Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63352
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃鵬鵬(Pung-Pung Wang)
dc.contributor.authorHsin-Hui Kanen
dc.contributor.author甘馨惠zh_TW
dc.date.accessioned2021-06-16T16:36:31Z-
dc.date.available2012-11-22
dc.date.copyright2012-11-22
dc.date.issued2012
dc.date.submitted2012-10-19
dc.identifier.citationAbbas L, Hajihashemi S, Stead LF, Cooper GJ, Ware TL, Munsey TS, Whitfield TT, White SJ., 2011. Functional and developmental expression of a zebrafish Kir1.1
(ROMK) potassium channel homologue Kcnj1. J Physiol 589:1489-1503.
Adan RA, Cox JJ, Beischlag TV, and Burbach JP., 1993. A composite hormone response element mediates the transactivation of the rat oxytocin gene by different
classes of nuclear hormone receptors. Mol Endocrinol 7:47-57.
Bailment RJ, Brimble MJ, Forsling ML., 1982. Oxytocin release and renal actions in normal and Brattleboro rats. ANN NY Acad Sci 394: 241-253.
Bakkers J, Hild M, Kramer C, Furutani-Seiki M, ammerschmidt M., 2002.
Zebrafish DeltaNp63 is a direct target of Bmp signaling and encodes a transcriptional repressor blocking neural specification in the ventral ectoderm. Dev Cell 2:617-627.
Barberis C and Tribollet E., 1996. Vasopressin and oxytocin receptors in the central nervous system. Crit Rev Neurobiol 10:119-154.
Brownstein MJ, Russell JT, Gainer H., 1980. Synthesis, transport, and release of
posterior pituitary hormones. Science 207(4429):373-378.
Burbach JPH, Luckman SM, Murphy D, Gainer H., 2001. Gene regulation in the
magnocellular hypothalamo-neurohypophysial system. Physiol Rev 81: 1197–1267.
Cassoni P, Sapino A, Negro F, Bussolati G., 1994. Oxytocin inhibits proliferation of
human breast cancer cell lines. Virchows Arch 425:467-472.
Cassoni P, Sapino A, Stella A, Fortunati N, Bussolati G., 1998. Presence and
significance of oxytocin receptors in human neuroblastomas and glial tumors. Int J
Cancer 77:695-700.
Chan CB and Cheng CH., 2004. Identification and functional characterization of two
alternatively spliced growth hormone secretagogue receptor transcripts from the
pituitary of black seabream Acanthopagrus schlegeli. Mol Cell Endocrinol 214:81-95.
Chang WJ, Horng JL, Yan JJ, Hsiao CD, Hwang PP., 2009. The transcription factor,
glial cell missing 2, is involved in differentiation and functional regulation of
H1-ATPase-rich cells in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp
Physiol 296:R1192-R1201.
Chang WJ and Hwang PP., 2011. Development of zebrafish epidermis. Birth Def Re
96:205-214.
Chou MY, Hung JC, Wu JC, Hwang SPL, Hwang PP., 2010. Isotocin controls ion
regulation through regulating ionocyte progenitor differentiation and proliferation. Cell
Mol Life Sci 68:2797-2809.
Esaki M, Hoshijima K, Nakamura N, Munakata K, Tanaka M et al., 2009.
Mechanism of development of ionocytes rich in vacuolar-type H+-ATPase in the skin of
zebrafish larvae. Dev Biol 329:116-129.
Ferguson JN, Young LJ and Insel TR., 2002. The neuroendocrine basis of social
recognition. Front Neuroendocrinol 23:200-224.
Gainer H and Wray S., 1994. Cellular and molecular biology of oxytocin and
vasopressin, in The Physiology of Reproduction (Knobil E and Neill JD eds) pp
1099-1129, Raven Press Ltd, New York.
Gimpl G and Fahrenholz F., 2001. The oxytocin receptor system: structure, function,
and regulation. Physiol Rev 81:629-683.
Glass H, Gutkowska J, Favaretto AL, Antunes-Rodrigues J., 1997. Correlations
between ANP concentrations in atria, plasma and cerebral structures and sodium
chloride preference in Wistar rats. Brz J Med Biol Res 30:65-68.
