Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63433
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志宏(Jyh-Horng Chen)
dc.contributor.authorYen-Liang Liuen
dc.contributor.author劉彥良zh_TW
dc.date.accessioned2021-06-16T16:41:25Z-
dc.date.available2012-09-03
dc.date.copyright2012-09-03
dc.date.issued2012
dc.date.submitted2012-08-30
dc.identifier.citation[1] R. D. Black, T. A. Early, P. B. Roemer, O. M. Mueller, A. Mogro-Campero, G. A. Johnson, “A High-Temperature Superconducting Receiver for Nuclear Magnetic Resonance Microscopy,” Science, Vol. 259, 793-795, 1993
[2] J. G. van Heteren, T. W. James, L. C. Bourne, “Thin Film High Temperature Superconducting RF Coils for Low Field MRI,” Magnetic Resonance in Medicine, Vol. 32, 396-400, 1994
[3] J.-C. Ginefri, L. Darrasse, and P. Crozat, ”High-Temperature Superconducting Surface Coil for In Vivo Microimaging of Human Skin,” Magnetic Resonance in Medicine, Vol. 45, 376-382, 2001
[4] J. Wosik, L.-M. Xie, K. Nesteruk, L. Xue, J. A. Bankson, and J. D. Hazle, “Superconducting Single and Phased-Array Probes for Clinical and Research MRI,” IEEE Transactions on Applied Superconductivity, Vol. 13, 1050-1055, 2003
[5] H.-L. Lee, I.-T. Lin, J.-H. Chen, H.-E. Horng, and H.-C. Yang, “High-Tc Superconducting Receiving Coils for Nuclear Magnetic Resonance Imaging,” IEEE Transactions on Applied Superconductivity, Vol. 15, 1326-1329, 2005
[6] I.-T. Lin, C.-W. Hsieh, L.-W. Kuo, H.-C. Yang, H.-E. Horng, W.-H. Chang, and J.-H. Chen, “Implementation of Bi-2223 HTS Tapes as RF Coils for 3T MRI System,” IEEE EMBS 27th Annual International Conference, 2005
[7] S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain Magnetic Resonance Imaging with Contrast Dependent on Blood Oxygenation,” Proc. Natl. Acad. Sci. USA, Vol. 87, 9868-9872, 1990
[8] S. Ogawa, T.-M. Lee, A. S. Nayak, and P. Glynn, “Oxygen-Sensitive Contrast in Magnetic Resonance Imaging of Rodent Brain at High Magnetic Fields,” Magnetic Resonance in Medicine, Vol. 14, 68-78, 1990
[9] K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H.-M. Cheng, T. J. Brady, and B. R. Rosen, “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. Natl. Acad. Sci. USA, Vol. 89, 5675-5679, 1992
[10] B. Biswal, F. Z. Yetkin, V. M. Haughton, J. S. Hyde, “Functional Connectivity in the Motor Cortex of Resting Human Brain Using Echo-Planar MRI,” Magnetic Resonance in Medicine, Vol. 34, 537-541, 1995
[11] S. A. Huettel, A. W. Song, and G. McCarthy, Functional Magnetic Resonance Imaging, Sinauer Associates, Inc. (U.S.A.), 2004
[12] C. N. Chen and D. I. Hoult, Biomedical Magnetic Resonance Technology, Adam Hilger (U.S.A.), 1989
[13] T. W. Redpath and J. M. S. Hutchison, “Estimating Patient Dielectric Losses in NMR Images,” Magnetic Resonance Imaging, Vol. 2, 295-300, 1984
[14] A. Richtscheid, “Calculation of the Radiation Resistance of Loop Antennas with Sinusoidal Current Distribution,” IEEE Transactions on Antennas and Propagation, 1976
[15] D. I. Hoult and R. E. Richards, “The Signal-to-Noise Ratio of the Nuclear Magnetic Resonance Experiment,” Journal of Magnetic Resonance, Vol. 24, 71-85, 1976
[16] A. C. Wright, H. K. Song, and F. W. Wehrli, “In Vivo MR Micro Imaging with Conventional Radiofrequency Coils Cooled to 77 K,” Magnetic Resonance in Medicine, Vol. 43, 163-169, 2000
[17] J.-C. Ginefri, L. Darrasse, and P. Crozat, ”High-Temperature Superconducting Surface Coil for In Vivo Microimaging of Human Skin,” Magnetic Resonance in Medicine, Vol. 45, 376-382, 2001
[18] J. G. van Heteren, T. W. James, L. C. Bourne, “Thin Film High Temperature Superconducting RF Coils for Low Field MRI,” Magnetic Resonance in Medicine, Vol. 32, 396-400, 1994
[19] S. E. Hurlston, G. P. Cofer, G. A. Johnson, “Optimized Radiofrequency Coils for Increased Signal-to-Noise Ratio in Magnetic Resonance Microscopy,” International Journal of Imaging Systems and Technology, Vol. 8, 277-284, 1997
[20] J. Yuan and G. X. Shen, “Quality factor of Bi(2223) high-temperature superconductor tape coils at radio frequency,” Superconductor Science and Technology, Vol. 17, 333-336, 2004
[21] H. Maeda, Y. Tanaka, M. Fukutomi, and T. Asano, “A new high-T(c) oxide superconductor without a rare earth element,” Japanese Journal of Applied Physics, Vol. 27, 209-210, 1988
[22] “History of Superconductor Materials,” Coalition for the Commercial Application of Superconductors, Retrieved June 25th, 2012 from http://www.ccas-web.org/superconductivity/#image1
[23] J.-H. Chen and I.-T. Lin, “Cooling Apparatus for Nuclear Magnetic Resonance Imaging RF Coil,” United States Patent Application Publication, 2011
[24] D. I. Hoult and B. Tomanek, “Use of Mutually Inductive Coupling in Probe Design,” Concepts in Magnetic Resonance (Magnetic Resonance Engineering), Vol. 15, 262-285, 2002
[25] K. A. Williams, M. Magnuson, W. Majeed, S. M. LaConte, S. J. Peltier, X. Hu, S. D. Keilholz, “Comparison of α-chloralose, medetomidine, and isoflurane anesthesia for functional connectivity mapping in the rat,” Magnetic Resonance Imaging, Vol. 28, 995-1003, 2010
[26] C. P. Pawela, B. B. Biswal, Y. R. Cho, D. S. Kao, R. Li, S. R. Jones, M. L. Schulte, H. S. Matloub, A. G. Hudetz, and J. S. Hyde, “Resting-State Functional Connectivity of the Rat Brain,” Magnetic Resonance in Medicine, Vol. 59, 1021-1029, 2008
[27] B. B. Biswal, J. V. Kylen and J. S. Hyde, “Simultaneous Assessment and BOLD Signals in Resting-State Functional Connectivity Maps,” NMR in Biomedicine, Vol. 10, 165-170, 1997
[28] B. Biswal, E. A. DeYoe, J. S. Hyde, “Reduction of Physiological Fluctuations in fMRI Using Digital Filters,” Magnetic Resonance in Medicine, Vol. 35, 107-113, 1996
[29] A. M. Smith, B. K. Lewis, U. E. Ruttimann, F. Q. Ye, T. M. Sinnwell, Y. Yang, J. H. Duyn, and J. A. Frank, “Investigation of Low Frequency Drift in fMRI Signal,” NeuroImage, Vol. 9, 526-533, 1999
[30] J. B. Mandeville, J. J. A. Marota, B. E. Kosofsky, J. R. Keltner, R. Weissleder, B. R. Rosen, R. M. Weisskoff, “Dynamic Functional Imaging of Relative Cerebral Blood Volume During Rat Forepaw Stimulation,” Magnetic Resonance in Medicine, Vol. 39, 615-624, 1998
[31] A. C. Silva, S.-P. Lee, G. Yang, C. Iadecola, and S.-G. Kim, “Simultaneous Blood Oxygenation Level-Dependent and Cerebral Blood Flow Functional Magnetic Resonance Imaging During Forepaw Stimulation in the Rat,” Journal of Cerebral Blood Flow and Metabolism, Vol. 19, 871-879, 1999
[32] F. Zhao, T. Zhao, L. Zhou, Q. Wu, and X. Hu, “BOLD study of stimulation-induced neural activity and resting-state connectivity in medetomidine-sedated rat,” NeuroImage, Vol. 39, 248-260, 2008
[33] I.-T. Lin, H.-C. Yang, and J.-H. Chen, “A 40-mm High-Temperature Superconducting Surface Resonator in a 3-T MRI System: Simulation and Measurements,” IEEE Transactions on Applied Superconductivity, Vol. 21, 2011
[34] I.-T. Lin, C.-W. Hsieh, L.-W. Kuo, H.-C. Yang, C. Yao, W.-H. Chang, and J.-H. Chen, “Implementation of High-Temperature Superconducting tapes RF coils for 3T MRI system,” Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 2005
[35] G. Paxinos and C. Watson, The Rat Brain , 5th edition, Academic Press, 2005
[36] I.-T. Lin, H.-C. Yang, L.-W. Kuo, C.-W. Hsieh, C. Yao, W.-H. Chang, C.-J. Chen, and J.-H. Chen, “Non-invasive Fiber Tracking on Diffusion Tensor MRI Using High-Temperature Superconducting Tape RF Coil,” Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 2005
[37] C. Baltes, S. Bosshard, T. Mueggler, D. Ratering, and M. Rudin, “Increased blood oxygen level-dependent (BOLD) sensitivity in the mouse somatosensory cortex during electrical forepaw stimulation using a cryogenic radiofrequency probe,” NMR in Biomedicine, Vol. 24, 439-446, 2011
[38] S. C. Bosshard, C. Baltes, M. T. Wyss, T. Mueggler, B. Weber, and M. Rudin, “Assessment of brain responses to innocuous and noxious electrical forepaw stimulation in mice using BOLD fMRI,” PAIN, Vol. 151, 655-663, 2010
[39] J. Wosik, L.-M. Xie, K. Nesteruk, L. Xue, J. A. Bankson, and J. D. Hazle, “Superconducting Single and Phased-Array Probes for Clinical and Research MRI,” IEEE Transactions on Applied Superconductivity, Vol. 13, 2003
[40] J.-C. Ginefri, M. Poirier-Quinot, O. Girard, and L. Darrasse, “Technical aspects: Development, manufacture and installation of a cryo-cooled HTS coil system for high-resolution in-vivo imaging of the mouse,” Methods, Vol. 43, 54-67, 2007
[41] S. D. Keilholz, A. C. Silva, M. Raman, H. Merkle, and A. P. Koretsky, “BOLD and CBV-Weighted Functional Magnetic Resonance Imaging of the Rat Somatosensory System,” Magnetic Resonance in Medicine, Vol. 55, 316-324, 2006
[42] P. Herman, B. G. Sanganahalli, F. Hyder, and A. Eke, “Fractal analysis of spontaneous fluctuation of the BOLD signal in rat brain,” NeuroImage, Vol. 58, 1060-1069, 2011
[43] C. P. Pawela, B. B. Biswal, A. G. Hudetz, R. Li, S. R. Jones, Y. R. Cho, H. S. Matloub, and J. S. Hyde, “Interhemispheric neuroplasticity following limb deafferentation detected by resting-state functional connectivity magnetic resonance imaging (fcMRI) and functional magnetic resonance imaging (fMRI),” NeuroImage, Vol. 49, 2467-2478, 2010
[44] C. Triantafyllou, R. D. Hoge, G. Krueger, C. J. Wiggins, A. Potthast, G. C. Wiggins, and L. L. Wald, “Comparison of physiological noise at 1.5T, 3T and 7T and optimization of fMRI acquisition parameters,” NeuroImage, Vol. 243-250, 2005
[45] G. Kruger and G. H. Glover, “Physiological Noise in Oxygenation-Sensitive Magnetic Resonance Imaging,” Magnetic Resonance in Medicine, 631-637, 2001
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63433-
dc.description.abstract由於近年來人們渴望了解大腦運作的謎團,使得功能性磁振造影(Functional Magnetic Resonance Imaging, fMRI)成為蓬勃發展之科學領域。然而,功能性磁振造影來自血氧濃度(Blood Oxygen Level-Dependent, BOLD)變化產生的訊號非常微弱,極易受雜訊之影響。因此,若能降低功能性磁振造影中的雜訊,其功能性對比和功能性連結的顯著性將大幅增加。
為了改善功能性磁振造影的準確度與可靠度,本研究於7 Tesla (T)動物用磁振造影(Magnetic Resonance Imaging, MRI)系統建立一個新穎的高溫超導射頻表面線圈平台,並將其應用在功能性磁振造影實驗中。因超導體於臨界溫度下電阻極低的特性,使磁振造影系統中之熱雜訊得以大幅下降。
相較於相同大小、形狀之自製銅射頻表面線圈,本論文以高溫超導射頻表面線圈平台獲得約1.8倍的大鼠腦部解剖影像訊雜比增益,於大鼠前掌電刺激功能性磁振造影實驗中,高溫超導線圈亦展現約1.5倍之功能性對比增益。此外,在靜息態功能性磁振造影實驗的時域上也得到近1.4倍的訊雜比增益,且可以觀察到以高溫超導射頻表面線圈平台掃描得到較自製銅射頻表面線圈完整且明顯的大腦運動感覺系統(Sensorimotor System)功能性連結,由於雜訊下降包含運動皮質區(Motor Cortex, M1/M2)、感覺皮質區(Somatosensory Cortex, S1/S2)和視丘(Thalamus)的連結都更加顯著。
本研究結果顯示,當磁振造影系統中之熱雜訊因使用高溫超導射頻表面線圈平台而降低時,不論是影像訊雜比、時域訊雜比、功能性對比與功能性連結,皆有大幅的改善,使得過去受雜訊掩蓋的大腦功能區或連結,能透過使用高溫超導射頻表面線圈平台而更顯著,未來人們將透過此平台對大腦有更進一步的了解。
zh_TW
dc.description.abstractRecently, the functional magnetic resonance imaging (fMRI) has become a booming technique in the desire of understanding our mysterious brains. However, the blood oxygen level-dependent (BOLD) signal of the fMRI studies is very weak which could be influenced by noise easily. Therefore, if the noise of the fMRI studies could be reduced, the functional contrast-to-noise ratio (CNR) and the significance of the functional connectivity will considerably increase.
In order to improve the accuracy and reliability of the fMRI results, the high-temperature superconducting (HTS) radio-frequency (RF) surface coil platform in 7 Tesla (T) animal Magnetic Resonance Imaging (MRI) system served as a novel implementation for the fMRI studies. In the reason, the thermal noise of the MRI system could be reduced for its extremely low resistance attribute under critical temperature (Tc).
The results showed that the rat brain anatomy image SNR gain was about 1.8 times by using HTS RF surface coil platform compared to homemade copper RF surface coil of similar size and shape. In the block-design fMRI experiment of forepaws electrical stimulation, the HTS RF surface coil platform demonstrated a 1.5-time functional CNR gain. Besides, the temporal SNR was also improved by using HTS RF surface coil platform with approximately 1.4 times gain in the resting-state fMRI experiment. Furthermore, the functional connectivity of sensorimotor system, including motor cortex (M1/M2), somatosensory cortex (S1/S2), and thalamus, also became much more significant due to the thermal noise reduction as scanned by HTS RF surface coil platform.
As shown in the results of this study, the image SNR, temporal SNR, functional CNR, and the significance of the functional connectivity were all improved greatly as the thermal noise was reduced by using HTS RF surface coil platform. The brain functional connectivity would be revealed more accurately using the HTS RF surface coil platform. In the future, more information and knowledge, including reliable brain network causality analysis, would be feasible by using the high SNR HTS RF surface coil platform.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:41:25Z (GMT). No. of bitstreams: 1
ntu-101-R98945030-1.pdf: 11294774 bytes, checksum: b80da9e7ad99fbd40ca0764f3ae097a5 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xiii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Objectives and Structure of Thesis 2
Chapter 2 Research Background 3
2.1 Introduction of the Functional MRI 3
2.2 Noise Sources of the fMRI 7
2.3 Theories of HTS RF Surface Coil 9
Chapter 3 Material and Methods 14
3.1 HTS Transceive RF Surface coil Platform 14
3.1.1 HTS Material 14
3.1.2 The Design of HTS Transceiver RF Surface Coil Platform 15
3.2 MR Imaging Acquisition System 19
3.3 The Functional MRI Experiment Design 20
3.3.1 MRI Experiment Subject 20
3.3.2 Subject Preparation and Set-up 20
3.3.3 MRI Experiment Steps 21
3.3.4 The Resting-state fMRI 23
3.3.5 The Block-design fMRI Experiment of Forepaws Electrical Stimulation 23
3.4 The Analysis Methods of the fMRI Results 24
3.4.1 The Analysis of the Resting-state fMRI Results 24
3.4.2 The Analysis of the Block-design fMRI Experiment of Forepaws Electrical Stimulation Results 25
Chapter 4 Results 26
4.1 Quality Factors of RF Coils 26
4.2 Anatomy Results 27
4.3 The Results of the Block-design fMRI Experiment of Forepaws Electrical Stimulation 30
4.4 The Resting-state fMRI Results 34
Chapter 5 Discussions 36
5.1 The Comparison of Q-values, SNR, and Anatomy 36
5.2 The Block-design fMRI Experiment of Forepaws Electrical stimulation 41
5.2.1 The Active Regions as Forepaws Stimulated 41
5.2.2 Analysis of the Time-courses in the Active Regions 42
5.3 The Resting-state fMRI 43
5.3.1 Sensorimotor System Functional Connectivity Map 43
5.3.2 The Noise Analysis of Resting-state fMRI 43
5.3.3 Regional Pairwise Correlation Coefficient Matrices Analysis 45
5.4 Within-Subject fMRI Experiment Comparison 49
5.5 The Challenges of Implementing a HTS RF coil platform on a fMRI Study 54
Chapter 6 Conclusions and Future Works 56
6.1 Conclusions 56
6.2 Future Works 57
REFERENCES 59
dc.language.isoen
dc.subject功能性連結zh_TW
dc.subject功能性對比zh_TW
dc.subject電刺激功能性磁振造影zh_TW
dc.subject靜息態功能性磁振造影zh_TW
dc.subject訊雜比zh_TW
dc.subject高溫超導射頻表面線圈zh_TW
dc.subjectResting-state fMRIen
dc.subjectFunctional Connectivityen
dc.subjectHTS RF Surface Coilen
dc.subjectFunctional CNRen
dc.subjectBlock-design fMRI of Forepaws Electrical Stimulationen
dc.subjectSNRen
dc.title以高溫超導射頻線圈平台於7T磁場進行大鼠腦部功能性磁振造影之研究zh_TW
dc.titleA Rat Brain Functional MRI Study Using High-Temperature Superconducting Radio-Frequency Coil Platform in a 7T MRIen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.coadvisor楊鴻昌(Hong-Chang Yang)
dc.contributor.oralexamcommittee梁庚辰,劉鶴齡,陳右穎,吳昌衛
dc.subject.keyword高溫超導射頻表面線圈,訊雜比,靜息態功能性磁振造影,電刺激功能性磁振造影,功能性對比,功能性連結,zh_TW
dc.subject.keywordHTS RF Surface Coil,SNR,Resting-state fMRI,Block-design fMRI of Forepaws Electrical Stimulation,Functional CNR,Functional Connectivity,en
dc.relation.page64
dc.rights.note有償授權
dc.date.accepted2012-08-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
11.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved