請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63365完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林長平 | |
| dc.contributor.author | Tean-Hsu Chang | en |
| dc.contributor.author | 張天昫 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:37:16Z | - |
| dc.date.available | 2012-11-22 | |
| dc.date.copyright | 2012-11-22 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-10-12 | |
| dc.identifier.citation | Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., and Tasaka, M. (1997). Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9, 841-57.
Alvarez-Buylla, E. R., Pelaz, S., Liljegren, S. J., Gold, S. E., Burgeff, C., Ditta, G. S., Ribas de Pouplana, L., Martinez-Castilla, L., and Yanofsky, M. F. (2000). An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci U S A 97, 5328-33. Aufsatz, W., Mette, M. F., van der Winden, J., Matzke, A. J., and Matzke, M. (2002). RNA-directed DNA methylation in Arabidopsis. Proc Natl Acad Sci U S A 99 Suppl 4, 16499-506. Bertaccini, A. (2007). Phytoplasmas: diversity, taxonomy, and epidemiology. Front Biosci 12, 673-89. Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y. Y., Sieburth, L., and Voinnet, O. (2008). Widespread translational inhibition by plant miRNAs and siRNAs. Science 320, 1185-90. Chapman, E. J., Prokhnevsky, A. I., Gopinath, K., Dolja, V. V., and Carrington, J. C. (2004). Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev 18, 1179-86. Chen, H. M., Chen, L. T., Patel, K., Li, Y. H., Baulcombe, D. C., and Wu, S. H. (2010). 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci U S A 107, 15269-74. Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., and Coupland, G. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316, 1030-3. Dai, X., and Zhao, P. X. (2011). psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39, W155-9. Dong, Z., Han, M. H., and Fedoroff, N. (2008). The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci U S A 105, 9970-5. Dunlap, M. (1997). Introduction to the scanning electron microscope, U. C. Davis. Dunoyer, P., Himber, C., and Voinnet, O. (2006). Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections. Nat Genet 38, 258-63. Fahlgren, N., Howell, M. D., Kasschau, K. D., Chapman, E. J., Sullivan, C. M., Cumbie, J. S., Givan, S. A., Law, T. F., Grant, S. R., Dangl, J. L., and Carrington, J. C. (2007). High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2, e219. Filipowicz, W., Bhattacharyya, S. N., and Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9, 102-14. Fornara, F., de Montaigu, A., and Coupland, G. (2010). SnapShot: Control of flowering in Arabidopsis. Cell 141, 550, 550 e1-2. Gocal, G. F., Sheldon, C. C., Gubler, F., Moritz, T., Bagnall, D. J., MacMillan, C. P., Li, S. F., Parish, R. W., Dennis, E. S., Weigel, D., and King, R. W. (2001). GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. Plant Physiol 127, 1682-93. Gruber, A. R., Lorenz, R., Bernhart, S. H., Neubock, R., and Hofacker, I. L. (2008). The Vienna RNA websuite. Nucleic Acids Res 36, W70-4. Guo, L., and Lu, Z. (2010). The fate of miRNA* strand through evolutionary analysis: implication for degradation as merely carrier strand or potential regulatory molecule? PLoS One 5, e11387. Henderson, I. R., and Jacobsen, S. E. (2007). Epigenetic inheritance in plants. Nature 447, 418-24. Himeno, M., Neriya, Y., Minato, N., Miura, C., Sugawara, K., Ishii, Y., Yamaji, Y., Kakizawa, S., Oshima, K., and Namba, S. (2011). Unique morphological changes in plant pathogenic phytoplasma-infected petunia flowers are related to transcriptional regulation of floral homeotic genes in an organ-specific manner. Plant J 67, 971-9. Hogenhout, S. A., Oshima, K., Ammar el, D., Kakizawa, S., Kingdom, H. N., and Namba, S. (2008). Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol 9, 403-23. Husbands, A. Y., Chitwood, D. H., Plavskin, Y., and Timmermans, M. C. (2009). Signals and prepatterns: new insights into organ polarity in plants. Genes Dev 23, 1986-97. Immink, R. G., Kaufmann, K., and Angenent, G. C. (2010). The 'ABC' of MADS domain protein behaviour and interactions. Semin Cell Dev Biol 21, 87-93. Jarillo, J. A., and Pineiro, M. (2011). Timing is everything in plant development. The central role of floral repressors. Plant Sci 181, 364-78. Jones-Rhoades, M. W. (2010). Prediction of plant miRNA genes. Methods Mol Biol 592, 19-30. Kane, N. A., Danyluk, J., Tardif, G., Ouellet, F., Laliberte, J. F., Limin, A. E., Fowler, D. B., and Sarhan, F. (2005). TaVRT-2, a member of the StMADS-11 clade of flowering repressors, is regulated by vernalization and photoperiod in wheat. Plant Physiol 138, 2354-63. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., and Tanabe, M. (2012). KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40, D109-14. Khvorova, A., Reynolds, A., and Jayasena, S. D. (2003). Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209-16. Kidner, C. A., and Martienssen, R. A. (2004). Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature 428, 81-4. Klein, J., Saedler, H., and Huijser, P. (1996). A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Mol Gen Genet 250, 7-16. Kotoda, N., Hayashi, H., Suzuki, M., Igarashi, M., Hatsuyama, Y., Kidou, S., Igasaki, T., Nishiguchi, M., Yano, K., Shimizu, T., Takahashi, S., Iwanami, H., Moriya, S., and Abe, K. (2010). Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus x domestica Borkh.). Plant Cell Physiol 51, 561-75. Lee, I. M., Davis, R. E., and Gundersen-Rindal, D. E. (2000). Phytoplasma: phytopathogenic mollicutes. Annu Rev Microbiol 54, 221-55. Lee, J. H., Park, S. H., Lee, J. S., and Ahn, J. H. (2007a). A conserved role of SHORT VEGETATIVE PHASE (SVP) in controlling flowering time of Brassica plants. Biochim Biophys Acta 1769, 455-61. Lee, J. H., Yoo, S. J., Park, S. H., Hwang, I., Lee, J. S., and Ahn, J. H. (2007b). Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21, 397-402. Letunic, I., Doerks, T., and Bork, P. (2012). SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40, D302-5. Li, D., Liu, C., Shen, L., Wu, Y., Chen, H., Robertson, M., Helliwell, C. A., Ito, T., Meyerowitz, E., and Yu, H. (2008). A repressor complex governs the integration of flowering signals in Arabidopsis. Dev Cell 15, 110-20. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-9. Li, Z. M., Zhang, J. Z., Mei, L., Deng, X. X., Hu, C. G., and Yao, J. L. (2010). PtSVP, an SVP homolog from trifoliate orange (Poncirus trifoliata L. Raf.), shows seasonal periodicity of meristem determination and affects flower development in transgenic Arabidopsis and tobacco plants. Plant Mol Biol 74, 129-42. Lin, S. S., Wu, H. W., Elena, S. F., Chen, K. C., Niu, Q. W., Yeh, S. D., Chen, C. C., and Chua, N. H. (2009). Molecular evolution of a viral non-coding sequence under the selective pressure of amiRNA-mediated silencing. PLoS Pathog 5, e1000312. Llave, C., Xie, Z., Kasschau, K. D., and Carrington, J. C. (2002). Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053-6. Lu, C., Jeong, D. H., Kulkarni, K., Pillay, M., Nobuta, K., German, R., Thatcher, S. R., Maher, C., Zhang, L., Ware, D., Liu, B., Cao, X., Meyers, B. C., and Green, P. J. (2008). Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci U S A 105, 4951-6. Mardis, E. R. (2008). Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9, 387-402. McConnell, J. R., Emery, J., Eshed, Y., Bao, N., Bowman, J., and Barton, M. K. (2001). Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411, 709-13. McGinnis, S., and Madden, T. L. (2004). BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32, W20-5. Milev, I., Yahubyan, G., Minkov, I., and Baev, V. (2011). miRTour: Plant miRNA and target prediction tool. Bioinformation 6, 248-9. Millar, A. A., and Gubler, F. (2005). The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17, 705-21. Morel, J. B., Godon, C., Mourrain, P., Beclin, C., Boutet, S., Feuerbach, F., Proux, F., and Vaucheret, H. (2002). Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14, 629-39. Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., and Jones, J. D. (2006). A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312, 436-9. Navarro, L., Jay, F., Nomura, K., He, S. Y., and Voinnet, O. (2008). Suppression of the microRNA pathway by bacterial effector proteins. Science 321, 964-7. Parenicova, L., de Folter, S., Kieffer, M., Horner, D. S., Favalli, C., Busscher, J., Cook, H. E., Ingram, R. M., Kater, M. M., Davies, B., Angenent, G. C., and Colombo, L. (2003). Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15, 1538-51. Park, W., Li, J., Song, R., Messing, J., and Chen, X. (2002). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12, 1484-95. Rhoades, M. W., Reinhart, B. J., Lim, L. P., Burge, C. B., Bartel, B., and Bartel, D. P. (2002). Prediction of plant microRNA targets. Cell 110, 513-20. Rodriguez, R. E., Mecchia, M. A., Debernardi, J. M., Schommer, C., Weigel, D., and Palatnik, J. F. (2010). Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137, 103-12. Ruby, J. G., Stark, A., Johnston, W. K., Kellis, M., Bartel, D. P., and Lai, E. C. (2007). Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res 17, 1850-64. Schmitz, J., Franzen, R., Ngyuen, T. H., Garcia-Maroto, F., Pozzi, C., Salamini, F., and Rohde, W. (2000). Cloning, mapping and expression analysis of barley MADS-box genes. Plant Mol Biol 42, 899-913. Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P. D. (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199-208. Sewer, A., Paul, N., Landgraf, P., Aravin, A., Pfeffer, S., Brownstein, M. J., Tuschl, T., van Nimwegen, E., and Zavolan, M. (2005). Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics 6, 267. Sugio, A., MacLean, A. M., Kingdom, H. N., Grieve, V. M., Manimekalai, R., and Hogenhout, S. A. (2011). Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annu Rev Phytopathol 49, 175-95. Tao, Z., Shen, L., Liu, C., Liu, L., Yan, Y., and Yu, H. (2012). Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis. Plant J 70, 549-61. Thieme, C. J., Gramzow, L., Lobbes, D., and Theissen, G. (2011). SplamiR--prediction of spliced miRNAs in plants. Bioinformatics 27, 1215-23. Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J., and Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28, 511-5. Trevaskis, B., Tadege, M., Hemming, M. N., Peacock, W. J., Dennis, E. S., and Sheldon, C. (2007). Short vegetative phase-like MADS-box genes inhibit floral meristem identity in barley. Plant Physiol 143, 225-35. Tseng, H.-I. (2011). High-throughput transcriptome and small RNA analysis for studying phytoplasma infection on Cantharanthus roseus using Next Generation Sequencing, National Taiwan University. Urbanus, S. L., Dinh, Q. D., Angenent, G. C., and Immink, R. G. (2010). Investigation of MADS domain transcription factor dynamics in the floral meristem. Plant Signal Behav 5, 1260-2. Vaucheret, H. (2008). Plant ARGONAUTES. Trends Plant Sci 13, 350-8. Vaucheret, H., Vazquez, F., Crete, P., and Bartel, D. P. (2004). The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18, 1187-97. Wang, J. W., Czech, B., and Weigel, D. (2009). miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138, 738-49. Wang, M., Soyano, T., Machida, S., Yang, J. Y., Jung, C., Chua, N. H., and Yuan, Y. A. (2011). Molecular insights into plant cell proliferation disturbance by Agrobacterium protein 6b. Genes Dev 25, 64-76. Wu, G., Park, M. Y., Conway, S. R., Wang, J. W., Weigel, D., and Poethig, R. S. (2009). The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138, 750-9. Xie, Z., Allen, E., Fahlgren, N., Calamar, A., Givan, S. A., and Carrington, J. C. (2005). Expression of Arabidopsis MIRNA genes. Plant Physiol 138, 2145-54. Xuan, P., Guo, M., Huang, Y., and Li, W. (2011). MaturePred: efficient identification of microRNAs within novel plant pre-miRNAs. PLoS One 6, e27422. Yang, I.-L. (1985). Host Responses of Peanut Witches' Broom Disease, Journal of Agricultural Research of China 34, 464-468. Yang, J. Y., Iwasaki, M., Machida, C., Machida, Y., Zhou, X., and Chua, N. H. (2008). betaC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. Genes Dev 22, 2564-77. Zhang, X., Yuan, Y. R., Pei, Y., Lin, S. S., Tuschl, T., Patel, D. J., and Chua, N. H. (2006). Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev 20, 3255-68. Zheng, Y., Li, Y. F., Sunkar, R., and Zhang, W. (2012). SeqTar: an effective method for identifying microRNA guided cleavage sites from degradome of polyadenylated transcripts in plants. Nucleic Acids Res 40, e28. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63365 | - |
| dc.description.abstract | 花生簇葉病菌質體(Peanut Witches’ Broom Phytoplasma, PnWB)會對日日春的花部器官造成花瓣綠化及花器葉化等病徵。為從 RNA 層級著手探討花器葉化之致病機制,我們將日日春健康花(HF)及感病第四期花(S4)樣本之轉錄體及小分子核糖核酸(small RNA)以次世代解序技術(next-generation sequence, NGS)進行解序,並建立資料庫以利後續開花相關基因之鑑定及微型核糖核酸(miRNA)對基因表現調控之研究。本研究以實驗策略來分析經次世代解序技術解序之轉錄組及 small RNA,進而鑑定出非模式植物日日春之保守性 miRNA 及其目標基因。流程之建立立基於諸多生物性特性,包括:miRNA/miRNA* 之配對特性、miRNA/miRNA* 坐落於其前驅體二級結構上之位置特性、miRNA/miRNA* 累積量之比例特性及 miRNA reads 於前驅體上之分布特性等。另外,miRNA-target 計分原則及 miRNA 及其目標基因相反表現趨勢之特性亦被用於優化日日春中 miRNA 目標基因之預測。本研究預測出 23 個保守性 miRNA 及 71 個可能受 miRNA 調控之目標基因。據結果,大部分 miRNA 之表現在 S4 中下降,故提出花生簇葉病菌質體可能在感染過程中抑制 miRNA 之生合成之推論。此外,由本研究預測出之 miR396 及其目標基因 SHORT VEGETATIVE PHASE (SVP) 間之配對關係而推論由 FLOWERING LOCUS T (FT) 調控之開花路徑可能受到PnWB植物菌質體調控而導致花器葉片化病徵之產生。 | zh_TW |
| dc.description.abstract | Peanut Witches’ Broom (PnWB) Phytoplasma causes floral symptoms such as virescent petal and phyllody on an indicator plant periwinkle Cantharanthus roseus. To unravel the reprogramming mechanism underlying the symptom development in RNA level, the deep sequenced transcriptome and small RNA profile of healthy (HF) and diseased stage-4 (S4) flower were established for studying flowering-related gene expression and miRNA-mediated gene regulation. The experimental approach was used to analyze the transcriptome and small RNA profiles to identify the conserved microRNA (miRNA) and their targets in periwinkle. The pipeline was developed based on several biological features, e.g. miRNA/miRNA* paring, miRNA/miRNA* duplex location on precursor, ratio of reads between miRNA and miRNA*, and miRNA reads distribution on precursor etc., to predict the miRNA of periwinkle. In additon, miRNA-target score, and the opposite expression tendency between miRNA and transcriptome were also considered in the prediction pipeline for enhancing the accuracy of target prediction. A total of 23 conserved miRNAs and 71 targets of periwinkle were predicted in this study. The results showed that most Cr_miRNAs were decreased in S4 sample and implied that PnWB might suppress these miRNAs during infection. The predicted relation of Cr_miR396 and its targets (Cr_SVP1 and Cr_SVP2) was highlighted in involvement of Cr_FT mediated flowering pathway between HF and S4 samples, and therefore the mechanism of the leafy flower reprogramming was proposed in this study. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:37:16Z (GMT). No. of bitstreams: 1 ntu-101-R99633017-1.pdf: 17885129 bytes, checksum: e35288287979b97f342e16caf3745078 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 中文摘要 IV Abstract V Contents VI Introduction 1 Materials and methods 9 Plant material and phytoplasma inoculation 9 Scanning electron microscope 9 Total RNA extraction 10 Semi-quantitative reverse-transcriptional polymerase chain reaction 10 Small RNA northern blot hybridization 11 The prediction of conserved miRNA of periwinkle 12 The identification of conserved miRNA precursor of periwinkle 12 Phylogenic analysis of miRNA precursor 13 The miRNA target prediction 13 Calculation of miRNA-target pairing score 14 Functional domains analysis of transcriptome contigs and the miRNA reads profiling 14 Calculation of the in silico expression the transcriptome and miRNA 15 KEGG pathway 15 Results 16 The morphological changes on the petal surface of periwinkle flower 16 Flowering related genes identification 16 The pipeline with biological features for periwinkle conserved miRNA identification 18 The target prediction of miRNA in periwinkle 19 The evolution of miRNA between periwinkle and Arabidopsis 21 The miRNA targets in KEGG maps 22 The characterization of Cr_miR159 22 Cr_miR396a/b and its predictive targets 24 Cloning Cr_miR396a gene from periwinkle 24 Cloning Cr_SVP1 and Cr_SVP2 of Periwinkle 25 TasiRNA in periwinkle 26 Discussion 27 The accuracy of miRNA and its target prediction 27 MiRNA target prediction 29 Evolutionary view for miRNA and its target 29 MIR genes control flowering pathway in periwinkle 30 References 32 Tables and Figures 41 Supplemental figures and tables 61 | |
| dc.language.iso | en | |
| dc.subject | 花生簇葉病菌質體 | zh_TW |
| dc.subject | 次世代解序技術 | zh_TW |
| dc.subject | 微型核酸預測 | zh_TW |
| dc.subject | 微型核酸目標基因預測 | zh_TW |
| dc.subject | 花器葉片化 | zh_TW |
| dc.subject | miRNA prediction | en |
| dc.subject | NGS | en |
| dc.subject | miRNA target prediction | en |
| dc.subject | leafy flower | en |
| dc.subject | PnWB phytoplasma | en |
| dc.title | 鑑定日日春微型核酸及其調控基因受花生簇葉病菌質體感染所導致花器葉片化之研究 | zh_TW |
| dc.title | Identification of conserved microRNAs and their targets in PnWB phytoplasma induced leafy flower of Cantharanthus roseus | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林詩舜 | |
| dc.contributor.oralexamcommittee | 曾國欽,葉錫東,郭志鴻 | |
| dc.subject.keyword | 花生簇葉病菌質體,次世代解序技術,微型核酸預測,微型核酸目標基因預測,花器葉片化, | zh_TW |
| dc.subject.keyword | PnWB phytoplasma,NGS,miRNA prediction,miRNA target prediction,leafy flower, | en |
| dc.relation.page | 113 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-10-12 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 17.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
