請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63406完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孔祥智(John T. Kung) | |
| dc.contributor.author | Chen-Cheng Lee | en |
| dc.contributor.author | 李振誠 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:39:44Z | - |
| dc.date.available | 2016-03-04 | |
| dc.date.copyright | 2013-03-04 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-09-11 | |
| dc.identifier.citation | Aichele, P., Zinke, J., Grode, L., Schwendener, R.A., Kaufmann, S.H., and Seiler, P. (2003). Macrophages of the splenic marginal zone are essential for trapping of blood-borne particulate antigen but dispensable for induction of specific T cell responses. J Immunol 171, 1148-1155.
Aoshi, T., Zinselmeyer, B.H., Konjufca, V., Lynch, J.N., Zhang, X., Koide, Y., and Miller, M.J. (2008). Bacterial entry to the splenic white pulp initiates antigen presentation to CD8+ T cells. Immunity 29, 476-486. Auerbuch, V., Brockstedt, D.G., Meyer-Morse, N., O'Riordan, M., and Portnoy, D.A. (2004). Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes. J Exp Med 200, 527-533. Belperron, A.A., Dailey, C.M., Booth, C.J., and Bockenstedt, L.K. (2007). Marginal zone B-cell depletion impairs murine host defense against Borrelia burgdorferi infection. Infect Immun 75, 3354-3360. Bhardwaj, V., Kanagawa, O., Swanson, P.E., and Unanue, E.R. (1998). Chronic Listeria infection in SCID mice: requirements for the carrier state and the dual role of T cells in transferring protection or suppression. J Immunol 160, 376-384. Biswas, P.S., Pedicord, V., Ploss, A., Menet, E., Leiner, I., and Pamer, E.G. (2007). Pathogen-specific CD8 T cell responses are directly inhibited by IL-10. J Immunol 179, 4520-4528. Bosio, C.M., Gardner, D., and Elkins, K.L. (2000). Infection of B cell-deficient mice with CDC 1551, a clinical isolate of Mycobacterium tuberculosis: delay in dissemination and development of lung pathology. J Immunol 164, 6417-6425. Bosschaerts, T., Guilliams, M., Stijlemans, B., Morias, Y., Engel, D., Tacke, F., Herin, M., De Baetselier, P., and Beschin, A. (2010). Tip-DC development during parasitic infection is regulated by IL-10 and requires CCL2/CCR2, IFN-gamma and MyD88 signaling. PLoS pathogens 6, e1001045. Brummel, R., and Lenert, P. (2005). Activation of marginal zone B cells from lupus mice with type A(D) CpG-oligodeoxynucleotides. J Immunol 174, 2429-2434. Carrero, J.A., Calderon, B., and Unanue, E.R. (2004). Type I interferon sensitizes lymphocytes to apoptosis and reduces resistance to Listeria infection. J Exp Med 200, 535-540. Carrero, J.A., Calderon, B., and Unanue, E.R. (2006). Lymphocytes are detrimental during the early innate immune response against Listeria monocytogenes. J Exp Med 203, 933-940. Carrero, J.A., and Unanue, E.R. (2006). Lymphocyte apoptosis as an immune subversion strategy of microbial pathogens. Trends Immunol 27, 497-503. Chen, F.L., and Kung, J.T. (1996). Deficient CD4+ T cell proliferation in the class 1 MHC-restricted 2C TCR-transgenic mouse. J Immunol 156, 2036-2044. Chen, Y.T., and Kung, J.T. (2005). CD1d-independent developmental acquisition of prompt IL-4 gene inducibility in thymus CD161(NK1)-CD44lowCD4+CD8- T cells is associated with complementarity determining region 3-diverse and biased Vbeta2/Vbeta7/Vbeta8/Valpha3.2 T cell receptor usage. J Immunol 175, 6537-6550. Cyktor, J.C., and Turner, J. (2011). Interleukin-10 and immunity against prokaryotic and eukaryotic intracellular pathogens. Infect Immun 79, 2964-2973. Dai, W.J., Bartens, W., Kohler, G., Hufnagel, M., Kopf, M., and Brombacher, F. (1997a). Impaired macrophage listericidal and cytokine activities are responsible for the rapid death of Listeria monocytogenes-infected IFN-gamma receptor-deficient mice. J Immunol 158, 5297-5304. Dai, W.J., Kohler, G., and Brombacher, F. (1997b). Both innate and acquired immunity to Listeria monocytogenes infection are increased in IL-10-deficient mice. J Immunol 158, 2259-2267. Dalton, C.B., Austin, C.C., Sobel, J., Hayes, P.S., Bibb, W.F., Graves, L.M., Swaminathan, B., Proctor, M.E., and Griffin, P.M. (1997). An outbreak of gastroenteritis and fever due to Listeria monocytogenes in milk. The New England journal of medicine 336, 100-105. Dalwadi, H., Wei, B., Schrage, M., Spicher, K., Su, T.T., Birnbaumer, L., Rawlings, D.J., and Braun, J. (2003). B cell developmental requirement for the G alpha i2 gene. J Immunol 170, 1707-1715. Dresing, P., Borkens, S., Kocur, M., Kropp, S., and Scheu, S. (2010). A fluorescence reporter model defines 'Tip-DCs' as the cellular source of interferon beta in murine listeriosis. PLoS One 5, e15567. Gellin, B.G., and Broome, C.V. (1989). Listeriosis. Jama 261, 1313-1320. Guay, H.M., Mishra, R., Garcea, R.L., Welsh, R.M., and Szomolanyi-Tsuda, E. (2009). Generation of protective T cell-independent antiviral antibody responses in SCID mice reconstituted with follicular or marginal zone B cells. J Immunol 183, 518-523. Han, H., Tanigaki, K., Yamamoto, N., Kuroda, K., Yoshimoto, M., Nakahata, T., Ikuta, K., and Honjo, T. (2002). Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int Immunol 14, 637-645. Hu, J., Sahu, N., Walsh, E., and August, A. (2007). Memory phenotype CD8+ T cells with innate function selectively develop in the absence of active Itk. Eur J Immunol 37, 2892-2899. Kang, S.J., Liang, H.E., Reizis, B., and Locksley, R.M. (2008). Regulation of hierarchical clustering and activation of innate immune cells by dendritic cells. Immunity 29, 819-833. Kelly, J.P., and Bancroft, G.J. (1996). Administration of interleukin-10 abolishes innate resistance to Listeria monocytogenes. Eur J Immunol 26, 356-364. Kraal, G., and Mebius, R. (2006). New insights into the cell biology of the marginal zone of the spleen. Int Rev Cytol 250, 175-215. Lecuit, M., and Cossart, P. (2002). Genetically-modified-animal models for human infections: the Listeria paradigm. Trends in molecular medicine 8, 537-542. Linnan, M.J., Mascola, L., Lou, X.D., Goulet, V., May, S., Salminen, C., Hird, D.W., Yonekura, M.L., Hayes, P., Weaver, R., et al. (1988). Epidemic listeriosis associated with Mexican-style cheese. The New England journal of medicine 319, 823-828. Lopes-Carvalho, T., and Kearney, J.F. (2004). Development and selection of marginal zone B cells. Immunol Rev 197, 192-205. Lu, T.T., and Cyster, J.G. (2002). Integrin-mediated long-term B cell retention in the splenic marginal zone. Science 297, 409-412. Madan, R., Demircik, F., Surianarayanan, S., Allen, J.L., Divanovic, S., Trompette, A., Yogev, N., Gu, Y., Khodoun, M., Hildeman, D., et al. (2009). Nonredundant roles for B cell-derived IL-10 in immune counter-regulation. J Immunol 183, 2312-2320. Martin, F., and Kearney, J.F. (2002). Marginal-zone B cells. Nat Rev Immunol 2, 323-335. Mebius, R.E., and Kraal, G. (2005). Structure and function of the spleen. Nat Rev Immunol 5, 606-616. Mengaud, J., Ohayon, H., Gounon, P., Mege, R.M., and Cossart, P. (1996). E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84, 923-932. Molina, P.E. (2001). Opiate modulation of hemodynamic, hormonal, and cytokine responses to hemorrhage. Shock 15, 471-478. Myers, J.T., Tsang, A.W., and Swanson, J.A. (2003). Localized reactive oxygen and nitrogen intermediates inhibit escape of Listeria monocytogenes from vacuoles in activated macrophages. J Immunol 171, 5447-5453. Neves, P., Lampropoulou, V., Calderon-Gomez, E., Roch, T., Stervbo, U., Shen, P., Kuhl, A.A., Loddenkemper, C., Haury, M., Nedospasov, S.A., et al. (2010). Signaling via the MyD88 adaptor protein in B cells suppresses protective immunity during Salmonella typhimurium infection. Immunity 33, 777-790. O'Connell, R.M., Saha, S.K., Vaidya, S.A., Bruhn, K.W., Miranda, G.A., Zarnegar, B., Perry, A.K., Nguyen, B.O., Lane, T.F., Taniguchi, T., et al. (2004). Type I interferon production enhances susceptibility to Listeria monocytogenes infection. J Exp Med 200, 437-445. Pamer, E.G. (2004). Immune responses to Listeria monocytogenes. Nat Rev Immunol 4, 812-823. Perona-Wright, G., Mohrs, K., Szaba, F.M., Kummer, L.W., Madan, R., Karp, C.L., Johnson, L.L., Smiley, S.T., and Mohrs, M. (2009). Systemic but not local infections elicit immunosuppressive IL-10 production by natural killer cells. Cell Host Microbe 6, 503-512. Portnoy, D.A., Jacks, P.S., and Hinrichs, D.J. (1988). Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med 167, 1459-1471. Ranson, T., Bregenholt, S., Lehuen, A., Gaillot, O., Leite-de-Moraes, M.C., Herbelin, A., Berche, P., and Di Santo, J.P. (2005). Invariant V alpha 14+ NKT cells participate in the early response to enteric Listeria monocytogenes infection. J Immunol 175, 1137-1144. Rayamajhi, M., Humann, J., Penheiter, K., Andreasen, K., and Lenz, L.L. (2010). Induction of IFN-alphabeta enables Listeria monocytogenes to suppress macrophage activation by IFN-gamma. J Exp Med 207, 327-337. Roos, D., and Loos, J.A. (1970). Changes in the carbohydrate metabolism of mitogenically stimulated human peripheral lymphocytes. I. Stimulation by phytohaemagglutinin. Biochim Biophys Acta 222, 565-582. Rothe, J., Lesslauer, W., Lotscher, H., Lang, Y., Koebel, P., Kontgen, F., Althage, A., Zinkernagel, R., Steinmetz, M., and Bluethmann, H. (1993). Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 364, 798-802. Schmid-Hempel, P., and Frank, S.A. (2007). Pathogenesis, virulence, and infective dose. PLoS pathogens 3, 1372-1373. Serbina, N.V., and Pamer, E.G. (2008). Coordinating innate immune cells to optimize microbial killing. Immunity 29, 672-674. Serbina, N.V., Salazar-Mather, T.P., Biron, C.A., Kuziel, W.A., and Pamer, E.G. (2003). TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19, 59-70. Shiloh, M.U., MacMicking, J.D., Nicholson, S., Brause, J.E., Potter, S., Marino, M., Fang, F., Dinauer, M., and Nathan, C. (1999). Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 10, 29-38. Stockinger, S., Kastner, R., Kernbauer, E., Pilz, A., Westermayer, S., Reutterer, B., Soulat, D., Stengl, G., Vogl, C., Frenz, T., et al. (2009). Characterization of the interferon-producing cell in mice infected with Listeria monocytogenes. PLoS pathogens 5, e1000355. Su, Y.C., Lee, C.C., and Kung, J.T. (2010). Effector function-deficient memory CD8+ T cells clonally expand in the liver and give rise to peripheral memory CD8+ T cells. J Immunol 185, 7498-7506. Tanigaki, K., Han, H., Yamamoto, N., Tashiro, K., Ikegawa, M., Kuroda, K., Suzuki, A., Nakano, T., and Honjo, T. (2002). Notch-RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nat Immunol 3, 443-450. Theriot, J.A., Mitchison, T.J., Tilney, L.G., and Portnoy, D.A. (1992). The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature 357, 257-260. Trinchieri, G., and Sher, A. (2007). Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 7, 179-190. Tripp, C.S., Wolf, S.F., and Unanue, E.R. (1993). Interleukin 12 and tumor necrosis factor alpha are costimulators of interferon gamma production by natural killer cells in severe combined immunodeficiency mice with listeriosis, and interleukin 10 is a physiologic antagonist. Proc Natl Acad Sci U S A 90, 3725-3729. Unkeless, J.C. (1979). Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J Exp Med 150, 580-596. Vazquez-Boland, J.A., Kuhn, M., Berche, P., Chakraborty, T., Dominguez-Bernal, G., Goebel, W., Gonzalez-Zorn, B., Wehland, J., and Kreft, J. (2001). Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14, 584-640. Xu, H., Chun, T., Choi, H.J., Wang, B., and Wang, C.R. (2006). Impaired response to Listeria in H2-M3-deficient mice reveals a nonredundant role of MHC class Ib-specific T cells in host defense. J Exp Med 203, 449-459. You, Y., Myers, R.C., Freeberg, L., Foote, J., Kearney, J.F., Justement, L.B., and Carter, R.H. (2011). Marginal zone B cells regulate antigen capture by marginal zone macrophages. J Immunol 186, 2172-2181. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63406 | - |
| dc.description.abstract | 後天免疫系統缺乏之 Rag-1 剔除小鼠對於單核球增生性李斯特菌感染具有極高
之耐受性。為了進一步暸解淋巴球在此一特殊現象中扮演的角色,本文利用缺少單一淋巴球系之基因剔除小鼠研究此一現象。相對於缺乏 T 淋巴球系之小鼠,缺乏 B 淋巴球之小鼠感染李斯特菌後呈現較低的細菌數與較高的存活率。其趨勢與Rag-1 剔除小鼠相似。接受邊緣區 B 細胞移植之 Rag-1 剔除小鼠與第十型介白素剔除小鼠具有較高之第十型介白素以及李斯特菌數, 並且γ-干擾素呈現下降的現象;反之接受濾泡性 B 細胞移植之小鼠則無上述現像。另外,第十型介白素抗體能夠中和此一邊緣區 B 細胞依賴型之現象。本文亦利用邊緣區 B 細胞缺乏之B 細胞專一型 Rbpj 剔除小鼠,研究邊緣區 B 細胞對李斯特菌感染所造成之影響。李斯特菌感染之邊緣區 B 細胞缺乏之基因剔除小鼠,呈現與 B 細胞缺乏之小鼠相似之現象,包含較低的李斯特菌數以及更高的存活率。有鑒於已知許多型細胞能夠產生第十型介白素,本文在此更進一步指出邊緣區 B 細胞才是李斯特菌感染時主要產生第十型介白素之細胞,並且造成宿主對於李斯特菌之感受性上升。一般認為,邊緣區 B 細胞在感染疾病中是扮演保護者之角色﹔邊緣區 B 細胞提高宿主對李斯特菌感受性之現象反而與此一觀念大相庭逕。本文提出強力證據,證明邊緣區 B 細胞在李斯特菌感染中扮演不利宿主的角色,此一現象很可能亦發生於其他類型之感染疾病。邊緣區 B 細胞對於其他類型之感染症所扮演之角色,則尚須進一步之研究。 | zh_TW |
| dc.description.abstract | Rag-1-KO mice are highly resistant to Listeria monocytogenes infection. The role played by the many Rag-1-dependent lymphocyte lineages was studied using a genetic approach in which each Rag-1-dependent lymphocyte lineage was eliminated one at a time. Only B cell-deficient Igh-KO mice displayed reduced bacterial load and improved survival upon Listeria infection. Listeria infection of Rag-1-KO and Il-10-KO hosts that had been adoptively transferred with marginal zone B cells, but not follicular B cells, resulted in heightened bacterial load which was accompanied by increased Il-10 and reduced Ifn-γ production. This marginal zone B cell-dependent increase in bacterial load was eliminated by anti-Il-10 mAb. In addition, Listeria infection of marginal zone B cell-deficient Rbpj-cKO mice showed decreased bacterial load and increased survival. Whereas multiple cell types have been shown to be capable of Il-10 production, our results show that the marginal B cell is the most dominant and relevant Il-10 source in the context of Listeria susceptibility. In marked contrast to the generally protective nature of marginal zone B cells in defending against pathogenic infection, our results demonstrate a detrimental role they play in Listeria infection and possibly other infections also. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:39:44Z (GMT). No. of bitstreams: 1 ntu-101-D95449002-1.pdf: 2356891 bytes, checksum: 899d3003e275fce7b2af4ef36fd161bf (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Table of Contents
Thesis Defense Committee Examination Report …………………………………… i Acknowledgement ……………………………………………………………………. ii Abstract (Chinese) …………………………………………………………………... iv Abstract ………………………………………………………………………………. v Abbreviation ……………………………………………………………………….... vii Table of Contents …………………………………………………………………… viii List of Figures ………………………………………………………………………. xiv Chapter I. Introduction …………………………………………………………….. 1 1.1 Listeria monocytogenes (Lm) ………………………………………………… 2 1.2 Detrimental roles of lymphocytes in Lm infection …………………………… 4 1.3 Innate immune responses against Lm infection ………………………………. 5 1.4 Innate immune responses favored Lm infection ………………………………. 6 1.5 Protective roles of marginal zone B cells in infectious diseases ………………. 7 1.6 Role of MZB cells in systemic Lm infection: As resistance or susceptibility factors? ………………………………………………………………………… 8 Chapter II Materials and Methods ………………………………………………… 10 Part 1 Materials ………………………………………………………………….. 11 2.1.1 Mice ……………………………………………………………………… 11 2.1.2 Antibodies ……………………………………………………………….. 12 2.1.3 Primers …………………………………………………………………… 13 2.1.4 Reagents …………………………………………………………………. 14 2.1.5 Equipments………………………………………………………………. 16 Part 2 Methods …………………………………………………………………… 18 2.2.1 Genotyping of MZB-deficient mice ……………………………………... 18 2.2.2 Listeria infection ………………………………………………………… 18 2.2.3 Preparation of live and heat-killed (HK) Lm …………………………..... 19 2.2.4 Complement-mediated depletion of T cells ……………………………... 20 2.2.5 Sorting of non-B/T, FOB and MZB cells ……………………………….. 20 2.2.6 Il-10 induction in vitro and measurements …………………………….... 21 2.2.7 Tissue cytokine measurements …………………………………………... 22 2.2.8 Il-10 neutralization in vivo ………………………………………………. 22 2.2.9 Determination of spleen and liver CFU …………………………………. 23 2.2.10 Histological immunofluorescent analysis …………………………….... 23 2.2.11 Statistical analysis …………………………………………………….... 25 Chapter III Results ………………………………………………………………….. 26 3.1 T cells are not susceptibility factors in Lm infection ………………………….. 27 3.2 B cell-deficient mice display increased resistance to Lm infection ………….... 27 3.3 Il-10 production correlates with increase of host susceptibility to Lm infection ……………………………………………………………………….. 28 3.4 Lm-infected Igh-KO mice show decreased Il-10 production …………………. 30 3.5 MZB cells are major Il-10 producing cells in responding to Lm stimulation .... 31 3.6 MZ, but not FO, B cells regulate innate immune responses that restrain Lm infection ……………………………………………………………………….. 33 3.7 Il-10 is necessary for MZB cells regulating innate immunity battling with Lm infection ……………………………………………………………………….. 35 3.8 MZB cells inhibit innate immunity against Lm through Il-10 production ……. 36 3.9 MZB cell-deficient Rbpj-cKO mice display increased resistance to Lm infection ……………………………………………………………………….. 38 3.10 Missing of MZB cell is responsible for increased resistance on Rbpj-cKO mice …………………………………………………………………………. 39 3.11 Lm trapping by spleen is unaltered in the Rbpj-cKO mice ………………….. 39 3.12 Increased Lm resistance in Rbpj-cKO mice is correlated with reduced Il-10 but not Ifn-α production ………………………………………………………… 41 3.13 Il-10 neutralization further reduces bacterial load in Lm-infected Ifnar-KO mice …………………………………………………………………………. 42 3.14 Migration of DCs Lm induced into PALS is unaltered in the Rbpj-cKO and Il-10-KO mice ………………………………………………………………. 43 3.15 Development of Tip-DC requires MZB cells and Il-10 …………………….. 44 Chapter IV Discussion ……………………………………………………………… 46 4.1 MZB cells are a major Il-10 source relevant to host susceptibility on Lm infection ………………………………………………………………………. 47 4.2 Detrimental effects of Il-10 of MZB cell on Lm infection is independent of Ifnar signaling ………………………………………………………………………. 49 4.3 Not yet defined regulations Il-10 possessed in Lm infection …………………. 51 4.4 Tissue specific innate immune responses induced by Lm infection …………... 53 4.5 Detrimental role of MZ B cells: Is it applicable to infectious agents except Lm? …………………………………………………………………………..... 55 4.6 Model: Marginal zone B cells play as a detrimental first line defense in Lm infection ……………………………………………………………………….. 57 References ………………………………………………………………………….... 59 Figures ……………………………………………………………………………….. 71 Appendix ……………………………………………………………………………... 98 | |
| dc.language.iso | en | |
| dc.subject | γ-干擾素 | zh_TW |
| dc.subject | Rag-1 剔除小鼠 | zh_TW |
| dc.subject | 邊緣區 B 細胞 | zh_TW |
| dc.subject | 單核球增生性李斯特菌 | zh_TW |
| dc.subject | 第十型介白 素 | zh_TW |
| dc.subject | interferon-γ | en |
| dc.subject | Rag-1-KO | en |
| dc.subject | Listeria monocytogenes | en |
| dc.subject | interleukin-10 | en |
| dc.subject | marginal zone B cells | en |
| dc.title | 邊緣區B細胞為單核球增多性李斯特菌感受性之主要介白素10來源 | zh_TW |
| dc.title | Marginal zone B cell is a major source of Il-10 in Listeria monocytogenes susceptibility | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 果伽蘭(Chia-Lam Kuo),顧家?(Chia-Chi Ku),繆希椿(Shi-Chuen Miaw),伍安怡(Betty Wu-Hsieh) | |
| dc.subject.keyword | Rag-1 剔除小鼠,邊緣區 B 細胞,單核球增生性李斯特菌,第十型介白 素,γ-干擾素, | zh_TW |
| dc.subject.keyword | Rag-1-KO,marginal zone B cells,Listeria monocytogenes,interleukin-10,interferon-γ, | en |
| dc.relation.page | 98 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-09-11 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