Goodson JL., 2008. Nonapeptides and the evolutionary patterning of sociality. Prog
Brain Res 170:3-15.
Goossens N, Dierickx K, Vandesande F., 1977 Immunocytochemical localization of
vasotocin and isotocin in the preopticohypophysial neurosecretory system of teleosts.
Gen Comp Endocrinol 32:371-375.
Haraldsen L, Söderström-Lauritzsen V, Nilsson GE., 2002 Oxytocin stimulates
cerebral blood flow in rainbow trout (Oncorhynchus mykiss) through
nitric oxide dependent mechanism. Brain Res 1;929(1):10-4.
Hausmann H, Meyerhof W, Zwiers H, Lederis K, Richter D. 1995. Teleost isotocin
receptor: structure, functional expression, mRNA distribution and phylogeny. FEBS
Lett 370:227-230.
Higuchi T, Honda K, Takano S, Negoro H., 1988. Reduced oxytocin response to
osmotic stimulus and immobilization stress in lactating rats. J Endocrinol 116:225-230.
Hoenderop JG, Willems PH, Bindels RJ., 2000. Toward a comprehensive molecular
model of active calcium reabsorption. Am J Physiol Renal Physiol 278:F352-F360.
Holland RC, Cross BA, Sawyer CH., 1959. Effects of intracarotid injetions of
hypertonic solutions on the neurohypophysial milk-ejection mechanism. Am J Physiol
196:791-795.
Hsiao CD, You MS, Guh YJ, Ma M, Jiang YJ, Hwang PP., 2007. A positive
regulatory loop between foxi3a and foix3b is essential for specification and
differentiation of zebrafifhs expidermal ionocyte. PLoS ONE 2., e302.
Hwang PP and Lee TH., 2007. New insights into fish ion regulation and
mitochondrion-rich cells. Comp Biochem Physiol A Mol Integr Physiol 148:479-497.
Hwang PP and Perry SF., 2010. Ionic and acid-base regulation, in Zebrafish (Perry SF,
Ekker M, Farrell AP, Brauner CJ eds) pp 311-344, Fish physiol Elsevier Academia
Press, San Diego.
Hwang PP, Lee TH, Lin LY., 2011. Ion regulation in fish gills: recent progress in the
cellular and molecular mechanisms. Am J Physiol Regul Integr Comp Physiol
301:R28-R47.
Hyodo S, Tsukada T, Takei Y., 2004. Neurohypophysial hormones of dogfish, Triakis
scyllium: structures and salinitydependent secretion. Gen Comp Endocrinol 138:97-104.
Innamorati G, Sadeghi H, Birnbaumer M., 1998. Transient phosphorylation of the
V1a vasopressin receptor. J Biol Chem 273: 7155-7161.
Insel TR, Young L, Wang Z., 1997. Central oxytocin and reproductive behaviours.
Rev Reprod 2:28-37.
Jänicke M, Carney TJ, Hammerschmidt M., 2007. Foxi3 transcription factors and
Notch signaling control the formation of skin ionocytes from epidermal precursors of
the zebrafish embryo. Dev Biol 307:258-271.
Katoh F, Hyodo S, Kaneko T., 2003. Vacuolar-type proton pump in the basolateral
plasma membrane energizes ion uptake in branchial mitochondria-rich cells of killifish
Fundulus heteroclitus, adapted to a low ion environment . J Exp Biol 206:793-803.
Kimura T, Tanizawa O, Mori K, Brownstein MJ, Okayama H., 1992. Structure and
expression of a human oxytocin receptor. Nature 356:526-529 doi:0.1038/356526a0.
Kimura T, Makino Y, Saji F, Takemura M, Inoue T, Kikuchi T, Kubota Y, Azuma
C, Nobunaga T, Tokugawa Y, Tanizawa O ., 1994. Molecular characterization of a
cloned human oxytocin receptor. Eur J Endocrinol 131 (4):385-390.
Kroeger M., 1996. Oxytocin: key hormone in sexual intercourse, parturition, and
lactation. Birth Gaz 13:28-30.
Lee H and Kimelman D., 2002. A dominant-negative form of p63 is required for
epidermal proliferation in zebrafish. Dev Cel 2:607-616.
Lee YC, Yan JJ, Cruz SA, Horng JL, Hwang PP., 2011. Anion exchanger 1b, but not
sodiumbicarbonate cotransporter 1b, plays a role in transport functions of zebrafish
H+-ATPase-rich cells. Am J Physiol Cell Physiol 300:C295-C307.
Li C, Wang W, Summer SN, Westfall TD, Brooks DP, Falk S. Schrier RW., 2008.
Molecular mechanisms of antidiuretic effect of oxytocin. Jam Soc Nephrol 19:225-232.
Liao BK, Deng AN, Chen SC, Chou MY, Hwang PP., 2007. Expression and water
calcium dependence of calcium transporter isoforms in zebrafish gill mitochondrionrich
cells. BMC Genomics 8:354.
Lin LY, Horng JL, Kunkel JG, Hwang PP., 2006. Proton pump-rich cell secretes acid
in skin of zebrafish larvae. Am J Physiol Cell Physiol 290:C371-378.
Marazziti D, Catena Dell’osso M., 2008. The role of oxytocin in neuropsychiatric
disorders. Curr Med Chem 15:698-704.
Maybauer MO, Maybauer DM, Enkhbaatar P, Traber DL., 2008. Physiology of the
vasopressin receptors. Best Pract Res Clin Anaesthesiol 22(2):253-63.
McCormick SD, Bradshaw D., 2006. Hormonal control of salt and water balance in
vertebrates. Gen Comp Endocrinol 147:3-8.
Michelini S, Urbanek M, Dean M, Goldman D., 1995. Polymorphism and genetic
mapping of the human oxytocin receptor gene on chromosome 3. Am J Med Genet
60:183-187.
Mittal AK, Banerjee TK., 1980. Keratinization versus mucus secretion in fish
epidermis. In: Spearman RIC, Riley PA (eds). Linnean Society Symposium Series no
9. Academic Press, London. The skin of vertebrates pp1-12.
Novak JF, Judkins MB, Chernin MI, Cassoni P, Bussolati G, Nitche JA, Nishimoto
Sk., 2000. A plasmin-derived hexapeptide from the carboxyl end of osteocalcin
counteracts oxytocin-mediated growth inhibition [corrected] of osteosarcoma cells.
Cancer Res 60:3470-3476.
Ohya T and Hayashi S., 2006. Vasotocin/isotocin-immunoreactive neurons in the
medaka fish brain are sexually dimorphic and their numbers decrease after spawning in
the female. Zool Sci 23:23-29.
Olivereau M and Lemoine., 1971. Action de la prolactine chez I’anguille intacte et
hypophysectomiske. VII. Effet sur la teneur en acide sialique (n-adtyl-neuraminique) de
la peau. Z vergl Physio. 73:34-43.
Ott J and Scott JC., 1910. The galactogogue action of the thymus and corpus luteum.
Proc Soc Exp Biol 8: 49.
Pan TC, Liao BK, Huang CJ, Lin LY, Hwang PP., 2005. Epithelial Ca2+ channel
expression and Ca2+ uptake in developing zebrafish. Am J Physiol Regul Integr Comp
Physiol 289:R1202-R1211.
Richard S and Zingg HH., 1990. The human oxytocin gene promoter is regulated by
estrogens. J Biol Chem 265:6098-6103.
Richard S and Zingg HH., 1991. Identification of a retinoic acid response element in
the human oxytocin promoter. J Biol Chem 266: 21428-21433.
Pickering AD., 1974. The distribution of mucous cells in the epidermis of the brown
trout Salmo trutta (L.) and the char Salvelinus alpinus (L.). J. Fish Biol 6:111-118.
Pierson PM, Guibbolini ME, Lahlou B., 1995. Enzyme linked immunosorbent assay
for the neurohypophyseal hormones arginine vasotocin and isotocin. J Immunoassay
16:55-79.
Shih LJ, Lu YF, Chen YH, Lin CC, Chen JA, Hwang SHL., 2007. Characterization
of the agr2 gene, a homologue of X. laevis anterior gradient 2, from the zebrafish,
Danio rerio. Gene Expr Patterns 7:452-460.
Simmons-CF J, Clancy TE, Quan R, Knoll JH., 1995. The oxytocin receptor gene
(OXTR) localizes to human chromosome 3p25 by fluorescence in situ hybridization and
PCR analysis of somatic cell hybrids. Genomics 26:623-625.
Swanson LW and Sawchenko PE., 1983. Hypothalamic integration: organization of
the paraventricular and supraoptic nuclei. Annu Rev Neurosci 6:269-324.
Thisse C and Zon LI., 2002. Organogenesis-heart and blood formation from the
zebrafish point of view. Science 295:457-462.
Thompson RR and Walton JC., 2004. Peptide effects on social behavior: effects of
vasotocin and isotocin on social approach behavior in mal egoldfish (Carassius auratus).
Behav Neurosci 118:620-626.
Tuppy H., 1953. The amino-acid sequence in oxytocin. Biochim Biophs Acta 3:449-50.
Unger JL and Glasgow E., 2003. Expression of isotocin-neurophysin mRNA in
developing zebrafish. Gene Expr Patterns 3:105-108.
Van den Dungen HM, Buijs RM., Pool CW, Terlou M., 1982. The distribution of
vasotocin and isotocin in the brain of the rainbow trout. J. com. Neurol 121:146-157.
Van de Graaf SF, Hoenderop JG, Bindels RJ., 2006. Regulation of TRPV5 and
TRPV6 by associated proteins. Am J Physiol Renal Physiol 290:F1295-F1302.
Venkatesh B and Brenner S., 1995. Structure and organization of the isotocin and
vasotocin genes from teleosts. Adv Exp Med Biol 395:629-638.
Verbalis JG., 1999. The brain oxytocin receptor(s). Front Neuroendocrinol
20:146-156.
Viero C, Shibuya I, Kitamura N, Verkhratsky A, Fujihara H, Katho A, Ueta Y,
Zignn HH, Chvatal A, Sykova E, Dayanithi G., 2010. Oxytocin: Crossing the Bridge
between Basic Science and Pharmacotherapy. CNS Neurosc Ther 16:e138-e156.
Vigneaud DV, Ressler C, Trippett S., 1953. The sequence of amino acids in oxytocin,
with a proposal for the structure of oxytocin. J Biol Chem 205:949-957.
Wang YF, Tseng YC, Yan JJ, Hiroi J, Hwang PP., 2009. Role of SlC12A10.2, a
Na-Cl cotranspoter-like prtoein, in a Cl uptake mechanism in zebrafish (Danio rerio).
Am J Physiol 296:R1650-1660.
Warne JM, Hazon N, Rankin JC, Balment RJ., 1994. A radioimmunoassay for the
determination of arginine vasotocin (AVT): plasma and pituitary concentrations in
fresh- and seawater fish. Gen Comp Endocrinol 96:438-444.
Warner JM, Hyodo S, Harding K, Balment RJ., 2000 Cloning of pro-vasotocin and
pro-isotocin cDNAs from the flounder Platichthys flesus; levels of hypothalamic
mRNA following acute osmotic challenge. Gen Comp Endocrinol 119:77-84.
Watanabe Y, Sakihara T, Mukuda T, Ando M., 2007. Antagonistic effects of
vasotocin and isotocin on the upper esophageal sphincter muscle of the eel acclimated
to seawater. J Comp Physiol B 177:867-873.
Weitzman RE, Glatz TH, Fisher DA., 1978. The effect of hemorrhage and hypertonic
saline upon plasma oxytocin and arginine vasopreesin in concious dogs. Endocrinology
103:2154-216.
Zhong M, Yang M, Sanborn BM., 2003. Extracellular signal-regulated kinase 1/2
activation by myometrial oxytocin receptor involves GaqGbg and epidermal growth
factor receptor tyrosine kinase activation. Endocrinology 144:2947-2956.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63352-
dc.description.abstract過去研究指出神經荷爾蒙催產素(oxytocin)在哺乳類腎臟參與離子及水分調節機制,且其同源基因isotocin 已被證實在魚類離子調節中扮演重要角色。然而,在催產素調節表皮細胞分化進而影響魚類離子和滲透壓的這個模式中,其受體所扮演的角色尚未被瞭解。本實驗目的為利用分子生物學、生化及生理學的方法,研究催產素受體在斑馬魚離子運輸及滲透壓平衡所扮演的角色為何。
  以催產素反義核酸抑制催產素蛋白質的合成後,表皮幹細胞、離子細胞(富含鈉鉀氫離子幫浦細胞與富含氫離子幫浦細胞)和表皮細胞數量都顯著地減少。此外,以注射cRNA 方式過量表現催產素基因,發現表皮幹細胞數量也隨之增加。此實驗證實催產素藉由調控幹細胞進而影響離子細胞的分化。為瞭解催產素與其受體的關係,抑制催產素基因後,發現其第一型受體mRNA 表現量會顯著下降,但第二型受體mRNA 表現量會顯著上升;此實驗說明催產素第一、二型受體作用
相反。將催產素受體用其反義核酸分別抑制其基因表現後,發現第一型受體的基因被抑制時,表皮幹細胞、離子細胞與表皮細胞數量都顯著上升;但在催產素第二型受體的基因被抑制後,所有表皮細胞數量的結果都與第一型受體被抑制的結果相反。且注射cRNA 方式過量表現催產素第一、二型受體,其幹細胞數量都可得到與抑制基因表現相反的結果。這些實驗證實催產素第一、二型受體藉由調控幹細胞進而影響離子細胞的分化,且兩者作用相反。
  為了更進一步探討這兩型受體間的關係,從共同注射實驗發現同時抑制兩個受體的功能會使幹細胞、離子細胞、表皮細胞和黏液細胞數量與控制組沒有顯著差異;同時抑制催產素第一型及過量表現第二型受體都會使幹細胞數量上升;在同時抑制第二型及過量表現第一型受體時,幹細胞數量會減少。這些實驗更進一步證實,這兩型催產素受體在魚類上調控離子細胞的功能互相牽制。
  黏液細胞數量在催產素基因被抑制時上升,但在此二受體分別被抑制時下降。這個結果顯示黏液細胞的分化不同於目前已知的幹細胞-離子細胞途徑,推測有其他因子調控黏液細胞的分化。
  綜上所述,催產素及其受體在斑馬魚表皮細胞及離子細胞功能發展上扮演重要角色。催產素第一型受體對表皮細胞分化為負向調控、催產素第二型受體為正向調控;他們的作用完全相反,藉由這樣的迴饋機制影響離子細胞及表皮細胞的數量,進而調節硬骨魚類體內的離子及滲透壓平衡。本研究提供一個新平台瞭解催產素第一、二型受體在魚類表皮細胞的發育所扮演的角色。
zh_TW
dc.description.abstractThe mammalian oxytocin homolog in teleost fish, isotocin (itnp), was previously shown to play a major role on the proliferation of epidermal stem cells. However, the involvement of isotocin receptor in the isotocin control pathways of fish ionic and osmotic regulation through the epidermal ionocytes is unknown. In the present study, the roles of isotocin-isotocin neurophysin receptor (itnpr) axis in the epidermal cells development were elucidated using zebrafish as the animal model.
Loss of function assay using morpholino oligos showed that itnp morphants significantly decreased epidermal stem cells (p63-positive cell), matured ionocytes (Na+-K+-ATPase-rich cells: NaRC and H+-ATPase-rich cells: HRC), and keratinocytes numbers significantly decreased. In addition, itnp cRNA over-expression increased epidermal stem cells number. These show profound effects of itnp in epidermal
development through the stem cell. Using quantitative PCR, itnpr1 mRNA decreased significantly in the itnp morphants cDNA templates, but itnpr2 increased. This indicates
itnpr1 and 2 have opposite functions. As confirmed by the knockdown, itnpr1 morphants showed significant increase in stem cells, matured ionocytes and keratinocytes number, whereas loss of itnpr2 has reverse effects. Gain of function
showed that itnpr1 cRNA and itnpr2 cRNA-injected embryos reversed the results in MO injection alone with stem cells results. These data demonstrated that itnpr1 and 2 play opposite roles in fish epidermal development.
To further understand the function of these receptors, series of co-injection experiments were performed. Double knockdown of itnpr1 and r2 showed no significant
effect to the control morphants. The density of stem cell increased in itnpr1-MO plus r2-cRNA but decreased in itnpr2-MO plus r1-cRNA-injected embryos. These data further demonstrated that these two receptors play opposite role and restrict each others actions.
In case of mucous cells, itnp morphants showed increased in density, but decreased in both of receptors morphants. These may show that other factors influences mucous cell development independent from the known stem cell lineage pathway.
Altogether, itnp-itnprs system shows to play an important role in zebrafish epidermal cell development. The effect of itnpr1 (negative) is in contrast to itnpr2
(positive) on regulating epidermal cells number. These opposite roles could be a feedback regulation, which is a physiological need to facilitate proper epidermal cell
development and maintain the iono/osmo balance in zebrafish. Hence, this study provides new knowledge and platform to better understand the specific roles of itnpr1
and r2 in fish epidermal development.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:36:31Z (GMT). No. of bitstreams: 1
ntu-101-R99b45010-1.pdf: 3348762 bytes, checksum: 1e707bc15bd38006053b0bb66efe9334 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書······································· 2
誌謝················································ 3
中文摘要········································· 4
Abstract·············································· 6
Table of contents······························ 8
Introduction································· ······· 10
Oxytocin················································· 10
Isotocin ············································· 11
Oxytocin and Isotocin Receptors ······················· 12
Zebrafish as a model for molecular, developmental and physiological studies···· 14
Epidermal cells developmental processess················· 14
Purpose of the present study ···························· 17
Material and Methods ···································· 18
Experimental animals ··································· 18
Preparation of total RNA································· 18
Reverse-transcription polymerase chain reaction (RT-PCR) analysis ·············· 18
Quantitative real-time PCR (qPCR)··········· 19
Morpholino oligonucleotide (MO) knockdown ··············· 19
Whole-mount immunohistochemistry ························ 20
Whole-mount Alcian blue staining of mucous cell ········· 20
Transgenic zebrafish ···································· 21
capped-mRNA (cRNA) construct ···························· 21
Statistical analysis ···································· 22
Results·················································· 23
Effects of isotocin knockdown on zebrafish embryos epidermal cell densities ··· 23
Effect of isotocin knockdown on mRNA expressions of itnpr1 and itnpr2 ········ 23
Specificity test of itnpr1 and itnpr2 splicing morpholinos······················· 24
Effect of isotocin receptors knockdown on isotocin mRNA expression············ 25
The effect of isotocin receptors in zebrafish embryos epidermal stem cells density ························25
Effect of isotocin receptors on epidermal ionocytes, keratinocytes and mucouscell densities ·················· 26
Discussion and Conclusion································ 28
Isotocin effects on ionocytes and other epidermal cells ······························· 28
Isotocin receptors effect on ionocytes and other epidermal cells densities ········· 30
Relationship between isotocin and isotocin receptors ··· 31
Isotocin and its receptors on mucous cell ··············· 32
Summary ····································· 33
References ·············································· 34
Table··············································· 44
Figures ················································ 46
dc.language.isozh-TW
dc.subject細胞分化zh_TW
dc.subject迴饋機制zh_TW
dc.subject離子調控zh_TW
dc.subject催產素受體zh_TW
dc.subject催產素zh_TW
dc.subjectcell proliferationen
dc.subjectoxytocinen
dc.subjectisotocinen
dc.subjectoxytocin receptoren
dc.subjectisotocin receptor. ionoregulationen
dc.subjectfeedback regulationen
dc.title催產素受體於斑馬魚離子調節機制中扮演之角色zh_TW
dc.titleRoles of isotocin receptors in zebrafish ion regulation mechanismsen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee曾庸哲(Yung-Che Tseng),林豊益(Li-Yih Lin),韓玉山,張清風
dc.subject.keyword催產素,催產素受體,離子調控,迴饋機制,細胞分化,zh_TW
dc.subject.keywordoxytocin,isotocin,oxytocin receptor,isotocin receptor. ionoregulation,feedback regulation,cell proliferation,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2012-10-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved