Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63471
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏家鈺(Jia-Yush Yen)
dc.contributor.authorJyun-Yan Chuangen
dc.contributor.author莊俊彥zh_TW
dc.date.accessioned2021-06-16T16:43:58Z-
dc.date.available2020-06-09
dc.date.copyright2020-06-09
dc.date.issued2020
dc.date.submitted2020-04-20
dc.identifier.citation1. Heald, S. M. (1986). A simple photoelectron X-ray beam position monitor for synchrotron radiation. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 246(1-3), 411-412.
2. Sakae, H., Aoyagi, H., Oura, M., Kimura, H., Ohata, T., Shiwaku, H., ... & Kitamura, H. (1997). Diamond beam-position monitor for undulator radiation and tests at the tristan super light facility. Journal of synchrotron radiation, 4(4), 204-209.
3. Shu, D., Ding, H., Barraza, J., Kuzay, T. M., Haeffner, D., & Ramanathan, M. (1998). Smart X-ray beam position monitor system using artificial-intelligence methods for the Advanced Photon Source insertion-device beamlines. Journal of synchrotron radiation, 5(3), 632-635.
4. Eo D. Johnson andT. Oversfuizen, “Compact high flux photon beam position monitor”, Review of Scientific Instruments 60, 1947 (1989); doi: 10.1063/1.1140896
5. Pascal ELLEAUME, “CONCEPTUAL DESIGN FOR A PHOTON POSITION MONITOR FOR THE INSERTION DEVICES OF THE ESRF BASED ON PHOTOEMISSION”, ESRF-SR/ID-87-11 European Synchrotron Radiation Facility BP 220, July 1987.
6. Keane, R., Bui, H., Decker, G., Hahne, M., Wimmer, C., & Leban, P. EVALUATION OF A VARIETY OF PHOTON BEAM POSITION MONITOR DATA ACQUISITION METHODOLOGIES AT THE APS.
7. Smith, S., Shu, D., Bergstrom, J., & Jiang, D. T. (2007, January). Front End X‐Ray Beam Position Monitors at the CLS. In AIP Conference Proceedings (Vol. 879, No. 1, pp. 1002-1005). American Institute of Physics.
8. Decker, G., & Singh, O. (2001). Orbit feedback using X-ray beam position monitoring at the Advanced Photon Source. arXiv preprint physics/0112043.
9. Ilinski, P. (2013). Optimization of NSLS-II Blade X-ray Beam Position Monitors: from Photoemission type to Diamond Detector. In Journal of Physics: Conference Series (Vol. 425, No. 4, p. 042006). IOP Publishing.
10. G. Y. Hsiung, Z. D. Tsai, T. F. Lin, K. M. Hsiao, S. N. Hsu, and J. R. Chen, “DEVELOPMENT OF THE PHOTON BEAM POSITION MONITORS FOR THE TLS”, Proceedings of the Second Asian Particle Accelerator Conference, Beijing, China, 2001.
11. Huang, C. H., Wu, C. Y., Chiu, P. C., Cheng, Y. S., Liao, C. Y., Hu, K. H., & Hsu, K. T. (2019, January). X-ray beam position monitors and their usage at the Taiwan photon source. In AIP Conference Proceedings (Vol. 2054, No. 1, p. 060053). AIP Publishing LLC.
12. Warwick, T., Andresen, N., Portmann, G., & Jackson, A. (1995). Performance of photon position monitors and stability of undulator beams at the advanced light source. Review of scientific instruments, 66(2), 1984-1986.
13. Yang, B., Jaski, Y., Westferro, F., Sereno, N., Lee, S. H., Decker, G., & Ramanathan, M. (2015). Design and development for the next generation x-ray beam position monitor system at the APS.
14. Yang, B. X., Decker, G., Downey, J., Jaski, Y., Kruy, T., Lee, S. H., ... & Westferro, F. (2013). Advanced x-ray beam position monitor system design at the APS.
15. M. Carulla† and M. Camarda, Paul Scherrer Institute, Villigen, Switzerland M. Birri, B. Meyer, D. Grolimund, C. Pradervand, O. S. Nida1 , A. Tsibizov1 , T. Ziemann1 , U. Grossner1, “TOWARDS FULL 4H-SiC BASED X-RAY BEAM MONITORING”, Proceedings of IBIC2019, Malmö, Sweden
16. G. Decker, O. Singh, H. Friedsam, J. Jones, M. Ramanathan, D. Shu, Reduction of X-BPM systematic errors by modification of lattice in the APS storage ring, in: Proceedings of the 1999 Particle Accelerator Conference (Cat. No. 99CH36366), Vol. 3, IEEE, 1999, pp. 2051-2053.
17. V.P. Dhamgaye, G.S. Lodha, S.R. Kane, Beam position measurements of Indus-2 using X-ray beam position monitor, Nucl. Instrum. Methods Phys. Res. A 659 (1) (2011) 525–527. 3.
18. Shu, D., Barraza, J., Kuzay, T. M., Naylor, G., & Elleaume, P. (1997, May). Tests of the APS X-ray transmitting beam position monitors at ESRF. In Proceedings of the 1997 Particle Accelerator Conference (Cat. No. 97CH36167) (Vol. 2, pp. 2210-2212). IEEE.
19. C. Bloomer, G. Rehm, “REAL-TIME CALCULATION OF SCALE FACTORS OF X-RAY BEAM POSITION MONITORS DURING USER OPERATION”, Diamond Light Source, Oxfordshire, UK, Proceedings of IBIC2012, Tsukuba, Japan.
20. J. Ko, I.-Y. Kim, C. Kim, D.-T. Kim, J.-Y. Huang and S. Shin, Analysis and control of the photon beam position at PLS-II, J. Synchrotron Rad. (2016). 23, 448–454.
21. C. Bloomer, C. Thomas, G. Rehm, Numerical and xperimental investigation of the contamination of x-ray beam position monitors by bending magnet edge radiation, Proceedings of EPAC08, Genoa, Italy
22. Pascal ELLEAUME, “CONCEPTUAL DESIGN FOR A PHOTON POSITION MONITOR FOR THE INSERTION DEVICES OF THE ESRF BASED ON PHOTOEMISSION”, ESRF-SR/ID-87-11 European Synchrotron Radiation Facility BP 220, July 1987.
23. N. Hubert, N. Béchu, J. Dasilvacastro, L. Cassinari, J-C. Denard, M. Labat, J-L. Marlats, A. Mary, DESIGN OF A NEW BLADE TYPE X-BPM, Proceedings of IBIC2014, Monterey, CA, USA.
24. Narag, J., & Hermosa, N. (2017). Response of quadrant detectors to structured beams via convolution integrals. JOSA A, 34(7), 1212-1216.
25. Li, Q., Wu, J., Chen, Y., Wang, J., Gao, S., & Wu, Z. (2018). High Precision Position Measurement Method for Laguerre-Gaussian Beams Using a Quadrant Detector. Sensors, 18(11), 4007.
26. Zhao, T., Li, B., Li, C., Wang, R., Miao, Q., Liang, K., ... & Han, D. (2017). New distortion correction algorithm for two-dimensional tetra-lateral position-sensitive silicon photomultiplier. IEEE Electron Device Letters, 38(2), 228-231.
27. Wille, K. (2000). The physics of particle accelerators: an introduction. Clarendon Press.
28. Balerna, A., & Mobilio, S. (2015). Introduction to synchrotron radiation. In Synchrotron radiation (pp. 3-28). Springer, Berlin, Heidelberg.
29. Willmott, P. (2019). An introduction to synchrotron radiation: techniques and applications. John Wiley & Sons.
30. Kuo, C. C., Luo, G. H., Hsu, K. T., Chou, P., Liu, Y., Chiu, M. S., ... & Chen, J. Y. (2015). Commissioning of the Taiwan photon source.
31. Wang, C., Chang, L. H., Lin, M. C., Yeh, M. S., Yang, T. T., Chung, F. T., ... & Yu, T. C. (2011). Design features and construction progress of 500-MHz RF systems for the Taiwan Photon Source. In Proc. of Particle Accelerator Conference, New York, USA (pp. 2513-2515).
32. Hsu, K. T., Liu, Y. C., Kuo, C. H., Kuo, C. C., Wang, C., Luo, G. H., ... & Huang, C. H. (2019, January). Current status of the TPS and its future prospects. In AIP Conference Proceedings (Vol. 2054, No. 1, p. 030003). AIP Publishing LLC.
33. Hwang, C. S. (2007, June). Planning of insertion devices for the 3-GeV Taiwan Photon Source. In 2007 IEEE Particle Accelerator Conference (PAC) (pp. 1082-1084). IEEE.
34. Sheng, I. C., Kuan, C. K., Chung, Y. T., Yang, H. Y., Chueng, J. Y., & Cheng, C. M. (2016). Design and Analysis of EPU XBPM in TPS. parameters, 4, 2-64.
35. Sheng, I. C., Kuan, C. K., Cheng, Y. T., Chuang, J. Y., Liu, Y. K., Lin, H. Y., ... & Lee, T. Y. CONSTRUCTION AND INSTALLATION OF TPS FRONT END.
36. Kuan, C. K., Chuang, J. Y., Hsiao, Y. M., Yan, H. Y., Cheng, Y. T., Shueh, C., ... & Sheng, I. (2017). General Design of ID Front Ends in the TPS.
37. Gauss, C. F. Least squares (Redirected from Method of least squares).
38. Guo, H. (2011). A simple algorithm for fitting a Gaussian function [DSP tips and tricks]. IEEE Signal Processing Magazine, 28(5), 134-137.
39. Draper, N. R., & Smith, H. (1998). Applied regression analysis (Vol. 326). John Wiley & Sons.
40. William. H. Press, etc. Numerical Recipes in C++. Cambridge University Press, 2002.
41. Vass, G., & Perlaki, T. (2003, January). Applying and removing lens distortion in post production. In Proceedings of the 2nd Hungarian Conference on Computer Graphics and Geometry (pp. 9-16).
42. Sharma, S., & Woodle, M. (1988). Thermal deformations in a high flux beam position monitor. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 266(1-3), 513-516.
43. Schulze-Briese, C., Ketterer, B., Pradervand, C., Brönnimann, C., David, C., Horisberger, R., ... & Graafsma, H. (2001). A CVD-diamond based beam profile monitor for undulator radiation. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 467, 230-234.
44. Aoyagi, H., Kudo, T., & Kitamura, H. (2001). Blade-type X-ray beam position monitors for SPring-8 undulator beamlines. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 467, 252-255.
45. D Shu, C-K Kuan, I C Sheng and J-R Chen, Development of an x-ray beam position monitor for TPS EPU beamline front ends, Journal of Physics: Conference Series 425 (2013) 042003 DOI:10.1088/1742-6596/425/4/042003.
46. Leban, P., Tinta, D., Hubert, N., & Denard, J. C. (2010). Photon beam position measurements by Libera Photon using copper blade sensors at soleil synchrotron. Santa Fe, May.
47. Dalesio, L. R., Hill, J. O., Kraimer, M., Lewis, S., Murray, D., Hunt, S., ... & Dalesio, J. (1994). The experimental physics and industrial control system architecture: past, present, and future. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 352(1-2), 179-184.
48. Chrin, J. (2013). MATLAB objects for EPICS Channel Access. In Proc. 14th Int. Conf. on Accelerator and Large Experimental Physics Control Systems (ICALEPCS’13) (pp. 453-456).
49. Libera Photon, Photon beam position monitor user manual and specifications, 2016.
50. Jennings, R., & Cueva, F. D. L. (2019). LabVIEW graphical programming. McGraw-Hill Education.
51. Russel, R. E., Ruthe, S., & Richter, D. (2014). Network distributed data acquisition, storage, and graphical live display software for a laser ion source at CERN (No. CERN-OPEN-2015-005).
52. Joseph J.. Carr, & Brown, J. M. (2001). Introduction to biomedical equipment technology. Prentice hall.
53. Northrop, R. B. (2005). Introduction to instrumentation and measurements. CRC press.
54. Holldack, K., Feikes, J., & Peatman, W. B. (2001, May). Review of Emittance and Stability Monitoring Using Synchrotron Radiation Monitors. In DIPAC (Vol. 1, p. 16).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63471-
dc.description.abstract台灣光子源(TPS)於2016年啟用,其運轉參數為電子束能量30億電子伏特,電流 400~500 mA,最佳光束波段範圍為軟X光及硬X光,屬於目前最廣泛使用之第三代同步輻射光源;其特色在於安裝插件磁鐵於儲存環中,使電子由第二代光源之偏轉一次變成多次偏轉,藉以大幅提升光源亮度,能夠更精確應用於許多尖端細微科學之研究。隨著第三代光源之光束尺寸的縮小,光束線實驗站對於光束位置之準直要求精度更加提升,透過TPS於前端區(Front End, FE)安裝之四刀片式X光束位置監測器(X-ray Beam Position Monitor System, XBPM)能夠量測出光子束位於加速器座標的位置,並提供給光束線用戶進行實驗試片對光準直。
考量XBPM自發展以來,未有研究針對刀片特性進行標準化提出完整之係數計算,因此本研究針對TPS XBPM發展出一套標準化校正方法,套用四象限位移感測器(Quadrant detector, QD)之校正概念,以XBPM之四刀片透過線性擬合進行刀片靈敏度標準化,並以系統化之概念將四刀片組合視為一個系統,輸入為光束強度,輸出為轉換之光束位置,求導出一組校正係數稱為”抑制矩陣”來抑制非預期耦合飄移,藉由去耦合使XBPM量測值位於加速器座標上X與Y之位移量測能夠具備獨立性,有利於實驗站獲得正確光束位置進行準直以及光束穩定性監測。經過校正後之XBPM能夠於最佳量測範圍±100 μm內得到小於1 μm的耦合飄移誤差,光束位移量測值在系統線性範圍內之量測誤差小於2 μm,與校正前或傳統之校正方法相比,本研究大幅提高量測準確性。在不同磁鐵極化適用性方面,對於橢圓聚頻磁鐵之不同極化模式下,本校正方法仍具備其相容性,實驗結果顯示,若以水平線性極化模式下進行之校正係數套用於圓極化模式,仍可得到誤差5 μm之量測誤差精度,但若要求更高之精度,可使用本系統建立之快速掃描之方式得到新的校正係數;相較於一般傳統校正方法,本研究所提出之校正方法具有較廣泛之量測應用。
利用數位訊號處理器Libara Photon所提供之完整暫存器,結合自動化束流調控(Beam steering)與分散式嵌入系統進行邊緣計算(Edge computing) 建立大數據資料庫,能夠有效率地完整化XBPM校正工程,對於XBPM與插件磁鐵參數之強相依特性來說,本研究所建立之系統能夠自動化對應不同間隙或極化模式償準確之校正係數,改善傳統XBPM應用精度,將其實用性與可靠度大幅提升,對於高準直需求的光束線有其極大助益,也是本研究最主要之貢獻。
zh_TW
dc.description.abstractThe Taiwan Photon Source (TPS) was launched in 2016 with the operating parameter of an electron beam energy of 3 GeV and a current of 400-500 mA. The best energy bandwidth of the TPS is within the range of soft X-rays to hard X-rays, and it is considered to be a 3rd-generation synchrotron radiation source that is widely used at present. The main feature is the installation of the insertion device (ID) in the storage ring to enhance the brightness of the photon beam source, the electron beam polarized by IDs makes the intensities higher than previous generation synchrotron source. The ID includes the following types: Wiggler, In-vacuum Undulator (IU) and Elliptically Polarized Undulator (EPU). The purpose is to turn the electron from the single deflection in a 2nd-generation light source to multiple deflections, thereby improving the brightness. The TPS can further be more accurately applied to research in cutting-edge science fields, such as material geometry, atom or molecular properties, semiconductors, chemical materials and magnetic structures.
With the reduction in the beam size of the 3rd-generation light source, the beamline experiment station requires more accurate alignment of the beam position. Through the four-blade X-ray beam position monitoring system (XBPM) installed in the front end (FE) of TPS, the photon beam position in the accelerator coordinate system can be measured for the experimental requirement of the beamline user. Since the development of the XBPM, there has been no research on characteristic standardization of blade, and a complete coefficient calculation has been proposed. Therefore, in this study, to detect the photon beam position of TPS, a set of XBPM standardization methods has been developed. This approach applied the quadrant detector (QD) calibration concept, where the sensitivity of the four blades of the XBPM could be standardized through the linear fitting, and used the concept of systematization to regard the assembly of four blades as an integrated system. The input was the photon beam intensity, the output was the converted beam position, and a set of correction coefficients called the 'suppression matrix' was derived to suppress the nonpredictive coupling drift error during the monitoring and to decouple the displacement in terms of X and Y on the accelerator coordinate system independently. The XBPM that was used for beam alignment at the beamline experimental station to obtain the correct beam position or monitor the beam stability offered a significant enhancement. After the calibration, the XBPM could achieve results with a coupling drift error of less than one μm in the best measurement range of ± 100 μm. The measurement error of beam displacement in the linear range was less than two μm compared with the conventional calibration method, showing that the method in this study improved the measurement accuracy significantly. In terms of the adaptability of different polarization modes, this method still offered excellent compatibility with the different polarization modes of the EPU. The experimental results showed that if the calibration coefficients applied in the horizontal linear polarization mode were applied to the circular polarization mode, the measurement was still accurate to within an error of 5 μm. However, if a higher accuracy was required, the fast scanning technique established by this system could be used to obtain new calibration coefficients. In comparison with the conventional calibration methods, the method in this study showed higher adaptability for measurement applications.
By using the complete registers provided by the digital signal processor Libara Photon along with the automatic beam steering and distributed embedded edge computing system to build an extensive database, the XBPM calibration engineering could be efficiently integrated. Therefore, in terms of the strong dependency of the XBPM and ID gaps, the system in this study could automatically and accurately compensate with the calibration coefficients in correspondence to the different gaps or polarization modes, change the conventional application accuracy of the XBPM, and greatly improve its practicability and reliability. This approach is highly helpful in the case of high demand for precision and alignment of the beamline, which significantly contributed to this study.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:43:58Z (GMT). No. of bitstreams: 1
ntu-109-D98522032-1.pdf: 11846075 bytes, checksum: 1970198b6c271140826a9ef7eeee8aac (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
List of Figures VIII
List of Tables XII
Chapter 1 Introduction 1
1.1 Literature Review 2
1.1.1 Hardware Design of the XBPM 2
1.1.2 Signal Processing and Calibration Method 6
1.1.3 Application of the XBPM 8
1.2 Study Background 11
1.2.1 The principle of XBPM and precision discussion 11
1.2.2 Structure of the thesis 12
1.3 Motivation and contribution 14
Chapter 2 Fundamental Principle 16
2.1 Synchrotron Radiation Principle 16
2.2 Principle of the insertion device 19
2.3 The Aperture Relationship Between the Front End and XBPM 22
2.4 Performance Estimation of the XBPM 26
2.4.1 Data Fitting Process of the XBPM Measurement 27
2.4.2 Estimation of the Decoupling effect 29
2.4.3 Distortion of 2D Beam Profile Scanning 30
Chapter 3 System Description and Integration 31
3.1 XBPM Hardware 31
3.1.1 Diamond Blade and Design 31
3.1.2 Mechanical Assembly 33
3.2 Data Acquisition System 35
3.2.1 EPICS System 35
3.2.2 Signal Acquisition System 36
3.3 Distributed Scanning Control System for Calibration 38
3.3.1 Programming method 38
3.3.2 Scanning control program 41
3.3.3 Intranet construction 42
Chapter 4 Calibration Method and Verification 44
4.1 Calibration method 44
4.1.1 Bending Magnet Light Estimation 44
4.1.2 Centralization of the photon beam and the XBPM 49
4.1.2 Blade normalization 54
4.1.3 Calibration coefficient determination 56
4.2 XBPM measurement performance verification 60
4.2.1 Decoupling effect 60
4.2 2D Grid distortion 61
Chapter 5 Calibration Results 62
5.1 Precision definition and Linearity 62
5.1.1 Precision and Effectivity Measurement Definition 65
5.1.2 Linearity Comparison 67
5.2 Suppression of Non-Predictive Coupling Effect Results 71
5.2 Large-scale 2D Grid Distortion 75
5.5 Discussion on the XBPM Calibration by the Different Polarization modes of the EPU 79
5.6 Discussion on the XBPM Calibration by Different Gaps of IU 84
Chapter 6 Conclusions and Future Works 90
References 92
dc.language.isoen
dc.subject抑制矩陣zh_TW
dc.subject極化適用性zh_TW
dc.subject四刀片式X光束位置監測器zh_TW
dc.subject非預期耦合飄移zh_TW
dc.subjectnonpredictive coupling driften
dc.subjectadaptability of different polarization modesen
dc.subjectfour-blade X-ray beam position monitoren
dc.subjectsuppression matrixen
dc.title以同步輻射光束位置監測器之校正方法標準化與抑制非預測性耦合提升量測精度與磁鐵極化適應性zh_TW
dc.titleStandardized Calibration Method and the Nonpredictive Coupling Effect Suppressing for Accuracy and Magnet Polarization Adaptability Enhancement of a Synchrotron Radiation X-ray Beam Position Monitoren
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳亮嘉,李佳翰,張進春,陳慶隆
dc.subject.keyword四刀片式X光束位置監測器,抑制矩陣,非預期耦合飄移,極化適用性,zh_TW
dc.subject.keywordfour-blade X-ray beam position monitor,suppression matrix,nonpredictive coupling drift,adaptability of different polarization modes,en
dc.relation.page97
dc.identifier.doi10.6342/NTU202000758
dc.rights.note有償授權
dc.date.accepted2020-04-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
11.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved