Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63357Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 謝之真(Chih-Chen Hsieh) | |
| dc.contributor.author | Cheng-Han Lee | en |
| dc.contributor.author | 厲承翰 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:36:49Z | - |
| dc.date.available | 2017-11-22 | |
| dc.date.copyright | 2012-11-22 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-10-16 | |
| dc.identifier.citation | 1. Hsieh, C.C., Simulation of conformational preconditioning strategies for electrophoretic stretching of DNA in a microcontraction. Biomicrofluidics, 2011. 5: p. 044106.
2. Randall, G.C., K.M. Schultz, and P.S. Doyle, Methods to electrophoretically stretch DNA: microcontractions, gels, and hybrid gel-microcontraction devices. Lab on a Chip, 2006. 6(4): p. 516-525. 3. Chan, E.Y., et al., DNA mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags. Genome Research, 2004. 14(6): p. 1137-1146. 4. Turner, P.C., et al., 分子生物學速成.2002, 臺北市:合記書局總經銷. 5. Zimm, B.H., Extension in flow of a DNA molecule tethered at one end. Macromolecules, 1998. 31(18): p. 6089-6098. 6. Randall, G.C. and P.S. Doyle, DNA deformation in electric fields: DNA driven past a cylindrical obstruction. Macromolecules, 2005. 38(6): p. 2410-2418. 7. 陳信瑋,於漸縮微流道以電場拉伸吸附於脂雙層上DNA之研究,國立臺灣大學化學工程學系,碩士論文,民國100年。 8. Schafer, D.A., et al., Transcription by Single Molecules of Rna-Polymerase Observed by Light-Microscopy. Nature, 1991. 352(6334): p. 444-448 9. Chu, S., Laser Manipulation of Atoms and Particles. Science, 1991. 253(5022): p. 861-866. 10. Perkins, T.T., et al., RELAXATION OF A SINGLE DNA MOLECULE OBSERVED BY OPTICAL MICROSCOPY. Science, 1994. 264(5160): p. 822-826. 11. Smith, S.B., L. Finzi, and C. Bustamante, Direct Mechanical Measurements of the Elasticity of Single DNA-Molecules by Using Magnetic Beads. Science, 1992. 258(5085): p. 1122-1126. 12. Bensimon, D., et al., Stretching DNA with a receding meniscus - Experiments and Models. Physical Review Letters, 1995. 74(23): p. 4754-4757. 13. Kim, J.H., W.X. Shi, and R.G. Larson, Methods of stretching DNA molecules using flow fields. Langmuir, 2007. 23(2): p. 755-764. 14. Hsieh, C.C. and P.S. Doyle, Studying confined polymers using single-molecule DNA experiments. Korea-Australia Rheology Journal, 2008. 20(3): p. 127-142. 15. 黃思齊, 於脂雙層上拉伸DNA之研究,國立臺灣大學化學工程學系,碩士論文,民國99年。 16. Smith, D.E. and S. Chu, Response of flexible polymers to a sudden elongational flow. Science, 1998. 281(5381): p. 1335-1340. 17. Larson, J.W., et al., Single DNA molecule stretching in sudden mixed shear and elongational microflows. Lab on a Chip, 2006. 6(9): p. 1187-1199. 18. Hsieh, S.S. and J.H. Liou, DNA molecule dynamics in converging-diverging microchannels. Biotechnology and Applied Biochemistry, 2009. 52: p. 29-40. 19. Balducci, A. and P.S. Doyle, Conformational preconditioning by electrophoresis of DNA through a finite obstacle array. Macromolecules, 2008. 41(14): p. 5485-5492. 20. Bird, R.B., Dynamics of polymeric liquids. 1987, New York: Wiley. 21. Larson, R.G., The rheology of dilute solutions of flexible polymers: Progress and problems. Journal of Rheology, 2005. 49(1): p. 1-70. 22. Perkins, T.T., D.E. Smith, and S. Chu, Single polymer dynamics in an elongational flow. Science, 1997. 276(5321): p. 2016-2021. 23. 楊登貴,電滲流於微渠道中速度及溫度量測之實驗研究,國立中山大學機械與機電工程學系,碩士論文,民國96年。 24. Bow, H.C., Characterization of Nanofilter Arrays for Small Molecule Separation, in Electrical Engineering and Computer Sciences. 2004. 25. 林宗賢, 以布朗動態法模擬與優化電泳拉伸DNA之策略,國立臺灣大學化學工程學系,碩士論文,民國100年。 26. Balducci, A., Studies of DNA Dynamics in Slit-Like Nanochannel Confinement, in Chemical Engineering. 2003, Carnegie-Mellon University. 27. TANG, J., Singal Molecule DNA Dynamics in Micro- and Nano-Fluidic Device, in Chemical Engineering. 2009, Massachusetts Institute of Technology. 28. Kaneta, T., et al., Suppression of electroosmotic flow and its application to determination of electrophoretic mobilities in a poly(vinylpyrrolidone)-coated capillary. Journal of Chromatography A, 2006. 1106(1-2): p. 52-55. 29. http://en.wikipedia.org/wiki/Polyvinylpyrrolidone 30. Smith, D.E., H.P. Babcock, and S. Chu, Single-polymer dynamics in steady shear flow. Science, 1999. 283(5408): p. 1724-1727. 31. Doyle, P.S., B. Ladoux, and J.L. Viovy, Dynamics of a tethered polymer in shear flow. Physical Review Letters, 2000. 84(20): p. 4769-4772. 32. Hsieh, S.S., C.H. Liu, and J.H. Liou, Dynamics of DNA molecules in a cross-slot microchannel. Measurement Science & Technology, 2007. 18(9): p. 2907-2915. 33. http://www.solutioninn.com/engineering/chemical-engineering/transport-phenomena/potential-flow-near-a-stagnation-point-fig-4b6--a-show 34. http://www.cnf.cornell.edu/cnf_process_photo_resists.html#hmds 35. McDonald, J.C., et al., Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis, 2000. 21(1): p. 27-40. 36. Rye, H.S., et al., STABLE FLUORESCENT COMPLEXES OF DOUBLE-STRANDED DNA WITH BIS-INTERCALATING ASYMMETRIC CYANINE DYES - PROPERTIES AND APPLICATIONS. Nucleic Acids Research, 1992. 20(11): p. 2803-2812. 37. http://products.invitrogen.com/ivgn/product/Y3601 38. Randall, G.C. and P.S. Doyle, Permeation-driven flow in poly(dimethylsiloxane) microfluidic devices. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(31): p. 10813-10818. 39. Makamba, H., et al., Surface modification of poly(dimethylsiloxane) microchannels. Electrophoresis, 2003. 24(21): p. 3607-3619. 40. Panda, P., et al., Temporal response of an initially deflected PDMS channel. New Journal of Physics, 2009. 11. 41. Tang, J. and P.S. Doyle, Electrophoretic stretching of DNA molecules using microscale T junctions. Applied Physics Letters, 2007. 90(22). 42. Tang, J., N. Du, and P.S. Doyle, Compression and self-entanglement of single DNA molecules under uniform electric field. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(39): p. 16153-16158. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63357 | - |
| dc.description.abstract | 本研究以實驗驗證Hsieh and Lin利用有限元素法及布朗動態模擬法所設計以電場拉伸DNA之裝置。此裝置藉由特殊設計的微流道改變DNA之初始形狀,使DNA能以有利於拉伸之型態進入漸縮通道進行拉伸。我們希望能將這種新設計應用於基因圖譜技術。根據模擬結果我們測試三種不同設計之微流道: Case I是Randall and Doyle所設計的單純漸縮通道;case II的通道是先漸擴再漸縮之通道,漸擴部分有預拉伸DNA之效果,使DNA的初始狀態有利於拉伸;case III是case II的改良式通道,可以減少case II通道中,DNA對半折疊造成不利於拉伸的情形。利用電場實際拉伸DNA後,發現實驗結果不如預期,DNA在高電場下會「自纏繞」成球狀型態。我們利用COMSOL計算在通道之流場分布,發現和電場分布相似,再經由實驗初步評估後,我們便嘗試以流場在同樣的微流道中拉伸DNA。
流場拉伸DNA的結果與電場模擬有相似的情形;1.Case II與case III中皆有產生旋轉預拉伸的效果。2.由於體積排斥力的關係,DNA在case III中無沿中心線進入漸擴通道之情形。3.case III的拉伸效果最好,其次為case II,最後為case I。另外,在case I中,當黛博拉數為20以上,DNA在經過漸縮流道時,有些碰到通道邊界的DNA會有「翻轉」的情形,我們推斷此情形是由於壁邊流速為零的邊界條件所造成,而case II與case III則較少發生此情形。由於產生「翻轉」情形,造成case I中從黛博拉數從10上升至20時,其平均最大拉伸率上升幅度會比從黛博拉數由20上升至30時為低。若與Randall and Doyle在漸縮微流道中以電場拉伸DNA之結果相比,本實驗在case II與case III中利用流場拉伸DNA之平均最大拉伸率明顯優於在case I中利用電場拉伸DNA之平均最大拉伸率。 | zh_TW |
| dc.description.abstract | We experimentally test two microfluidic devices for stretching DNA using electric field and flow field. The microfluidic devices were designed with the help of computer simulations for electrophoretic stretching of DNA, and both were predicted to outperform a simple contraction. We first electrophoretically stretch DNA using DC field while the experimental results were not even in qualitative agreement with our simulations. Detailed investigation in experiments reveals that DNA adapts a compressed conformation in high DC field and thus becomes more difficult to stretch.
Due to the similarity between flow field and electric field, we use the same microfluidic devices with flow field to stretch DNA. The experimentally observed DNA behavior in flow field is similar to the prediction based on electric field. The rotation-extension motion of DNA that is the key to the preconditioning effect is also observed in flow field. As to the performance for DNA stretching, case III is better than case II, and case II is better than case I. The result is again consistent with our prediction. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:36:49Z (GMT). No. of bitstreams: 1 ntu-101-R99524034-1.pdf: 5373406 bytes, checksum: 7a7fbd941c333656a4ccb7007eab3374 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 目錄
摘要 i ABSTRACT ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 xii 符號表 xiii 希臘符號表 xiv 第一章、緒論 1 1.1 前言 1 1.2 研究動機與目的 1 第二章、文獻回顧 3 2.1 DNA的特性 3 2.1.1 DNA的介紹 3 2.1.2 DNA的物理性質 6 2.2 直接線性分析法之優勢與簡介 7 2.3 現行之DNA拉伸技術 9 2.3.1 栓扯拉伸法 9 2.3.2 分子梳拉伸法 11 2.3.3 侷限拉伸法 13 2.1.4 流電場拉伸法 14 2.4 電動力學 16 2.4.1 電雙層 16 2.4.2 電滲流 18 2.4.3 電泳 20 2.5 流體力學 21 2.5.1 延展流 21 2.5.2 剪力流 23 2.6 初始形狀與拉伸率之關係 25 2.6.1 初始形狀對拉伸率之影響 25 2.6.2 以孔隙型凝膠來改善DNA之初始形狀 26 2.6.3 以圓柱矩陣改善DNA之初始形狀 29 2.6.4 以預拉伸改變DNA初始狀態之新構想 31 第三章、實驗步驟與方法 36 3.1 儀器設備 36 3.2 實驗藥品 38 3.3 實驗方法 39 3.3.1 微影製程技術 39 3.3.2 玻片清洗步驟 42 3.3.3 T4 DNA的稀釋 42 3.3.4 DNA的染色[36] 42 3.3.5 以電場拉伸DNA 43 3.3.6 測量鬆弛時間 44 3.3.7 以壓力流拉伸DNA 46 第四章、實驗結果與討論 49 4.1 微影製程之結果 49 4.2 鬆弛時間之測量 51 4.3 流場流速計算與DNA拉伸長度測量方法 55 4.4 電場拉伸結果 57 4.5 流場拉伸結果 60 4.6 綜合分析比較 70 4.6.1 不同黛博拉數之比較 70 4.6.2 不同通道之比較 74 4.6.3 平均最大拉伸率比較 78 第五章、結論 80 第六章、參考文獻 82 | |
| dc.language.iso | zh-TW | |
| dc.subject | 拉伸DNA | zh_TW |
| dc.subject | 漸縮微流道 | zh_TW |
| dc.subject | 壓力流 | zh_TW |
| dc.subject | 電泳 | zh_TW |
| dc.subject | pressure-driven flow | en |
| dc.subject | DNA stretching | en |
| dc.subject | microcontraction | en |
| dc.subject | electrophoresis | en |
| dc.title | 於改良式漸縮微流道拉伸DNA之研究 | zh_TW |
| dc.title | Research of DNA stretching in a modified microcontraction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 趙玲(Ling Chao),魏憲鴻(Hsien-Hung Wei),王翔郁(HSIANG-YU Wang) | |
| dc.subject.keyword | 拉伸DNA,漸縮微流道,壓力流,電泳, | zh_TW |
| dc.subject.keyword | DNA stretching,microcontraction,pressure-driven flow,electrophoresis, | en |
| dc.relation.page | 84 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-10-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| Appears in Collections: | 化學工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-101-1.pdf Restricted Access | 5.25 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
