J. 38:107-109.
Yoneda, K., N. Suzuki, and I. Hasegawa. 1999. Effects of macroelement concentrations on growth, flowering, and nutrient absorption in an Odontoglossum hybrid. Scientia Horticulturae 80:259-265.
Yoneda, K., M. Usui, and S. Kubota. 1997. Effect of nutrition deficiency on growth and flowering of Phalaenopsis. J. Jpn. Soc. Hort. Sci. 66:141-147.
Yong, J.W.H. and C.S. Hew. 1995a. The importance of photoassimilate contribution from the current shoot and connected back shoots to inflorescence size in the thin-leaved sympodial orchid Oncidium Goldiana. Intl. J. Plant Sci. 156:450-459.
Yong, J.W.H. and C.S. Hew. 1995b. Partitioning of 14C assimilates between sources and sinks in the sympodial thin-leaved orchid Oncidium Goldiana. Intl. J. Plant Sci. 156:188-196.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63479-
dc.description.abstract文心蘭為臺灣第二大蘭花產業,以外銷切花為主。其膨大且富含養分的假球莖具世代相連的特性,增加營養研究上的難度。本研究藉由穩定性氮同位素追蹤法,暸解文心蘭對肥料氮的吸收與偏好,以及自肥料中吸收的氮於植體內分配之情形。期能改善業界於文心蘭生育階段間之施肥技術,提升切花品質,增進農民收益。
  施肥後12小時,肥料氮即可被根部吸收並運移至植體各部位。文心蘭根部、葉片及假球莖組織中皆含有硝酸還原酶,並以根部活性最高,葉片活性次之。隨根齡增加,根部硝酸還原酶活性逐漸下降。栽培於日夜溫25/20 oC環境下之文心蘭,根部之硝酸還原酶活性最高,有利植體對氮素之吸收。同時給予尿素、銨態氮與硝酸態氮三種氮源時,文心蘭根部吸收三種氮源之比例為0.75:0.57:1,顯示文心蘭偏好吸收硝酸態氮。
  新芽萌發期與新芽生長期為文心蘭之營養生長期,該時期吸收之肥料氮主要供給當代假球莖發育,其餘氮則儲存在較老之假球莖中,並於生殖生長期將氮分配至花梗供其發育。於假球莖出鞘期與假球莖成熟期,文心蘭進入生殖生長期,該時期吸收之肥料氮大多供給花梗發育,其餘氮素則儲存於各代假球莖中。顯示花梗發育所需氮源,大部分來自生育週期後期所吸收之肥料氮。待進入下一世代之生殖生長期,文心蘭花梗發育所需的氮,一部分來自上一世代的儲存氮,而大部分則來自當世代生殖生長期所吸收之肥料氮。
  綜合上述,文心蘭根部之硝酸還原酶活性最高,對氮之吸收偏好硝酸態氮,故於根部施肥時可提高硝酸態氮之比例,且於日夜溫25/20 oC下栽培,有利文心蘭吸收氮素。目前業界傾向於文心蘭生殖生長期減少氮肥的施用以增加抽梗率,然本研究發現,文心蘭花梗發育所需氮源,大部分來自生殖生長期給予的肥料氮。故文心蘭生殖生長期間更應注重氮肥的施用,以利文心蘭切花生產品質及植株下一世代之發育。
zh_TW
dc.description.abstractCut flower production of Oncidium is the second largest orchid industry in Taiwan. The enlarged pseudobulbs, which store nutrients and are interconnected between generations, present difficulties in nutrition research. In this study, the stable isotope of nitrogen was used as a tracer to understand how Oncidium absorbs nitrogen in the fertilizer, nitrogen be allocated in the plant, and the nitrogen form it prefers. It is hoped that the results of this study will provide useful information for improving the fertilization management of Oncidium at different growth stages, so that the quality of Oncidium Gower Ramsey cut flower and the earning of growers may be increased.
  After 12 hours of application of fertilizer, nitrogen can be absorbed by the roots and translocated to various parts of Oncidium Gower Ramsey. The leaves, tissue of pseudobulb, and roots of Oncidium Gower Ramsey all have nitrate reductase activities. The activity was highest in the roots, and second highest in the leaves. The nitrate reductase activity of roots decreased with increased age of roots. Under 25/20 oC day/night temperature, the nitrate reductase activities in root of Oncidium was the highest, and it was favorable for Oncidium to absorbed nitrogen. When three kinds of nitrogen sources of urea, ammonium, and nitrate were given at the same time, the roots of Oncidium Gower Ramsey absorbed the three nitrogen forms in the proportion of 0.75:0.57:1, indicating that nitrate was the preferred form of nitrogen for absorption by the roots.
  Bud stage and plantlet stage are the vegetative stage of Oncidium Gower Ramsey. Fertilizer nitrogen supplied during the vegetative stage of Oncidium Gower Ramsey was used mainly for the development of the current pseudobulb. The remaining nitrogen was stored in the older pseudobulbs. The nitrogen stored in the pseudobulbs at the vegetative stage was partially allocated to stalk for its development during the reproductive stage. Unsheathing stage and pseudobulb with inflorescence stage are the reproductive stage of Oncidium Gower Ramsey. Most of the fertilizer nitrogen supplied during the reproductive stage was allocated to support stalk development, while the remaining was stored in the pseudobulbs. It indicated that the main nitrogen source of inflorescence was from the nitrogen absorbed during the later phase. During the reproductive stage of the next generation, the nitrogen allocated to the stalk came partly from nitrogen stored in the previous generation, while the majority came from the nitrogen absorbed during the reproductive stage of the current generation.
  In summary, the nitrate reductase activity of roots was the highest among organs of Oncidium Gower Ramsey, and roots preferred nitrate in nitrogen uptake. Therefore increasing the proportion of nitrate is recommended for fertilization applied to the roots. Under 25/20 oC day/night temperature, it was favorable for Oncidium to absorbed nitrogen. Reducing the application of nitrogen during reproductive stage is commonly practiced by growers with the intention to increase the rate of stalk emergence. However, this study shows that the source of nitrogen for development of the stalk came mostly from fertilizer applied during the reproductive stage. Therefore, it is important to continue the supply of nitrogen during the reproductive stage of Oncidium Gower Ramsey to improve the quality of cut flower produced and the development of the next generation.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:44:28Z (GMT). No. of bitstreams: 1
ntu-101-R98628109-1.pdf: 794437 bytes, checksum: 584e89b4a1d9960c9023e9add4d670d5 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents摘要…………………………………………………………………………………………………………………………………………………i
Abstract……………………………………………………………………………………………………………………………………ii
目錄………………………………………………………………………………………………………………………………………………iv
表目錄……………………………………………………………………………………………………………………………………………vi
圖目錄……………………………………………………………………………………………………………………………………………xi
前言(Introduction)……………………………………………………………………………………………………………1
前人研究(Literature Review) ……………………………………………………………………………………3
一、文心蘭之形態構造、生育週期與生育習性……………………………………………………………………3
(一)文心蘭之形態構造………………………………………………………………………………………………………………3
(二)文心蘭之生育週期………………………………………………………………………………………………………………3
(三)文心蘭之生育習性………………………………………………………………………………………………………………4
二、文心蘭各器官之供源及積儲關係………………………………………………………………………………………4
三、氮對蘭科植物生長之影響…………………………………………………………………………………………………4
四、硝酸還原酶對植物吸收氮之影響………………………………………………………………………………………6
(一)硝酸還原酶之結構與作用機制…………………………………………………………………………………………7
(二)影響硝酸還原酶活性之因子……………………………………………………………………………………………7
五、穩定性同位素及其應用………………………………………………………………………………………………………8
六、利用穩定性氮同位素瞭解園藝作物氮營養生理……………………………………………………………9
(一)植物對氮之吸收、轉運與其與株齡的關係……………………………………………………………………9
(二)作物對於氮肥的利用具有選擇性…………………………………………………………………………………10
(三)植物高效利用氮肥期………………………………………………………………………………………………………10
材料與方法(Materials and Methods) …………………………………………………………………11
一、植物材料………………………………………………………………………………………………………………………………11
二、試驗場所………………………………………………………………………………………………………………………………11
三、15N標記肥料之施用…………………………………………………………………………………………………………11
四、試驗設計………………………………………………………………………………………………………………………………12
(一)文心蘭當代假球莖根部吸收氮素後分布至葉片、假球莖及花梗之情形……………12
(二)溫度對文心蘭葉片及根部硝酸還原酶活性之影響與對氮素分配之影響……………12
(三)文心蘭花梗發育所需氮素之來源時期…………………………………………………………………………13
(四)文心蘭當代吸收的氮對當代及下一代花梗發育之影響……………………………………………14
(五)文心蘭根部對尿素、銨態氮及硝酸態氮三種氮素吸收之偏好………………………………15
(六)文心蘭葉片、假球莖與根部之硝酸還原酶活性及切片觀察…………………………………16
五、氮與氮同位素之分析方法………………………………………………………………………………………………16
六、硝酸還原酶活性之測定方法……………………………………………………………………………………………17
七、生統分析………………………………………………………………………………………………………………………………18
結果(Results) ……………………………………………………………………………………………………………………19
一、文心蘭當代假球莖根部吸收氮素後分布至葉片、假球莖及花梗之情形………………19
二、溫度對文心蘭葉片及根部硝酸還原酶活性之影響與對氮素分配之影響………………20
三、文心蘭花梗發育所需氮素之來源時期…………………………………………………………………………21
四、文心蘭當代吸收的氮供給當代及下一代花梗發育之氮素比例………………………………24
五、文心蘭根部對尿素、銨態氮及硝酸態氮三種氮素吸收之偏好………………………………29
六、文心蘭葉片、假球莖與根部之硝酸還原酶活性及切片觀察……………………………………32
討論(Discussion) ……………………………………………………………………………………………………………95
一、溫度對文心蘭生長與根部硝酸還原酶活性之影響……………………………………………………95
二、文心蘭各部位中氮素分布與文心蘭對氮素型態之吸收偏好……………………………………96
三、文心蘭根部對氮的吸收……………………………………………………………………………………………………97
四、文心蘭氮與澱粉之儲存……………………………………………………………………………………………………98
五、不同生育階段施肥對文心蘭假球莖及花梗發育之影響……………………………………………99
六、氮對文心蘭花梗發育之重要性……………………………………………………………………………………102
七、結論……………………………………………………………………………………………………………………………………103
參考文獻(References)……………………………………………………………………………………………………106
附錄(Appendix) ………………………………………………………………………………………………………………110
dc.language.isozh-TW
dc.title文心蘭對氮之吸收與氮於植體內之分配zh_TW
dc.titleNitrogen Uptake and Distribution in Oncidium Gower Ramseyen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭智馨(Chih-Hsin Cheng),陳香君(Hiang-Jiuun Chen),鍾仁賜(Ren-Shih Chung)
dc.subject.keyword氮,同位素,文心蘭,zh_TW
dc.subject.keywordnitrogen,isotope,Oncidium,en
dc.relation.page110
dc.rights.note有償授權
dc.date.accepted2012-08-21
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
775.82 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved