請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63451完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉力森 | |
| dc.contributor.author | Chia-Lun Hsieh | en |
| dc.contributor.author | 謝佳倫 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:42:37Z | - |
| dc.date.available | 2012-08-27 | |
| dc.date.copyright | 2012-08-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-24 | |
| dc.identifier.citation | 1. Aitola MAO S-SG. Nonunion fractures in dogs. J Vet Orthoped 3: 21-24, 1984.
2. Barbara Young JSL, Alan Stevens, John W. Health. Wheater’s Functional Histology: A text and Colour Atlas. Elsevier, UK, 2004. 3. Bell GH DOaBJ. Variations in strength of vertebrae with age and their relation to osteoporosis. Calcified Tissue Research 1: 75-86, 1967. 4. Brinker WO OM, Sumner-Smith G. Manual of Internal Fixation in Small Animals. Springer-Verlag, Berlin, 227, 1998. 5. C. CS. Bone Mechanics Handbook. 17, 2001. 6. Charles D. Newton DMN. Textbook of Small Animal Orthopaedics. Lippincott Williams & Wilkins, Philadelphia, 1985. 7. deLahunta HEEaA. Miller's Guide to the Dissection of the Dog. W. B. Saunders company, 1996. 8. Fossum TW. Small Animal Surgery. 2007. 9. JD. C. The mechanical properties of bone. Princeton University Press, Princeton, 55, 2002. 10. johnson twfal. small animal surgery. 2007. 11. Kara R. bone and muscle: structure, force, and motion. rosen pub group new york, 2011. 12. L W. Circulation in bone. 1983. 13. Lavin LM. Radiography in Veterinary Technology 2007. 14. LC V. A clinical study of nonunion fractures in the dog. J Sm Anim Pract 5: 173-177, 1964. 15. Leighton R. Dogs and All about Them http://dogbreedshistory.com/index.html. 16. Modules ST. Classification of Bones http://training.seer.cancer.gov/anatomy/skeletal/classification.html. 17. MP D. Causes of delayed union and nonunion of fractures. Vet Clin N Am 5: 251-258, 1975. 18. MR H. Repair of distal radio-ulnar fractures in toy breeds of dogs. Canine Pract 1: 12-17, 1974. 19. Nathe A. Structure of Bone. World Scientific Publishing Co. Pte. Ltd., 2005. 20. Phillips ATM. Structural Optimisation: Biomechanics of the Femur. Engineering and Computational Mechanics 165: 2012. 21. RR R. disorders of bone and mineral metabolism. Raven, New York, 1992. 22. von Pfeil DJF DC. The epiphyseal plate: physiology, anatomy and trauma. Compend Contin Educ Pract Vet 31: E1-E7, 2009. 23. W. McCartney KK, I. Robertson. Treatment of distal radial/ulnar fractures in 17 toy breed dogs. Veterinary Record 166: 430-432, 2010. 24. Wainwright SA BW, Currey JD, Gosline JM. Mechanical design in organisms. 1982. 25. Augat P, Reeb H, and Claes LE. Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 11: 1356-1363, 1996. 26. Beck TJ, Ruff CB, Warden KE, Scott WW, Jr., and Rao GU. Predicting femoral neck strength from bone mineral data. A structural approach. Investigative radiology 25: 6-18, 1990. 27. Brinckmann P, Biggemann M, and Hilweg D. Prediction of the compressive strength of human lumbar vertebrae. Spine 14: 606-610, 1989. 28. Harasen G. Common long bone fracture in small animal practice--part 2. The Canadian veterinary journal La revue veterinaire canadienne 44: 503-504, 2003. 29. Larsen LJ, Roush JK, and McLaughlin RM. Bone plate fixation of distal radius and ulna fractures in small- and miniature-breed dogs. J Am Anim Hosp Assoc 35: 243-250, 1999. 30. Muir P, and Markel MD. Geometric variables and bone mineral density as potential predictors for mechanical properties of the radius of Greyhounds. American journal of veterinary research 57: 1094-1097, 1996. 31. Myers ER, Hecker AT, Rooks DS, Hipp JA, and Hayes WC. Geometric variables from DXA of the radius predict forearm fracture load in vitro. Calcified tissue international 52: 199-204, 1993. 32. Myers ER, Sebeny EA, Hecker AT, Corcoran TA, Hipp JA, Greenspan SL, and Hayes WC. Correlations between photon absorption properties and failure load of the distal radius in vitro. Calcified tissue international 49: 292-297, 1991. 33. Peifer M. The two faces of hedgehog. Science 266: 1492-1493, 1994. 34. Piras L, Cappellari, F.,Peirone, B. and Ferretti, A. Treatment of fractures of the distal radius and ulna in toy breed dogs with circular external skeletal fixation: a retrospective study. Veterinary and comparative orthopaedics and traumatology : VCOT 24: 228-235, 2011. 35. Sumner-Smith G. A histological study of fracture nonunion in small dogs. The Journal of small animal practice 15: 571-578, 1974. 36. Sumner-Smith G, and Cawley AJ. Nonunion of fractures in the dog. The Journal of small animal practice 11: 311-325, 1970. 37. Wachter NJ, Augat P, Mentzel M, Sarkar MR, Krischak GD, Kinzl L, and Claes LE. Predictive value of bone mineral density and morphology determined by peripheral quantitative computed tomography for cancellous bone strength of the proximal femur. Bone 28: 133-139, 2001. 38. Wachter NJ, Krischak GD, Mentzel M, Sarkar MR, Ebinger T, Kinzl L, Claes L, and Augat P. Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro. Bone 31: 90-95, 2002. 39. Ahn AC, and Grodzinsky AJ. Relevance of collagen piezoelectricity to 'Wolff's Law': A critical review. Medical engineering & physics 31: 733-741, 2009. 40. Aro HT, and Chao EYS. Bone-Healing Patterns Affected by Loading, Fracture Fragment Stability, Fracture Type, and Fracture Site Compression. Clinical orthopaedics and related research 8-17, 1993. 41. Atkinson PJ. Changes in Resorption Spaces in Femoral Cortical Bone with Age. J Pathol Bacteriol 89: 173-&, 1965. 42. Bailey DA. The Saskatchewan Pediatric Bone Mineral Accrual Study: Bone mineral acquisition during the growing years. Int J Sports Med 18: S191-S194, 1997. 43. Bassett JHD, and Williams GR. The molecular actions of thyroid hormone in bone. Trends Endocrin Met 14: 356-364, 2003. 44. Biggemann M, Hilweg D, and Brinckmann P. Prediction of the Compressive Strength of Vertebral Bodies of the Lumbar Spine by Quantitative Computed-Tomography. Skeletal Radiol 17: 264-269, 1988. 45. Boivin G, and Meunier PJ. Changes in bone remodeling rate influence the degree of mineralization of bone. Connect Tissue Res 43: 535-537, 2002. 46. Bonadio J, Jepsen KJ, Mansoura MK, Jaenisch R, Kuhn JL, and Goldstein SA. A Murine Skeletal Adaptation That Significantly Increases Cortical Bone Mechanical-Properties - Implications for Human Skeletal Fragility. J Clin Invest 92: 1697-1705, 1993. 47. Bouxsein ML. Bone quality: where do we go from here? Osteoporosis Int 14: S118-S127, 2003. 48. Bouxsein ML. Determinants of skeletal fragility. Best Pract Res Cl Rh 19: 897-911, 2005. 49. Bouxsein ML, and Radloff SR. Quantitative ultrasound of the calcaneus reflects the mechanical properties of calcaneal trabecular bone. Journal of Bone and Mineral Research 12: 839-846, 1997. 50. Brianza SZM, Delise M, Ferraris MM, D'Amelio P, and Botti P. Cross-sectional geometrical properties of distal radius and ulna in large, medium and toy breed dogs. Journal of biomechanics 39: 302-311, 2004. 51. Burr D. Microdamage and bone strength. Osteoporosis Int 14: S67-S72, 2003. 52. Burr DB, Forwood MR, Fyhrie DP, Martin B, Schaffler MB, and Turner CH. Bone microdamage acid skeletal fragility in osteoporotic and stress fractures. Journal of Bone and Mineral Research 12: 6-15, 1997. 53. Burr DB, Schaffler MB, and Frederickson RG. Composition of the Cement Line and Its Possible Mechanical Role as a Local Interface Inhuman Compact-Bone. Journal of biomechanics 21: 939-&, 1988. 54. Carter DR, Caler WE, Spengler DM, and Frankel VH. Fatigue Behavior of Adult Cortical Bone - the Influence of Mean Strain and Strain Range. Acta Orthop Scand 52: 481-490, 1981. 55. Carter DR, and Hayes WC. Bone Compressive Strength - Influence of Density and Strain Rate. Science 194: 1174-1176, 1976. 56. Carter DR, and Hayes WC. Compressive Behavior of Bone as a 2-Phase Porous Structure. J Bone Joint Surg Am 59: 954-962, 1977. 57. Currey JD. Physical Characteristics Affecting the Tensile Failure Properties of Compact-Bone. Journal of biomechanics 23: 837-844, 1990. 58. Danielsen CC, Mosekilde L, and Andreassen TT. Long-Term Effect of Orchiectomy on Cortical Bone from Rat Femur - Bone Mass and Mechanical-Properties. Calcified tissue international 50: 169-174, 1992. 59. Davison KS, Siminoski K, Adachi JD, Hanley DA, Goltzman D, Hodsman AB, Josse R, Kaiser S, Olszynski WP, Papaioannou A, Ste-Marie LG, Kendler DL, Tenenhouse A, and Brown JP. Bone strength: The whole is greater than the sum of its parts. Semin Arthritis Rheu 36: 22-31, 2004. 60. Dumont ER. Bone density and the lightweight skeletons of birds. P Roy Soc B-Biol Sci 277: 2193-2198, 2010. 61. Eger CE. A Technique for the Management of Radial and Ulnar Fractures in Miniature Dogs Using Transfixation Pins. Journal of Small Animal Practice 31: 377-381, 1990. 62. Evans EM. Pronation Injuries of the Forearm - with Special Reference to the Anterior Monteggia Fracture. J Bone Joint Surg Br 31: 578-588, 1949. 63. Gibson LJ. The Mechanical-Behavior of Cancellous Bone. Journal of biomechanics 18: 317-&, 1985. 64. Gilsanz V, Boechat MI, Gilsanz R, Loro ML, Roe TF, and Goodman WG. Gender Differences in Vertebral Sizes in Adults - Biomechanical Implications. Radiology 190: 678-682, 1994. 65. Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, and Feldkamp LA. The Relationship between the Structural and Orthogonal Compressive Properties of Trabecular Bone. Journal of biomechanics 27: 375-389, 1994. 66. Haas B, Reichler IM, and Montavon PM. Use of the tubular external fisator in the treatment of distal radial and ulnar fractures in small dogs and cats - A retrospective clinical study. Vet Comp Orthopaed 16: 132-137, 2003. 67. Hamilton MH, and Hobbs SIL. Use of the AO veterinary mini 'T'-plate for stabilisation of distal radius and ulna fractures in toy breed dogs. Vet Comp Orthopaed 18: 18-25, 2005. 68. Hernandez CJ, Beaupre GS, Keller TS, and Carter DR. The influence of bone volume fraction and ash fraction on bone strength and modulus. Bone 29: 74-78, 2001. 69. Hildebrand T, Laib A, Muller R, Dequeker J, and Ruegsegger P. Direct three-dimensional morphometric analysis of human cancellous bone: Microstructural data from spine, femur, iliac crest, and calcaneus. Journal of Bone and Mineral Research 14: 1167-1174, 1999. 70. Hoshaw SJ, Cody DD, Saad AM, and Fyhrie DP. Decrease in canine proximal femoral ultimate strength and stiffness due to fatigue damage. Journal of biomechanics 30: 323-329, 1997. 71. Ilich JZ, and Kerstetter JE. Nutrition in bone health revisited: A story beyond calcium. J Am Coll Nutr 19: 715-737, 2000. 72. Jones HH, Priest JD, Hayes WC, Tichenor CC, and Nagel DA. Humeral Hypertrophy in Response to Exercise. J Bone Joint Surg Am 59: 204-208, 1977. 73. Jordan GR, Loveridge N, Bell KL, Power J, Rushton N, and Reeve J. Spatial clustering of remodeling osteons in the femoral neck cortex: A cause of weakness in hip fracture? Bone 26: 305-313, 2000. 74. Keaveny TM, Morgan EF, Niebur GL, and Yeh OC. Biomechanics of trabecular bone. Annu Rev Biomed Eng 3: 307-333, 2001. 75. Lafage MH, Balena R, Battle MA, Shea M, Seedor JG, Klein H, Hayes WC, and Rodan GA. Comparison of Alendronate and Sodium-Fluoride Effects on Cancellous and Cortical Bone in Minipigs - a One-Year Study. J Clin Invest 95: 2127-2133, 1995. 76. Landorf KB. Clarifying proximal diaphyseal fifth metatarsal fractures - The acute fracture versus the stress fracture. J Am Podiat Med Assn 89: 398-404, 1999. 77. Lappin MR, Aron DN, Herron HL, and Malnati G. Fractures of the Radius and Ulna in the Dog. J Am Anim Hosp Assoc 19: 643-650, 1983. 78. Lips P, Courpron P, and Meunier PJ. Mean Wall Thickness of Trabecular Bone Packets in Human Iliac Crest - Changes with Age. Calc Tiss Res 26: 13-17, 1978. 79. Lochmuller EM, Groll O, Kuhn V, and Eckstein F. Mechanical strength of the proximal femur as predicted from geometric and densitometric bone properties at the lower limb versus the distal radius. Bone 30: 207-216, 2002. 80. Lotz JC, Cheal EJ, and Hayes WC. Stress Distributions within the Proximal Femur during Gait and Falls - Implications for Osteoporotic Fracture. Osteoporosis Int 5: 252-261, 1995. 81. Majumdar S, Kothari M, Augat P, Newitt DC, Link TM, Lin JC, Lang T, Lu Y, and Genant HK. High-resolution magnetic resonance imaging: Three-dimensional trabecular bone architecture and biomechanical properties. Bone 22: 445-454, 1998. 82. Maurer BA, Brown JH, Dayan T, Enquist BJ, Ernest SKM, Hadly EA, Haskell JP, Jablonski D, Jones KE, Kaufman DM, Lyons SK, Niklas KJ, Porter WP, Roy K, Smith FA, Tiffney B, and Willig MR. Similarities in body size distributions of small-bodied flying vertebrates. Evol Ecol Res 6: 783-797, 2004. 83. Mccalden RW, Mcgeough JA, Barker MB, and Courtbrown CM. Age-Related-Changes in the Tensile Properties of Cortical Bone - the Relative Importance of Changes in Porosity, Mineralization, and Microstructure. J Bone Joint Surg Am 75A: 1193-1205, 1993. 84. Mccarthy RN, and Jeffcott LB. Effects of Treadmill Exercise on Cortical Bone in the 3rd Metacarpus of Young Horses. Res Vet Sci 52: 28-37, 1992. 85. Meunier PJ, and Boivin G. Bone mineral density reflects bone mass but also the degree of mineralization of bone: Therapeutic implications. Bone 21: 373-377, 1997. 86. Muir P. Distal antebrachial fractures in toy-breed dogs. Comp Cont Educ Pract 19: 137-&, 1997. 87. Ohlsson C, Bengtsson BA, Isaksson OGP, Andreassen TT, and Slootweg MC. Growth hormone and bone. Endocr Rev 19: 55-79, 1998. 88. Olszta MJ, Cheng XG, Jee SS, Kumar R, Kim YY, Kaufman MJ, Douglas EP, and Gower LB. Bone structure and formation: A new perspective. Mat Sci Eng R 58: 77-116, 2007. 89. Parfitt AM. Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone 30: 5-7, 2002. 90. Rauch F, and Schoenau E. Changes in bone density during childhood and adolescence: An approach based on bone's biological organization. Journal of Bone and Mineral Research 16: 597-604, 2001. 91. Rice JC, Cowin SC, and Bowman JA. On the Dependence of the Elasticity and Strength of Cancellous Bone on Apparent Density. Journal of biomechanics 21: 155-168, 1988. 92. Ritchie RO, Buehler MJ, and Hansma P. Plasticity and toughness in bone. Phys Today 62: 41-47, 2009. 93. Ruff C, Holt B, and Trinkaus E. Who's afraid of the big bad wolff? 'Wolff is law' and bone functional adaptation. Am J Phys Anthropol 129: 484-498, 2004. 94. Schaffler MB, and Burr DB. Stiffness of Compact-Bone - Effects of Porosity and Density. Journal of biomechanics 21: 13-16, 1988. 95. Schaffler MB, Choi K, and Milgrom C. Aging and matrix microdamage accumulation in human compact bone. Bone 17: 521-525, 1995. 96. Seeman E. Pathogenesis of bone fragility in women and men. Lancet 359: 1841-1850, 2002. 97. Silva MJ, and Gibson LJ. Modeling the mechanical behavior of vertebral trabecular bone: Effects of age-related changes in microstructure. Bone 21: 191-199, 1997. 98. Skedros JG, and Baucom SL. Mathematical analysis of trabecular 'trajectories in apparent trajectorial structures: The unfortunate historical emphasis on the human proximal femur. J Theor Biol 244: 15-45, 2007. 99. Smith RW, and Walker RR. Femoral Expansion in Aging Women - Implications for Osteoporosis + Fractures. Science 145: 156-&, 1964. 100. Snow GR, and Anderson C. The Effects of Continuous Progestogen Treatment on Cortical Bone Remodeling Activity in Beagles. Calcified tissue international 37: 282-286, 1985. 101. Turner CH. Biomechanics of bone: Determinants of skeletal fragility and bone quality. Osteoporosis Int 13: 97-104, 2002. 102. van der Meulen MCH, Jepsen KJ, and Mikic B. Understanding bone strength: Size isn't everything. Bone 29: 101-104, 2001. 103. Vanderschueren D, Vandenput L, Boonen S, Lindberg MK, Bouillon R, and Ohlsson C. Androgens and bone. Endocr Rev 25: 389-425, 2004. 104. Voss K, Kull MA, Haessig M, and Montavon PM. Repair of long-bone fractures in cats and small dogs with the Unilock mandible locking plate system. Vet Comp Orthopaed 22: 398-405, 2009. 105. Waters DJ, Breur GJ, and Toombs JP. Treatment of Common Forelimb Fractures in Miniature-Breed and Toy-Breed Dogs. J Am Anim Hosp Assoc 29: 442-448, 1993. 106. Weinstein RS. True strength. Journal of Bone and Mineral Research 15: 621-625, 2000. 107. Welch JA, Boudrieau RJ, DeJardin LM, and Spodnick GJ. The intraosseous blood supply of the canine radius: Implications for healing of distal fractures in small dogs. Vet Surg 26: 57-61, 1997. 108. Wheeler DL, Graves JE, Miller GJ, Vandergriend RE, Wronski TJ, Powers SK, and Park HM. Effects of Running on the Torsional Strength, Morphometry, and Bone Mass of the Rat Skeleton. Med Sci Sport Exer 27: 520-529, 1995. 109. Wilson JW. Vascular Supply to Normal Bone and Healing Fractures. Semin Vet Med Surg 6: 26-38, 1991. 110. Yu J, DeCamp CE, and Rooks R. Improving surgical reduction in radial fractures using a 'dowel' pinning technique in miniature and toy breed dogs. Vet Comp Orthopaed 24: 45-49, 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63451 | - |
| dc.description.abstract | 橈尺骨骨折在體重小於5公斤的小型犬相當常見,特別是遠端三分之一處,經常因為輕微的創傷即發生骨折。骨骼強度主要由骨質密度與骨骼形態學決定,
骨骼形態學的關鍵又在截面積與皮質骨及髓質骨的比率與分布,長骨主要由皮質骨組成,負責負擔骨骼軸向壓力與支撐體重。 過去已有實驗證實小型犬與中大型犬的皮質髓質骨比率有顯著差異,臨床上又發現小型犬間發生骨折的比率有所不同,玩具貴賓犬與博美犬較為好發,本研究將利用放射線學比較不同品種(包含玩具貴賓犬、馬爾濟斯犬與博美犬)小型犬間皮質髓質骨是否也有明顯的差異性,以及是否有其他形態學上的差異。 實驗材料為調查台灣大學附屬動物醫院從2004年3月至2012年3月所有橈尺骨X光片中,玩具貴賓犬、馬爾濟斯犬與博美犬橈骨皮質髓質比率、橈骨截面積、饒骨長度、皮質骨厚度等數質加以計算,實驗結果顯示玩具貴賓犬與博美犬犬的皮質髓質骨比例較為相似,且同時與馬爾濟斯犬的皮質髓質骨比率有顯著差異性,另外也發現玩具貴賓犬橈骨較長,博美犬橈骨較細、形狀較扁等特徵。這些結果顯示,玩具貴賓犬與博美犬的橈骨截面積、轉動慣量、橈骨截面形狀及皮質骨厚度可能就是造成其橈骨骨折機率比馬爾濟斯犬高的原因。 | zh_TW |
| dc.description.abstract | Distal radial/ulnar fracture is a common orthopedic condition in toy breed dogs, which can be developed even after a short fall. The strength of bone is from its mineral deposit and geometrical parameters. The latter includes cross-sectional area (CSA), cross-sectional moments of inertia (Ip), mean cortical thickness, and cortical thicknesses. These factors all affect the mechanical behavior of bones. Toy Poodle, Maltese and Pomeranian are popular toy breed dogs in Taiwan. However, distal radial fractures were more common in Toy Poodles and Pomeranians. In previous studies, the ratio of cortex and medulla of radius is different between large, medium and toy breed dogs. However, geometrical differences of radius among different toy breed dogs have never been studied. The aim of the present study is to compare different parameters in these breeds of dogs. Radial/ulnar radiographic images of toy breed dogs collected from imaging database of the National Taiwan University Veterinary Hospital from March 2004 to March 2012 were used. Through ANOVA statistical analysis, significant differences were noted in bone length, bone diameter, and cortex/medulla ratio among different breeds. The results suggest that some morphological properties of the radius of toy Poodles and Pomeranians, namely cross-sectional area, cross-sectional moments of inertia, cross-sectional shape and cortical thicknesses, may contribute to their higher fracture rate than the Maltese dogs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:42:37Z (GMT). No. of bitstreams: 1 ntu-101-R99643006-1.pdf: 1817140 bytes, checksum: c4e51b8525eed7895646e373f3a3cc16 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書
誌謝 i 中文摘要 ii 英文摘要 iii 目錄 iv 圖次 v 表次 vii 第一章 序言 1 第二章 文獻探討 2 第一節 骨頭的結構與生理 2 第二節 骨頭形態學與骨折 16 第三節 小型犬橈骨骨折 32 第三章 小型犬橈骨皮質與髓質比率之品種差異性研究 39 第一節 前導實驗 39 第二節 實驗材料與方法 42 第四章 結果 45 第五章 討論 50 第六章 結論 56 參考文獻 60 | |
| dc.language.iso | zh-TW | |
| dc.subject | 橈骨 | zh_TW |
| dc.subject | 小型犬 | zh_TW |
| dc.subject | 骨折 | zh_TW |
| dc.subject | 形態學 | zh_TW |
| dc.subject | radius | en |
| dc.subject | toy breeds | en |
| dc.subject | geometrical parameter | en |
| dc.subject | fracture | en |
| dc.title | 小型犬橈骨皮質與髓質比率之品種差異性研究 | zh_TW |
| dc.title | Study of different ratio of radial cortex and medulla in toy breeds | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林永昌,簡基憲 | |
| dc.subject.keyword | 小型犬,橈骨,形態學,骨折, | zh_TW |
| dc.subject.keyword | toy breeds,geometrical parameter,radius,fracture, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-24 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 臨床動物醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床動物醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
