請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63384
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林江珍(Jiang-Jen Lin) | |
dc.contributor.author | Jiun-Chiou Wei | en |
dc.contributor.author | 魏郡萩 | zh_TW |
dc.date.accessioned | 2021-06-16T16:38:23Z | - |
dc.date.available | 2017-10-01 | |
dc.date.copyright | 2012-10-01 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-09-27 | |
dc.identifier.citation | 1. Nel, A.; Xia, T.; Madler, L.; Li, N. Science 2006, 311, 622.
2. Nqvqrro, E.; Piccapietra, F.; Wagner, B.; Marconi, F.; Kaegi, R.; Odzak, N.; Sigg, L.; Behra, A. Environ. Sci. Technol. 2008, 42, 8959. 3. Yang, H.; Liu, C.; Yang, D. Zhang, H.; Xi, Z. J. Appl. Toxicol. 2009, 29, 69. 4. Lin, J. J.; Chu, C. C.; Chiang, M. L.; Tsai. W. C. J. Phys. Chem. B. 2006, 110, 18115. 5. Xiao, Y.; Li, C. M. Electroanalysis 2008, 20, 648. 6. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425. 7. Aeschlimann, M.; Brixner, T.; Fischer, A.; Kramer, C.; Melchior, P.; Pfeiffer, W.; Schneider, C.; Struber, C.; Tuchscherer, P.; Voronine, D. V. Science 2010, 333, 1723. 8. Alivisatos, A. P. Science 1996, 271, 933. 9. Kang, M. S.; Sahu, A.; Norris, D. J.; Frisbie, C. D. Nano Letters 2010, 10, 3727. 10. Yen, H. J.; Hsu, S. H.; Tsai, C. L. Small 2009, 5, 1553. 11. Martinez-Castanon, G. A.; Nino-Martinez, N.; Martinez-Gutierrez, F.; Martinez-Mendoza, J. R.; Ruiz, F. J. Nanopart. Res. 2008, 10, 1343. 12. Zen, J. M.; Kumar, A. S. Anal. Chem. A-Pages 2004, 76, 205A. 13. Jayakrishnan, A.; Jemeela, S. R. Biomaterials 1996, 17, 471. 14. Gan, Q.; Wang, T.; Cochrane, C.; McCarron, P. Colloid Surf. B-Biointerfaces 2005, 44, 65. 15. Tsai, C. C.; Chang, Y.; Sung, H. W.; Hsu, J. C.; Chen, C. N. Biomaterials 2001, 22, 523. 16. Ressine, A.; Ekstrom, S.; Marko-Varga, G.; Laurell, T. Anal. Chem. 2003, 75, 6968. 17. Mansur, H. S.; Lobato, Z. P.; Orefice, R. L.; Vasconcelos, W. L.; Oliveira, C.; Machado, L. J. Biomacromolecules 2000, 1, 789. 18. Shriver-Lake, L. C.; Gammeter, Wm. B.; Bang, S. S.; Pazirandeh, M. Anal. Chim. Acta 2002, 470, 71. 19. Kauffmann, C.; Shoseyov, O.; Shpigel, E.; Bayer, E. A.; Lamed, R.; Shoham, Y.; Mandelbaum, R. T. Environ. Sci. Technol. 2000, 34,1292. 20. Shchipunov, Y. A.; Karpenko, T. Yu.; Bakunina, I. Yu.; Burtseva, Y. V., Zvyagintseva T. N. J. Biochem. Biophys. Methods 2004, 58, 25. 21. Dumitriu, S. Chornet, E. Adv. Drug Deliv. Rev. 1998, 31, 223. 22. Causserand, C.; Kara, Y.; Aimar, P. J. Membr. Sci. 2001, 186, 165. 23. De Cristofaro, A.; Violante, A. Appl. Clay Sci. 2001, 19, 59. 24. Naidja, A.; Huang, P. M.; Bollag, J. M. J. Mol. Catal. A: Chem. 1997, 115, 305. 25. Giannelis, E. P. Adv. Mater. 1996, 8, 29. 26. Choy, J. H.; Kwak, S. Y.; Jeong, Y. J.; Park, J. S. Angew. Chem., Int. Ed. 2000, 39, 4041. 27. Dumat, C.; Quiquampoix, H.; Staunton, S. Environ. Sci. Technol. 2000, 34, 2985. 28. Zhou, Y.; Hu, N.; Zeng, Y.; Rusling, J. F. Langmuir 2002, 18, 211. 29. Kelleher, B. P.; Oppenheimer, S. F.; Kingery, W. L.; Han, F. X.; Willeford, K. O.; Simpson, M. J.; Simpson, A. J. Langmuir 2003, 19, 9411. 30. Fu, X.; Qutubuddin, S. Polymer 2001, 42, 807. 31. Lin, J. J.; Chen, Y. M. Langmuir 2004, 20, 4261. 32. Lin, J. J.; Chen, I. J.; Wang, R.; Lee, R. J. Macromolecules 2001, 34, 8832. 33. Lin, J. J.; Chen, I. J.; Chou, C. C. Macromol. Rapid Commun. 2003, 24, 492. 34. Chou, C. C.; Chang, Y. C.; Chiang, M. L.; Lin, J. J. Macromolecules 2004, 37, 473. 35. Chou, C. C.; Shieu, F. S.; Lin, J. J. Macromolecules 2003, 36, 2187. 36. Tyan, H. L.; Leu, C. M.; Wei, K. H. Chem. Mater. 2001, 13, 222. 37. Liu, Z. H.; Wang, Z. M.; Yang, X.; Ooi, K. Langmuir 2002, 18, 4926. 38. Lin, J. J.; Chan, Y. N.; Chang, W. H. 2010. In Advanced Nanomaterials, New York: John Wiley & Sons, Inc.: p 459–480. 39. Godjevargova, T.; Aleksieva, Z.; Ivanova, D. Proc. Biochem. 2000, 35, 699. 40. Lin, Y.; Lu, F.; Tu, Y.; Ren, Z. Nano Lett. 2004, 4, 191. 41. Puskas, J. E.; Dahman, Y.; Margaritis, A.; Cunningham, M. Biomacromolecules 2004, 5, 1412. 42. Wang, A. A.; Mulchandani, A.; Chen, W. Biotechnol. Prog. 2001, 17, 407. 43. Blankespoor, R.; Limoges, B.; Schollhorn, B.; Syssa-Magale, J. L.; Yazidi, D. Langmuir 2005, 21, 3362. 44. Dang, Q.; Lu, S.; Yu, S.; Sun, P.; Yuan, Z. Biomacromolecules 2010, 11, 1796. 45. Zanetti, M.; Lomakin, S.; Camino, G. Macromal. Mater. Eng. 2000, 279, 1. 46. Sharma, J.; Chhabra, R.; Cheng, A.; Brownell, J.; Liu, Y.; Yan, H. Science 2009, 323, 112. 47. Li, Q.; Xie, R.; Li, Y. W.; Mintz, E. A.; Shang, J. K. Environ. Sci. Technol. 2007, 41, 5050. 48. Su H. L.; Chou, C. C.; Hung, D. J.; Lin, S. H. ; Pao, I. C.; Lin, J. H.; Huang, F. L.; Dong R. X.; Lin, J. J. Biomaterial 2009, 30, 5979. 49. Burke, A.; Ding, X.; Singh, R.; Kraft, R. A.; Levi-Polyachenko, N.; Rylander, M. N.; Szot, C.; Buchanan, C.; Whitney, J.; Fisher, J.; Hatcher, H. C.; D’Agostino, R.; Kock, Jr. N. D.; Ajayan, P. M.; Carroll, D. L.; Akman, S.; Torti, F. M.; and Torti, S. V. Proc. Natl. Acad. Sci. USA 2009, 106, 12897. 50. Zhang, J.; Ge, J.; Shultz, M. D.; Chung, E.; Singh, G.; Shu, C.; Fatouros, P. P.; Henderson, S. C.; Corwin, F. D.; Geohegan, D. B.; Puretzky, A. A.; Rouleau, C. M.; More, K.; Rylander, M. N.; Gibson, H. W.; and Dorn, H. C. Nano Lett. 2010, 10, 2843. 51. Zhang, J.; Lei, J.; Xu, C.; Ding, L.; Ju, H. Anal. Chem. 2010, 82, 1117. 52. Lee, J.; Mackeyev, Y.; Cho, M.; Li, D.; Kim, J. H.; Wilson, L. J.; Alvarez, P. J. J. Environ. Sci. Technol. 2009, 43, 6604. 53. Liang, X. J.; Meng, H.; Wang, Y.; He, H., Meng, J.; Lu, J.; Wang, P. C.; Zhao, Y.; Gao, X.; Sun, B.; Chen, C.; Xing, G.; Shen, D.; Gottesman, M. M.; Wu, Y.; Yin, J. J.; and Jia, L. Proc. Natl. Acad. Sci. USA 2010, 107, 7449. 54. Warheit, D. B.; Sayes, C. M.; Reed, K. L.; Swain, K. A. Pharmacol. Ther. 2008, 120, 35. 55. Hurt, R. H.; Monthioux, M.; Kane, A. Carbon 2006, 44, 1028. 56. Cui, D.; Tian, F.; Ozkan, C. S.; Wang, M.; Gao, H. Toxicol. Lett. 2005, 155, 73. 57. AshaRani, P. V.; Mun, G. L. K.; Hande, M. P.; Valiyaveettil, S. ACS Nano. 2009, 3, 279. 58. Wang, S.; Lu, W.; Tovmachenko, O.; Rai, U. S.; Yu, H.; Ray, P. C. Chem. Phys. Lett. 2008, 463, 145. 59. Pisanic, T. R.; Blackwella, J. D.; Shubayevb, V. I.; Finonesc, R. R.; Jin, S. Biomaterials 2007, 28, 2572. 60. Jin, C. Y.; Zhu, B. S.; Wang, X. F.; Lu, Q. H. Chem. Res. Toxicol. 2008, 21, 1871. 61. Yang, H.; Liu, C.; Yang, D.; Zhang, H.; Xi, Z. J. Appl. Toxicol. 2009, 29, 69. 62. Xia, T.; Kovochich, M.; Liong, M.; Madler, L.; Gilbert, B.; Shi, H.; Yeh, J. I.; Zink, J.I.; Nel, A. E. ACS Nano 2008, 2, 2121. 63. Chu, C. C.; Chiang, M. L.; Tsai, C. M.; Lin, J. J. Macromolecules 2005, 38, 6240. 64. Lin, J. J.; Chu, C. C.; Chou, C. C. Adv. Mater. 2005, 17, 301. 65. Tice, R. R.; Agurell, E.; Anderson, D.; Burlinson, B.; Hartmann, A.; Kobayashi, H.; Miyamae, Y.; Rojas, E.; Ryu, J. C.; Sasaki, Y. F. Environ. Mol. Mutagen. 2000, 35, 206. 66. Qi, L.; Xu, Z.; Jiang, X.; Hu, C.; Zou, X. Carbohydr. Res. 2004, 339, 2693. 67. Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramirez, J. T.; Yacaman, M. J. Nanotechnology 2005, 16, 2346. 68. Cho, M.; Chung, H.; Choi, W.; Yoon, J. Appl. Environ. Microbiol. 2005, 71, 270. 69. Badireddy, A. R.; Hotze, E. M.; Chellam, S.; Alvarez, P. J. J.; Wiesner, M. R. Environ. Sci. Technol. 2007, 41, 6627. 70. Lyon, D. Y.; Adams, L. K.; Falkner, J. C.; Alvarez, P. J. J. Environ. Sci. Technol. 2006, 40, 4360. 71. Kang, S.; Pinault, M.; Pfefferle, L. D.; Elimelech, M. Langmuir 2007, 23, 8670. 72. Li, Q.; Mahendra, S.; Lyon, D. Y.; Brunet, L.; Liga, M. V.; Li, D.; Alvarez, P. J. J. Water Res.2008, 42, 4591. 73. Lok, C. N.; Ho, C.M.; Chen, R.; He, Q. Y.; Yu, W. Y.; Sun, H.; Tam, P. K.; Chiu, J. F.; Che, C. M. J Proteome Res 2006, 5, 916. 74. Sondi, I.; Salopek-Sondi, B. J Colloid Interface Sci 2004, 275, 177. 75. Gogoi, S. K.; Gopinath, P.; Paul, A.; Ramesh, A.; Ghosh, S. S.; Chattopadhyay, A. Langmuir 2006, 22, 9322. 76. Reddy, K.M.; Feris, K.; Bell, J.; Wingett, D. G.; Hanley, C.; Punnoose, A. Appl Phys Lett 2007, 90, 2139021. 77. Heinlaan, M.; Ivask, A.; Blinova, I.; Dubourguier, H. C.; Kahru, A.; Chemosphere 2008, 71, 1308. 78. Lipovsky, A.; Tzitrinovich, Z.; Friedmann, H.; Applerot, G.; Gedanken, A.; Lubart, R. J. Phys. Chem. C 2009, 113, 15997. 79. Asharani, P.V.; Hande, M. P.; Valiyaveettil, S. BMC Cell Biology 2009, 10:65 80. Musee, N.; Thwala, M.; Nota, N. J. Environ. Monit. 2011, 13, 1164. 81. Kang, S.; Herzverg, M.; Rodrigues, D. F.; Elimelech, M. Langmuir 2008, 24, 6409. 82. Haydel, S. E.; Remenih, C. M.; Williams, L. B. J. Antimicrob. Chemothe. 2008, 61, 353. 83. Cunningham, T. M.; Koehl, J. L., Summers, J. S.; Haydel, S. E. PLoS One 2010, 5, e9456. 84. Olphen, H. V. Clay colloid chemistry. 2nd ed. New York: John Wiley & Sons; 1997. 85. Theng, B. K. G. The chemistry of clay-organic reactions. 2nd ed. New York: John Wiley & Sons; 1974. 86. Zhao, Z.; Tang, T.; Qin, Y.; Huang, B. Langmuir 2003, 19, 9260. 87. Olphen, H. V. An introduction to clay colloid chemistry. 2nd ed. New York: John Wiley & Sons; 1977. 88. Alexandre, M.; Dubois, P. Mater. Sci. Eng. 2000, 28, 1. 89. Shikinaka, K.; Aizawa, K.; Fujii, N.; Osada, Y.; Tokita, M.; Watanabe, J.; Shigehara, K. Langmuir 2010, 26, 12493. 90. Zhang, W.; Li, M. K. S.; Wang, R.; Yue, P. L.; Gao, P. Langmuir 2009, 25, 8226. 91. Hsu, R. S.; Chang, W. H.; Lin, J. J. ACS Appl. Mater. Interfaces 2010, 2, 1349. 92. Williams, L. B.; Metge, D. W.; Eberl, D. D.; Harvey, R. W.; Turner, A. G. Prapaipong, P.; Poret-Peterson, A. T. Environ. Sci. Technol. 2011, 45, 3768. 93. Oberdorster, G.; Maynard, A.; Donaldson, K.; Castranova, V.; Fitzpatrick, J.; Ausman, K.; Carter, J.; Karn, B.; Kreyling, W.; Lai, D.; Olin, S.; Monteiro-Riviere, N.; Warheit, D.; Yang, H.; Part. Fibre Toxicol. 2005, 2, 8. 94. Li, N. Environ. Health Persp. 2003, 111, 455. 95. Porter, A. E.; Gass, M.; Muller, K.; Skepper, J. N.; Midgley, P.; Welland, M. Environ. Sci. Technol. 2007, 41, 3012. 96. Geiser, M.; Rothen-Rutishauser, B.; Kapp, N.; Schurch, S.; Kreyling, W.; Schulz, H.; Semmler, M.; Hof, V. I.; Heyder, J.; Gehr, P. Environ. Health Persp.2005, 113, 1555. 97. Savic, R.; Zhang, L.; Eisenberg, A.; Maysinger, D. Science 2003, 300, 615. 98. Warheit, D. B.; Sayes, C. M.; Reed, K. L.; Swain, K. A. Pharmacol. Ther. 2008, 120,35. 99. Goodman, C. M.; McCusker, C. D.; Yilmaz, T.; Rotello, V. M. Bioconjugate Chem. 2004, 15, 897. 100. Nohynek, G. J.; Lademann, J.; Ribaud, C.; Roberts, M. S. Crit. Rev. Toxicol. 2007, 37, 251. 101. Warheit, D. B.; Hoke, R. A.; Finlay, C.; Donner, E. M.; Reed, K. L.; Sayes, C. M. Toxicol. Lett. 2007,171, 99. 102. Wang, J. J.; Sanderson, B. J. S.; Wang, H. Mutat. Res. 2007, 628, 99. 103. Franklin, N. M.; Rogers, N. J.; Apte, S. C.; Batley, G. E.; Gadd, G. E.; Casey, P. S. Environ. Sci. Technol. 2007, 41, 8484. 104. Olosnjaj, J.; Szwarc, H.; Moussa, F. Adv. Exp. Med. Biol. 2007, 620, 181. 105. Porter, A. E. ; Gass, M. ; Muller, K. ; Skepper, J. N.; Midgley, P. A.; Welland, M. Nat. Nanotechnol. 2007, 2, 713. 106. Jia, G.; Wang, H.; Yan, L.; Wang, X.; Pei, R.; Yan, T.; Zhao, Y.; Guo, X.; Environ. Sci. Technol. 2005, 39, 1378. 107. Tian, F. R.; Cui, D. X.; Schwarz, H.; Estrada, G. G.; Kobayashi, H. Toxicol. In Vitro 2006, 20, 1202. 108. Bosi, S.; Da, R.T,; Spalluto, G.; Prato, M. Eur. J. Med. Chem. 2003, 38, 913. 109. Bottini, M.; Bruckner, S.; Nika, K.; Bottini, N.; Bellucci, S.; Magrini, A.; Bergamaschi, A.; Mustelin, T. Toxicol. Lett. 2006, 160, 121. 110. Monteiro-Riviere, N. A.; Nemanich, R. J.; Inman, A. O.; Wang. Y. Y.; Riviere, J. E. Toxicol. Lett. 2005, 155, 377. 111. Pinnavaia, T. J. Science 1983, 220, 365. 112. Lee, Y. H.; Kuo, T. F.; Chen, B. Y.; Feng, Y. K.; Wen, Y. R.; Lin, W. C.; Lin, F. H. Biomed. Eng. Appl. Basis. Comm. 2005, 17, 12. 113. Choi, S. J., Oh, J. M., Choy, J. H. J. Inorg. Biochem. 2009, 103, 463. 114. Chen, X.; Schluesener, H. J. Toxicol. Lett. 2008, 176, 1. 115. Rai, M.; Yadav, A.; Gade, A. Biotechnol. Adv. 2009, 27, 76. 116. Mallick, K.; Witcomb, M.; Scurrell, M. Mater. Chem. Phys. 2006, 97, 283. 117. Cai, H.; Xu, Y.; Zhu, N.; He, P.; Fang, Y. Analyst 2002, 127, 803. 118. Luo, X.; Morrin, A.; Killard, A. J.; Smyth, M. R. Electroanalysis 2006, 18, 319. 119. Shameli, K.; Ahmad, M. B.; Zargar, M.; Yunus, W. M. Z. W.; Ibrahim, N. A.; Shabanzadeh, P.; Moghaddam, G. M. Int. J. Nanomed. 2011, 6, 271. 120. Niu, A.; Han, Y.; Wu, J.; Ning Yu; Xu, Q. J. Phys. Chem. C 2010, 114, 12728. 121. Kvitek, L.; Panacek, A.; Soukupova, J.; Kolar, M.; Vecerova, R.; Prucek, R.; Holecova, M.; Zboril, R. J. Phys. Chem. C 2008, 112, 5825. 122. Lin, X. Z.; Teng, X.; Yang, H. Langmuir 2003, 19, 10081. 123. Noritomi, H.; Igari, N.; Kagitani, K.; Umezawa, Y.; Muratsubaki, Y.; Kato, S. Colloid Polym. Sci. 2010, 288, 887. 124. Magana, S. M.; Quintana, P.; Aguilar, D. H.; Toledo, J. A.; Angeles-Chavez, C.; Cortes, M. A.; Leon, L.; Freile-Pelegrin, Y.; Lopez, T.; Sanchez, R. M. T. J. Mol. Catal. A-Chem. 2008, 281, 192. 125. Miyoshi, H.; Ohno, H.; Sakai, K.; Okamura, N.; Kourai, H. J. Colloid Interface Sci. 2010, 345, 433. 126. Cheng, Y.; Yin, L.; Lin, S.; Wiesner, M.; Bernhardt, E.; Liu, J. J. Phys. Chem. C 2011, 115, 4425. 127. Luo, L. B.; Yu, S. H.; Qian, H. S.; Zhou, T. J. Am. Chem. Soc. 2005, 127, 2822. 128. Chiu, C. W.; Hong, P. D. Lin, J. J. Langmuir 2011, 27, 11690. 129. Bohren, C. F.; Huffman, D. R.; In Wiley-Interscience: New York, 1983. 130. Kim, J. S.; Kuk, E.; Yu, K. N.; Kim, J.-H.; Park, S. J.; Lee, H. J.; Kim, S. H.; Park, Y. K.; Park, Y. H.; Hwang, C.Y.; Kim, Y. K.; Lee, Y. S.; Jeong, D. H.; Cho, M. H. Nanomed-Nanotechnol. 2007, 3, 95. 131. Gong, P.; Li, H.; He, X.; Wang, K.; Hu, J.; Tan, W.; Zhang, S.; Yang, X. Nanotechnology 2007, 18, 285604. 132. Zhang, Q.; Ge, J.; Pham, T.; Goebl, J.; Hu, Y.; Lu, Z.; Yin, Y. Angew. Chem. Int. Edit. 2009, 48, 3516. 133. Szłyk, E.; Piszczek, P.; Grodzicki, A.; Chaberski, M.; Goliński, A.; Szatkowski, J.; Błaszczyk, T. Chem. Vapor Depos. 2001, 7, 111. 134. Lin, J. J.; Dong R. X.; Tasi W. C., Silver Nanoparticles, David P. P., Eds., In-Tech, Inc.: Vukovar, Croatia, 2010. pp 161–176. 135. Klasen, H. J. Burns 2000, 26, 131. 136. Castellano, J. J.; Shafii, S. M.; Ko, F.; Donate, G.; Wright, T. E.; Mannari, R. J.; Payne, W. G.; Smith, D. J.; Robson, M. C., Int. Wound J. 2007, 4, 114. 137. Russell, A. D.; Hugo, W. B.; Ayliffe, G. A. J., Principles and practice of disinfection, preservation, and sterilization. Blackwell Science: 1999. 138. Chopra, I. J. Antimicrob. Chemoth. 2007, 59, 587. 139. Fox, C. L., Jr.; Modak, S. M., Antimicrob. Agents Ch. 1974, 5, 582. 140. Liau, S. Y.; Read, D. C.; Pugh, W. J.; Furr, J. R.; Russell, A. D. Lett. Appl. Microbiol. 1997, 25, 279. 141. Mulvaney, P. Langmuir 1996, 12, 788. 142. Pal, S.; Tak, Y. K.; Song, J. M., Appl. Environ. Microb. 2007, 73, 1712. 143. Raimondi, F.; Scherer, G. G.; Kotz, R.; Wokaun, A. Angew. Chem. Int. Edit. 2005, 44, 2190. 144. Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramirez, J. T.; Yacaman, M. J. Nanotechnology 2005, 16, 2346. 145. Akelah, A.; Moet, A. J. Appl. Polym. Sci.: Appl. Polym. Symp. 1994, 55, 153. 146. Usuki, A.; Hasegawa, N.; Kadoura, H.; Okamoto, T. Nano Lett. 2001, 1, 271. 147. Cao, C. X.; Zhang, W.; Qin, W. H.; Li, S.; Zhu, W.; Liu, W. Anal. Chem. 2005, 77, 955. 148. Musale, D. A.; Kulkarni, S. S. J. Membr. Sci. 1997, 136, 13. 149. Tortora, G.; Funke, R.B.; Case, L. C. Microbiology; an introduction. New York: Addison-Wesley Longman, Inc.; 2001. 150. Lion, Y.; Gandin, E.; Vandevorst, A. Photochem. Photobiol. 1980, 31, 305. 151. Ray, S. S.; Okamoto, M. Prog. Polym. Sci. 2003, 28, 1539. 152. Gil, E. S.; Hudson, S. M. Prog. Polym. Sci. 2004, 29, 1173. 153. Mao, H.; Li, C.; Zhang, Y.; Bergbreiter, D. E.; Cremer, P. S. J. Am. Chem. Soc. 2003, 125, 2850. 154. Banin, A.; Lahav, N. Nature 1968, 217, 1146. 155. Schramm, L. L.; Kwak, J. C. T. Clays Clay Miner. 1982, 30, 40. 156. Novak, J. S. Advances in microbial food safety. ACS Symposium Series; 2006. 157. Schauder, S.; Basslerl, B. L. Genes Dev. 2001, 15, 1468. 158. Geske, G. D.; Wezeman R. J.; Siegel, A. P.; Blackwell, H. E. J. Am. Chem. Soc. 2005, 127, 12762. 159. Hase, C. C.; Fedorova, N. D.; Galperin, M. Y.; Dibrov, P. A. Microbiol. Mol. Biol. Rev. 1987, 65, 320. 160. Carretero, M. I. Appl. Clay Sci. 2002, 21, 155. 161. Wei, J. C.; Yen, Y. T.; Su, H. L.; Lin, J. J. J. Phys. Chem. C. 2011, 115, 18770. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63384 | - |
dc.description.abstract | 奈米技術發展數十年,各式各樣的奈米材料已被發現與製備包括天然的無機矽酸鹽層黏土。為了延伸應用無機矽酸鹽層黏土,將其用於蛋白質固定化、抗菌劑與奈米銀粒子/矽酸鹽層黏土複合材之探討。首先,發現牛血清蛋白 (BSA) 與矽酸鹽層黏土可經由直接插層法或逐步插層法製得。逐步插層法為藉由離子交換反應將聚醚胺 (poly-amine) 插層撐開層距隨後可允許蛋白質進入層間。為克服層狀黏土之立體障礙,更進一步發展脫層型奈米矽片用以直接吸附蛋白質,經由逐步程序使生物性巨分子進入層間或以脫層型奈米矽片直接吸附固定於表面,已被成功製備。
延伸脫層型奈米矽片之研究,發現奈米矽片具有抵抗多重種類之微生物,包括耐甲氧西林金黃色葡萄球菌及耐銀離子大腸桿菌,由SEM證實奈米矽片會經由物理捕抓方式貼附於細菌表面,更以電子順磁共振光譜證實奈米矽片經光激發可產生1O2進而達到殺菌效果。另外,利用體外彗星測試 (In vitro Comet assay) 評估奈米矽片的基因毒性得知,濃度為1000 μg/mL之奈米矽片與中國倉鼠卵巢癌細胞培養24小時後不會造成DNA損害。利用MTT assay評估奈米矽片的細胞毒性,濃度為1000 μg/mL之奈米矽片和中國倉鼠卵巢癌細胞培養12小時後,顯示為低毒性。 更進一步設計新型奈米複合材料-奈米矽片銀,藉由控制奈米矽片與銀之比例,獲得不同尺寸3.6‒35 nm之奈米銀粒子 (AgNP)。將不同比例之奈米矽片銀水溶液進行抗菌測試,發現抗菌能力受銀粒子大小及奈米矽片含量影響。且奈米矽片使銀粒子固定在表面而可能不經由穿透細胞即造成死亡。 | zh_TW |
dc.description.abstract | Nanotechnology has been developed for decades and various nanomaterials are synthesized including the materials derived from the natural inorganic silicate clays. To extend the applications of nanomaterials, the inorganic silicate clays were used in protein immobilize, antimicrobial agent and silver nanoparticle/silicate clay nanohybrids.
In the first part of this study, the hybrids of the model bovine serum albumin (BSA) protein and layered clay were prepared from the direct and stepwise intercalation. The stepwise intercalation involves the uses of the polyamine salts to expand silicate space and subsequently embedding BSA into layered clays. To overcome the steric hindrance of the narrow spacing in the layered clays, the randomized nanoscale silicate platelets (NSP) was used to direct the adsorption of proteins on the surface. Both techniques of embedding large molecules into the silicate gallery and absorbing onto the exposed NSP surface have been successfully developed. We further observed the unexpected antimicrobial behavior for NSP, prepared from the exfoliation of natural clays. A broad spectrum of microorganisms including methicillin-resistant Staphylococcus aureus (MRSA) and silver ion resistance Escherichia coli (E. coli) are tested. The NSP enabling of physically adhering onto to microbe surfaces and resulting antimicrobial ability is attributed to the singlet oxygen (1O2) generation tested for the photoexcited NSP using spectroscopic methods (EPR spin-trapping). The material safety on toxicity was investigated by using the Comet assay test in vitro and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The Comet assay showed no DNA damage after incubation with 1000 μg/mL of NSP and MTT assay showed a low cytotoxicity below 1000 μg/mL and a dose-dependent effect. Further manipulating the function of silicate clays, we found that the silver nanoparticles (AgNP) could be tailored by using NSP as the supports. The amount of adding the thin silicate platelets at the composition ratio from 0.5/99.5 to 50/50 of Ag/silicate can largely affect the formation of the AgNP size ranging from 3.6 nm to 35 nm. The evaluation for antibacterial activity has shown a silver size-dependent effect on controlling the growth of dermal pathogens. The antimicrobial efficacy can be corresponded to the size of AgNP and the amount of NSP presence. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T16:38:23Z (GMT). No. of bitstreams: 1 ntu-101-D95549012-1.pdf: 6483265 bytes, checksum: 7fe2f909e5fba212371bc64fce4116bc (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | CONTENT I
LIST OF TABLES III LIST OF SCHEMES IV LIST OF FIGURES V 摘 要 IX ABSTRACT XI CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 1 1.1. INTRODUCTION OF NANOMATERIAL 1 1.2. IMMOBILIZING BIOMATERIAL 3 1.2.1. Organically Modified Layered Silicate (OLS) 4 1.2.2. Bio-polymers Immobilization in Layere Silicate 6 1.2.2.1. Immobilization by Chemical Methods 7 1.2.2.2. Immobilization by Physical Methods 7 1.2.2.3. Smectitic Clay as Substrate for Bio-polymers Immobilization 8 1.3. FUNCTIONALITY OF NANOMATERIALS 11 1.3.1. Antibacterial Property 12 1.3.1.1. Nano-antimicrobial Materials of Spherical Shape 14 1.3.1.2. Nano-antimicrobial Materials of Rod/Fiber Shape 15 1.3.1.3. Nano-antimicrobial Materials of Lamellar Shape 16 1.3.2. Cytotoxicity Property 19 1.3.2.1.Cytotoxicity of Nanoparticles 20 1.3.2.2. Cytotoxicity of Layer Materials‒smectite Clays 21 1.4. SYNTHESIS OF SILVER NANOPARTICLES 22 1.4.1. Synthesis of AgNP 23 1.4.2. Silver as Antibacterial Material 25 1.4.2.1. Bactericidal Mechanism of Silver 25 1.4.2.2. The Size and Shape Effect on the Antibacterial activity of AgNP 26 CHAPTER 2. EXPERIMENTAL SECTION 28 2.1. MATERIALS 28 2.2. PREPRATION OF PROTEIN-CLAY HYBRIDS 32 2.3. ANTIBACTERIAL ACTIVITY OF NSP 33 2.4. ROS DETECTED 34 2.5. TOXICITY OF NSP 35 2.6. PREPARATION OF Ag/CLAY HYBRID 37 2.7. PREPARATION OF Ag/POLYMER HYBRID 37 2.8. TEM EXAMINATION 38 2.9. INSTRUMENTS AND ANALYSES 38 2.10. STATISTICAL ANAYLSIS 39 CHAPTER 3. RESULTS AND DISCUSSION 40 3.1. NOVEL PREPARATION OF PROTEIN-CLAY HYBRIDS 40 3.1.1. pH-dependence in the Process of BSA Intercalation 41 3.1.2. Direct Intercalation of BSA with Pristine Caly 42 3.1.3. Two-Step Intercalation with the POP-Modified Clay with Property of Inverse Dispersion Temperature in Water 43 3.1.4. Second Step of BSA Replacement to a Compressed or Uncompressed Conformation 45 3.1.5. Direct Observation of BSA/MMT Hybrid by AFM 49 3.1.6. Direct Absorption of BSA with Exfoliated Silicates 50 3.1.7. Conclusion 54 3.2. INHIBITION OF BACTERIAL GROWTH BY THE EXFOLIATED CLAYS AND OBSERVATION OF PHYSICAL CAPTURING MECHANISM 55 3.2.1. Material Description: Preparation and Purification of NSP 56 3.2.2. Antimicrobial Potency 60 3.2.3. Physical Trapping Mechanism 64 3.2.4. Observation of Singlet Oxygen Species by the Exfoliated Clay Silicate Platelets 67 3.2.5. Evaluation on Cytotoxicity and Genotoxicity of the NSP 71 3.2.6. Conclusion 73 3.3. SIZE-CONTROLLED SYNTHESIS AgNP ON CLAY FOR BIOMEDICAL APPLICATIONS 75 3.3.1. Synthesis of AgNP/nanoplatelet Nanohybrids 76 3.3.2. Growth Inhibition Effect Against Bacteria 78 3.3.3. SEM and TEM Morphology 80 3.3.4. Conclusion 86 CHAPTER 4. CONCLUSIONS 87 FUTURE WORK 89 CURRICULUM VITAE 90 REFERENCES 94 | |
dc.language.iso | en | |
dc.title | 脫層黏土之抑菌功能與生物界面作用機制探討 | zh_TW |
dc.title | Mechanistic Studies on Antimicrobial Property and Bio-Interaction of Exfoliated Nanoscale Silicate Platelets | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 郭炳林(Ping-Lin Kuo),徐善慧(Shan-hui Hsu),鄭如忠(Ru-Jong Jeng),謝國煌(Kuo-Huang Hsieh),彭福佐(Fu-Chuo Peng) | |
dc.subject.keyword | 抗菌,奈米矽片,活性氧化物,電子順磁共振光譜,細胞毒性,基因毒性,銀奈米粒子, | zh_TW |
dc.subject.keyword | Antimicrobial,nanosilicate platelets,Reactive oxygen species,Electron paramagnetic resonance,cytotoxicity,genotoxicity,silver nanoparticles, | en |
dc.relation.page | 99 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-09-27 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
顯示於系所單位: | 高分子科學與工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 6.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。