請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63377
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張建成(Chien-Cheng Chang),朱錦洲(Chin-Chou Chu) | |
dc.contributor.author | Jian-Jhih Lee | en |
dc.contributor.author | 李健誌 | zh_TW |
dc.date.accessioned | 2021-06-16T16:37:58Z | - |
dc.date.available | 2017-10-12 | |
dc.date.copyright | 2012-10-12 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-10-02 | |
dc.identifier.citation | [1] Bartlett, G. E. & Vidal, R. J. R. 1955 Experimental investigation of influence of edge shape on the aerodynamic characteristics of low aspect ratio wings at low speeds. J. Aero. Sci. 22, 517–533.
[2] Batchelor, G. K., An introduction to fluid dynamics. 1967, Cambridge, U.P. xviii, 615. [3] Biesheuvel, A. & Hagmeijer, R. 2006 On the force on a body moving in fluid. Fluid Dyn. Res. 38, 716–742. [4] Birch, J. M., Dickson, W. B. & Dickinson, M. H. 2004 Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. J. Expl. Biol. 207, 1063–1072. [5] Bollay, W. 1939 A nonlinear wing theory and its application to rectangular wings of small aspect ratio. Z. Angew. Math. Mech. 19, 21–35. [6] Burgers, J. M. 1920 On the resistance of fluids and vortex motion. Proc. Kon. Akad. Westenschappente Amsterdam. 1, 774–782. [7] Chang, C. C. 1992 Potential flow and forces for incompressible viscous flow. Proc. R. Soc. A-Math. Phys. Eng. Sci. 437, 517–525. [8] Chang, C. C. & Lei, S. Y. 1996 An analysis of aerodynamic forces on a delta wing. J. Fluid Mech. 316, 173-196. [9] Chang, C. C. & Lei, S. Y. 1996 On the sources of aerodynamic forces: steady flow around a cylinder or a sphere. Proc. R. Soc. Lond. A 452, 2369-2395. [10] Chang, C. C., Yang, S. H. & Chu, C. C. 2008 A many-body force decomposition with applications to flow about bluff bodies. J. Fluid Mech. 600, 95–104. [11] Chen, L., et al. 2010 Influence of Reynolds Number on Vortex Flow over a Nonslender Delta Wing. AIAA Journal, 48(12), 2831-2839. [12] Chu, C. C., Chang, C. C. et al. 1996 Suction effect on an impulsively started circular cylinder: vortex structure and drag reduction. Phys. Fluids. 11, 2995-3007. [13] Cosyn, P. & Vierendeels, J. 2006 Numerical investigation of low-aspect-ratio wings at low Reynolds numbers. J. Aircraft. 43, 713–722. [14] Ellington, C. P., Van Den Berg, C., Willmott, A. P. & Thomas, A. L. R. 1996 Leading-edge vortices in insect flight. Nature. 384, 626–630. [15] Freymuth, P., Bank, W. & Finaish, F. 1987 Further visualization of combined wing tip and starting vortex systems. AIAA J. 25, 1153–1159. [16] Gordnier R. E., Visbal M. R. 2003 Higher-order compact difference scheme applied to the simulation of a low sweep delta wing flow. AIAA 2003-0620, 41st AIAA Aerospace Sciences Meeting and Exhibit, 6–9 January 2003, Reno, NV. [17] Gursul, I., Taylor, G. and Wooding, C. 2002 Vortex flows over fixed-wing micro air vehicles, AIAA 2002-0698, 40th AIAA Aerospace Sciences Meeting & Exhibit, 14-17 January 2002, Reno, NV. [18] Gursul, I. 2004 Recent developments in delta wing aerodynamics. Aeronautical Journal, 108 (1087), 437-452. [19] Hoerner, S. F. and Borst, H. V. 1975 Fluid-dynamic lift : practical information on aerodynamic and hydrodynamic lift. 2nd ed., Brick Town, N.J.: L.A. Hoerner : Order from Hoerner Fluid Dynamics. 507 p. in various pagings. [20] Howarth, L. 1935 The theoretical determination of the lift coefficient for a thin elliptic cylinder. Proc. R. Soc. Lond. Ser. A 149, 558–586. [21] Howe, M. S. 1995 On the force and moment on a body in an incompressible fluid, with application to rigid bodies and bubbles at high and low Reynolds numbers. Quart. J. Mech. Appl. Math. 48, 401–426. [22] Howe, M. S., Lauchle, G. C. & Wang, J. 2001 Aerodynamic lift and drag fluctuations of a sphere. J. Fluid Mech. 436, 41–57. [23] Hsieh, C. T., Chang, C. C. and Chu, C. C. Revisiting the aerodynamics of hovering flight using simple models, 2009, J. Fluid Mech. 623, 121-148. [24] Hsieh, C. T., Kung, C. F., Chang, C. C. and Chu, C. C. 2010 Unsteady aerodynamics of dragonfly using a simple wing-wing model from the perspective of a force decomposition. J. Fluid Mech. 663, 233-252. [25] Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, stream, and convergence zones in turbulent flows, Center for Turbulence Research Report CTR-S88, 193–208. [26] Jones, R.T., Wing plan forms for high-speed flight. 1947, Washington,: U. S. Govt. Print. Off. ii, 5. [27] Kambe, T. 1986 Acoustic emissions by vortex motions. J. Fluid Mech. 173, 643–666. [28] Kim, D & Gharib, M. 2010 Experimental study of three-dimensional vortex structures in translating and rotating plates. Exp. Fluids. 49, 329–339. [29] Kuochemann, D., 1978 The aerodynamic design of aircraft : a detailed introduction to the current aerodynamic knowledge and practical guide to the solution of aircraft design problems. Pergamon international library of science, technology, engineering, and social studies. Oxford ; New York: Pergamon Press. 564 , 25-33 [30] Lamar, J. E. 1974 Extension of leading-edge-suction analogy to wings with separated flow around the side edges at subsonic speeds. NASA TR R-428, L-9460. [31] Lamar, J. E. 1976 Prediction of vortex flow characteristics of wings at subsonic and supersonic speeds. J. Aircraft. 13, 490–494. [32] Lambourne, N. C., and Bryer, D. W. 1962 The Bursting of Leading Edge Vortices: Some Observation and Discussion of the Phenomenon. Aeronautical Research Council, R&M 3282, London. [33] Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics, 2nd edn. Pergamon. [34] Lee, J. J., Hsieh, C. T., Chang, C. C. and Chu, C. C., Vorticity forces on an impulsively started finite plate, J. Fluid Mech. 697, 464-492. [35] Lighthill, M. J. 1979 Wave and hydrodynamic loading. Proc. Second Intl Conf. Behaviour Off-Shore Struct., BHRA Cranfield 1, 1–40. [36] Lighthill, M. J. 1986 Fundamentals concerning wave loading on offshore structures. J. Fluid Mech. 173, 667–681. [37] Lowson, M.V., 1991 Visualization Measurements of Vortex Flows, Journal of Aircraft. 28(5), pp. 320–327. [38] Lowson, M. V. and Riley, A. J. 1995 Vortex Breakdown Control by Delta-Wing Geometry. Journal of Aircraft. 32(4): p. 832-838. [39] Magnaudet, J. 2011 A ‘reciprocal’ theorem for the prediction of loads on a body moving in an inhomogeneous flow at arbitrary Reynolds number. J. Fluid Mech. 689, 564–604. [40] Maxworthy, T. 1979 Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part I. Dynamics of the fling. J. Fluid Mech. 93, 47–63. [41] Ng, T. T. and Oliver, D. R. 1998 Leading edge vortex and shear layer instabilities. Technical Report AIAA-98-0313, AIAA. [42] Nicolas, V., Jun Z. and Stephen C. 2004 Symmetry brealing leads to forward flapping flight. J. Fluid Mech. 506, 147–155. [43] Ol, M.V. and M. Gharib, 2003 Leading-edge vortex structure of nonslender delta wings at low Reynolds number. AIAA Journal, 41(1): p. 16-26. [44] Payne, R. B. 1958 Calculations of unsteady flow past a circular cylinder. J. Fluid Mech. 3, 81–86. [45] Phillips, O. M. 1956 The intensity of aeolian tones. J. Fluid Mech. 1, 607–624. [46] Polhamus, E. C. 1971 Predictions of vortex-lift characteristics by a Leading–Edge–Suction analogy. J. Aircraft. 8, 193–199. [47] Quartapelle, L. & Napolitano, M. 1983 Force and moment in incompressible flows. AIAA J. 22, 1713–1718. [48] Riley, A. J. and Lowson, M. V. Development of a three-dimensional free shear layer. 1998, J. Fluid Mech. 369, 49-89. [49] Ringuette, M. J., Milano, M. & Gharib, M. 2007 Role of the tip vortex in the force generation of low-aspect-ratio normal flat plates. J. Fluid Mech. 581, 453–468. [50] Rusak, Z. and Lamb, D. 1999 Prediction of vortex breakdown in leading-edge vortices above slender delta wings. Journal of Aircraft, 36(4), 659-667. [51] Sears, W. R. 1956 Some recent developments in airfoil theory. J. Aeronaut. Sci. 23, 490–499. [52] Sears, W. R. 1976 Unsteady motion of airfoil with boundary layer separation. AIAA J. 14, 216–220. [53] Shyy, W., Aono, H., Chimakurthi, S. K., Trizila, P., Kang, C. K., Cesnik, C. E. S. & Liu, H. 2010 Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aeronaut. Sci. 46, 254–327. [54] Taira, K. & Colonius, T. 2009 Three-dimensional separated flows around low-aspect-ratio flat plates. J. Fluid Mech. 623, 187–207. [55] Taneda, S. 2000 Instability waves in the shear layer over a separation bubble. Journal of Fluid Dynamics Research 27, 335–351 [56] Taylor, G., Schnorbus, T., and Gursul, I. 2003 An Investigation of Vortex Flows over Low Sweep Delta Wings, AIAA Paper 2003-4021. [57] Torres, G. E. & Mueller, T. J. 2004 Low-aspect-ratio wing aerodynamics at low Reynolds numbers. AIAA J. 42 (5), 865–873. [58] Visbal, M., and Gordnier, R. 2003 On the Structure of the Shear Layer Emanating from a Swept Leading Edge at Angle of Attack, AIAA Paper 2003–4016. [59] Washburn, A. E., and Visser, K. D., 1994 Evolution of theVortical Structures in the Shear Layer of Delta Wings, AIAA Paper 94–2317. [60] Wells, J. C. 1996 A geometrical interpretation of force on a translating body in rotational flow. Phys. Fluids. 8, 442–450. [61] Werle, H. 1954 Quelques resultats experimentaux sur les ailes en fleche, aux faibles vitesses, obtenus en tunnel hydrodynamique La Recherche Aeronautique, No. 41, Sep.-Oct. pp. 15-21. [62] Winter, H. 1936 Flow phenomena on plates and aerofoils of short span. Tech. Rep. TM 798, NACA. [63] Wu, J. C. 1981 Theory for aerodynamic force and moment in viscous flows. AIAA J. 19, 432–441. [64] 蕭穎謙 1993 環繞機翼之二維渦漩流的研究,國立台灣大學應用力學研究所博士論文。 [65] 蘇正瑜 1998 三角翼外流場之力源分析,國立台灣大學應用力學研究所博士論文。 [66] 楊適壕 2007多體力源理論及其應用,國立臺灣大學應用力學研究所博士論文。 [67] 謝政達 2009 以力元理論之觀點剖析昆蟲飛行的氣動力機制,國立臺灣大學應用力學研究所博士論文。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63377 | - |
dc.description.abstract | 本論文主要是以力元理論來分析低雷諾數下有限翼之非定常氣動力特性。在文中探討的雷諾數為100與300,物體外型則有平板與三角翼兩種。其中考慮的平板其展弦比(AR)與攻角(AoA)分別為AR=1、2和3,AoA=5~60度之間,而三角翼的設定則有AR=1、2和4,AoA=15、30、45三個角度。張建成教授及其研究群所發展之力元理論提供了我們一個方法來解析流場中非零渦度流元與翼板受力之間的關係。因此在本論文中,我們透過力元理論分別解析有限平板的前緣渦、翼尖渦、後緣渦與表面渦度,以及三角翼的前緣渦、後緣渦、表面渦度與物體升、阻力之間的關係。與傳統壓力積分法(pressure force analysis, PFA)不同,力元理論的觀點是透過流元的渦度與物體受力作連結(vorticity force analysis, VFA)。在本文中透過比較VFA與PFA在不同截面之間的差異得到許多有趣的結果。
(1) 在平板的例子中,我們透過數個垂直於翼展方向的平面將整個流域切割成數個截面,接著對每個截面分別求其VFA與PFA的貢獻,藉由比較兩著分布結果可當作流場三維性的指標。像是高展弦比(AR=3)的平板,其PFA與VFA在平板中線區域差異非常小。反之低展弦比(AR=1)的平板,PFA在平板上方大部分的區域都明顯的大於VFA。而PFA與VFA之間的差距會在兩翼截面以及外側區域被補足。通過進一步分解渦度貢獻到縱向渦度(在二維流場中唯一的渦度分量)和其他兩個正交的橫向渦度,我們發現這兩類渦度貢獻的消長是流場三維性的指標之一。 (2) 在三角翼的例子中,我們透過兩種不同的切割方法來分析體渦度在截面上的貢獻,並且藉由物理的觀點來分析得到的結果。這兩種截面分別為垂直於入流方向的截面與由三角翼頂點為原點切割而成的扇形截面。我們分別對這兩種不同的切割截面計算其PFA以及其對應的VFA貢獻。由第一個方法可以觀察到PFA與VFA的差異在三角翼前緣並不顯著,這是因為當渦漩結構緊貼附於三角翼表面時,兩者之間差異會減小。同樣的,我們也將渦度貢獻分解成縱向渦度貢獻和橫向渦度貢獻兩個部分,透過這樣的分解可以讓我們更清楚的看出各渦度的貢獻量。我們發現在靠近翼板頂點的截面其縱向渦度貢獻較大,但是在靠近翼板後緣的截面其貢獻則會減小,甚至提供負升力貢獻。而橫向渦度的貢獻則剛好相反,在靠近頂點的截面貢獻較少,但是在靠近後緣的截面貢獻較大。而第二種切割方法所獲得的結果可以與主要的升力來源互相對照參考。由結果可發現貼附於三角翼中央的再附著區其升力貢獻主要是來自於縱向渦度。而位於翼板上方中央兩側提供負升力的再回流區其貢獻主要來自於橫向渦度。剪切區則與前面兩個區域不同,其貢獻來源包含了縱向渦度與橫向渦度。除此之外,我們也注意到三角翼板外側區域的貢獻遠低於有限平板的外側區域貢獻。其原因為三角翼兩側的前緣渦會從兩翼往翼板中心方向發展,而有限平板的翼尖渦主要是向上方發展。雖然三角翼與有限平板在流場穩定後的升力差不多,但三角翼在啟動後的瞬間升力會比平板高。由力元理論的觀點來看,三角翼橫向渦度的貢獻明顯大於有限平板,但是縱向渦度還是三角翼主要的升力來源。總結來說,力元理論提供了一種更好的物理概念來連結物體受力與翼板附近渦漩結構之間的關係。 | zh_TW |
dc.description.abstract | In this study, we consider various contributions to the forces on an impulsively started finite plate or delta wing from the perspective of a diagnostic vorticity force element theory. The plate has an aspect ratio (AR) between 1 and 3, and is placed at different angles of attack (AoAs=5o、10o、15o、30o、45o、60o), while the Reynolds number is either 100 or 300. In contrast, the delta wing has an AR equal to 1, 2 and 4, and is placed at three different AoAs (15o、30o、45o) , while the Reynolds number is fixed at 300. The theory enables us to quantify the contributions to the forces exerted on the wing in terms of fluid elements with non-zero vorticity, such as in the tip vortices (TiVs), leading- and trailing-edge vortices (LEVs and TEVs) of the plate, and in the primary vortex、LEV and TEV of the delta wing. This line of force analysis has been pursued for two-dimensional flow in the previous studies by Chang’s research group. In contrast to the pressure force analysis (PFA), the vorticity force analysis (VFA) reveals new salient features in its applications to three-dimensional flow by examining sectional force contributions.
(1) For the plate cases, we divide the whole flow space to several sections by a number of parallel planes perpendicular to the spanwise direction, and evaluate the pressure force and the corresponding vorticity force in each section. It is found that at a large aspect ratio (AR=3), the force distributions of PFA and VFA show close agreements with each other in the middle sections, while at a lower aspect ratio (AR=1), the force distribution of PFA is substantially higher than that of VFA in most of the sections. The difference is compensated for by the contributions partly by the edge sections and mainly by the vortices in the outer regions. It is also revealing to decompose the vorticity into the spanwise (longitudinal) component (LC-the only one in two-dimensional flow) and the other two orthogonal (transverse) components (TCs). The relative importance of the force contributions credited to the TCs in the entire flow regions as well as in the two outer regions signifies the three-dimensional nature of the flow over a finite plate. (2) For the delta wing cases, we divide the whole flow domain by vertical planes in two ways to distinguish the force distributions between PFA and VFA. (i) First, the whole space flow is divided to several sections by a number of parallel planes perpendicular to the spanwise direction, and evaluate the pressure force and the corresponding vorticity force in each section. The deviation between the PFA and VFA is found to be small at sections near the apex due to the LEVs being attached closely to the delta wing surface. The LC contributes significantly to the lift at the sections near the apex, but the contribution decreases or even turns to be negative at the sections near the trailing edge. Besides, we found that the contribution from the TCs at the sections near the apex is not significant, but the lift contribution increases at the sections near the trailing edge. (ii) Second, we divide the whole flow field by a number of vertical planes emanating from the apex of delta wing, and evaluate the pressure force and the corresponding vorticity force in each section. We find that the positive lift source from the region of re-attachment at the middle section is mainly due to the LC, and that the negative lift from the region of re-circulation region is due to the TCs. The shear layers, containing transverse and longitudinal components, provide positive lift contribution. It is also observed that the contributions from the two outer regions of the delta wing are less than those of the finite plate. This is because the LEVs of the delta wing tend to be attached to the wing by bending themselves toward the central section, while the TiVs of the plate wing evolve more upwards. Finally, we compare the lift forces of the finite plate and delta wing from the vorticity force viewpoint. The delta wing acquires a higher lift in a time period after the impulsive start, while the lift coefficients of the delta wing and finite plate make little difference in the later stages of flow development. The delta wing is shown to have larger contributions from the transverse components than the finite-plate wing, yet the main source of lift elements come from the longitudinal component. The present VFA provides a better understanding by relating the forces directly to the various sources of vorticity (or vortex structures) on or near the wings. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T16:37:58Z (GMT). No. of bitstreams: 1 ntu-101-D96543005-1.pdf: 7165945 bytes, checksum: 652fe4a6f70f8d1835c3b33b6a7e61ba (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iv 目錄 vi 圖目錄 ix 表目錄 xvi 第 1 章 導論 1 1.1 前言與動機 1 1.2 低雷諾數流場 1 1.3 低展弦比平板之空氣動力學文獻回顧 3 1.4 低雷諾數下三角形翼板之空氣動力學文獻回顧 6 1.5 力元理論文獻回顧 11 1.6 全文概述 13 第 2 章 控制方程與數值方法(有因次) 14 2.1 簡介 14 2.2 網格產生 14 2.2.1 網格品質 15 2.3 控制方程式 16 2.3.1 質量守恆方程式 16 2.3.2 動量守恆方程式 16 2.4 數值方法 17 2.4.1 分離求解器 17 2.4.2 空間離散 18 2.4.3 時間離散 23 2.4.4 壓力-速度耦合關係的處理 25 2.5 Ansys fluent UDF 介紹 31 2.5.1 網格資料結構 32 2.5.2 UDF DEFINE 巨集 34 2.5.3 使用者自訂標量(User Defined Scalar)與使用者自訂記憶體空間(User Defined Memory) 35 2.5.4 UDF函數的執行順序 37 第 3 章 力元理論(無因次) 39 3.1 力元理論簡介 39 3.2 輔助勢流 41 3.3 力元理論推導 41 第 4 章 在低雷諾數下瞬間啟動之有限平板流場之力元分析(無因次) 47 4.1 模擬參數設定 47 4.2 輔助勢流場數值計算結果 48 4.3 數值結果驗證 49 4.4 以力元理論觀點分析AR=1之平板在不同攻角下的流場 51 4.4.1 平板受力隨時間的變化 51 4.4.2 前緣渦、後緣渦以及翼尖渦對平板的影響 54 4.5 以力元理論觀點分析三維流場特性 60 4.5.1 截面壓力分佈與截面力元分布(沿z方向切割) 60 4.5.2 橫向渦度(ωx與ωy)對於體升(阻)力元素的貢獻(沿z方向切割) 65 4.5.3 截面壓力分佈與截面力元分布(沿x方向切割) 78 4.5.4 橫向渦度(ωx與ωy)對於體升(阻)力元素的貢獻(沿x方向切割) 82 4.6 本章結語 84 第 5 章 在低雷諾數下瞬間啟動之三角翼流場之力元分析(無因次) 86 5.1 模擬參數設定 86 5.2 輔助勢流場數值計算結果 87 5.3 數值結果驗證 88 5.4 以力元理論觀點分析三角翼在不同展弦比與攻角下的流場 89 5.4.1 三角翼受力隨時間的變化 89 5.4.2 前緣渦和後緣渦對三角翼板的貢獻 91 5.4.3 升力元素的分布與變化 92 5.4.4 不同展弦比與攻角下的流線變化 94 5.5 以力元理論觀點分析三角翼板升(阻)力貢獻分布 96 5.5.1 截面壓力分佈與截面力元分布(沿x方向切割) 96 5.5.2 橫向渦度(ωx與ωy)對於體升(阻)力元素的貢獻(沿x方向切割) 103 5.5.3 截面壓力分佈與截面力元分布(扇形分割) 107 5.5.4 橫向渦度(ωx與ωy)對於體升(阻)力元素的貢獻(扇形分割) 113 5.6 三角翼與有限平板翼之空氣動力比較 117 5.7 本章結語 137 第 6 章 結論與未來展望 139 6.1 結論 139 6.2 未來展望 144 REFERENCE 146 | |
dc.language.iso | zh-TW | |
dc.title | 以力元理論分析在低雷諾數下有限翼之非定常氣動力特性 | zh_TW |
dc.title | Analyzing unsteady aerodynamics of finite wings at low Reynolds numbers from the perspective of the force element theory | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 張家歐(Chia-Ou Chang),陸鵬舉(Pong-Jeu Lu),陳國慶(Kuo-Ching Chen),牛仰堯(Yang-Yao Niu),周逸儒(Yi-Ju Chou) | |
dc.subject.keyword | 力元理論,有限翼,低雷諾數, | zh_TW |
dc.subject.keyword | force element theory,finite wing,low Reynolds number, | en |
dc.relation.page | 152 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-10-03 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。