Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63345
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曹恆偉(Hen-Wai Tsao)
dc.contributor.authorChung-Yu Changen
dc.contributor.author張仲宇zh_TW
dc.date.accessioned2021-06-16T16:36:07Z-
dc.date.available2014-11-22
dc.date.copyright2012-11-22
dc.date.issued2012
dc.date.submitted2012-10-23
dc.identifier.citation[1] 行政院衛生署,衛生統計資訊網. Available: http://www.doh.gov.tw/CHT2006/DM/DM2_2.aspx?now_fod_list_no=12336&class_no=440&level_no=4
[2] M. S. Chavan, R. Aggarwala, and M. Uplane, 'Interference reduction in ECG using digital FIR filters based on rectangular window,' WSEAS transactions on signal processing, vol. 4, pp. 340-349, 2008.
[3] J. Van Alste and T. Schilder, 'Removal of base-line wander and power-line interference from the ECG by an efficient FIR filter with a reduced number of taps,' Biomedical Engineering, IEEE Transactions on, pp. 1052-1060, 1985.
[4] S. H. Liu, 'Motion Artifact Reduction in Electrocardiogram Using Adaptive Filter,' Journal of Medical and Biological Engineering, vol. 31, pp. 67-72, 2011.
[5] J. Glover Jr, 'Adaptive noise canceling applied to sinusoidal interferences,' Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 25, pp. 484-491, 1977.
[6] N. V. Thakor and Y. S. Zhu, 'Applications of adaptive filtering to ECG analysis: noise cancellation and arrhythmia detection,' Biomedical Engineering, IEEE Transactions on, vol. 38, pp. 785-794, 1991.
[7] Z. Donghui, 'Wavelet Approach for ECG Baseline Wander Correction and Noise Reduction,' in Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, 2005, pp. 1212-1215.
[8] H. Taigang, G. Clifford, and L. Tarassanko, 'Application of ica in removing artefacts from the ECG,' Neural Processing Letters, vol. 10, pp. 1-5, 2004.
[9] R. Sameni, M. B. Shamsollahi, C. Jutten, and M. Babaie-Zadeh, 'Filtering noisy ECG signals using the extended kalman filter based on a modified dynamic ECG model,' in Computers in Cardiology, 2005, 2005, pp. 1017-1020.
[10] R. Sameni, M. B. Shamsollahi, C. Jutten, and G. D. Clifford, 'A nonlinear Bayesian filtering framework for ECG denoising,' Biomedical Engineering, IEEE Transactions on, vol. 54, pp. 2172-2185, 2007.
[11] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, 'The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,' Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 454, pp. 903-995, 1998.
[12] Z. D. Zhao and Y. Q. Chen, 'A new method for removal of baseline wander and power line interference in ECG signals,' 2006, pp. 4342-4347.
[13] P. Na, I. Vai Mang, U. Mai Peng, and h. Pun Sio, 'Accurate Removal of Baseline Wander in ECG Using Empirical Mode Decomposition,' in Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging, 2007. NFSI-ICFBI 2007. Joint Meeting of the 6th International Symposium on, 2007, pp. 177-180.
[14] K. M. Chang, 'Arrhythmia ECG noise reduction by ensemble empirical mode decomposition,' Sensors, vol. 10, pp. 6063-6080, 2010.
[15] Medical Education – Health Encyclopedia. Available: http://www.medicotips.com/2010/11/long-qt-syndrome-causes-mechanism.html
[16] K. Ng and P. K. Chan, 'A CMOS analog front-end IC for portable EEG/ECG monitoring applications,' Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 52, pp. 2335-2347, 2005.
[17] Mauvila ECG Tutorial. Available: http://www.mauvila.com/ECG/ecg_artifact.htm
[18] L. Yan and M. G. Pecht, 'Reduction of Skin Stretch Induced Motion Artifacts in Electrocardiogram Monitoring Using Adaptive Filtering,' in Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE, 2006, pp. 6045-6048.
[19] 中華醫學會 – 麻醉學分會. Available: http://www.csaol.cn/bencandy.php?fid=15&id=554
[20] Available: http://cdn.ubergizmo.com/photos/2008/3/myecg-e3-80.jpg
[21] MyECG E3-80 Portable ECG Recorder and Analyzer. Available: http://www.dynadx.com/Holter/brochure.pdf
[22] A. J. Nimunkar and W. J. Tompkins, 'EMD-based 60-Hz noise filtering of the ECG,' in Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, 2007, pp. 1904-1907.
[23] P. Laguna, R. Jane, and P. Caminal, 'Adaptive filtering of ECG baseline wander,' in Engineering in Medicine and Biology Society, 1992 14th Annual International Conference of the IEEE, 1992, pp. 508-509.
[24] WIKIPEDIA Moving Average. Available: http://en.wikipedia.org/wiki/Moving_average
[25] D. Min and L. Shi-Liu, 'Removal of Baseline Wander from Dynamic Electrocardiogram Signals,' in Image and Signal Processing, 2009. CISP '09. 2nd International Congress on, 2009, pp. 1-4.
[26] 林祥瑋, '利用經驗模態分解法與最小平方法消除心電訊號雜訊,' 民國98年6月.
[27] Z. Wu and E. H. NORDEN, 'Ensemble empirical mode decomposition: A noise-assisted data analysis method,' Advances in Adaptive Data Analysis, vol. 1, pp. 1-41, 2009.
[28] M. G. Frei and I. Osorio, 'Intrinsic time-scale decomposition: time–frequency–energy analysis and real-time filtering of non-stationary signals,' Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, vol. 463, pp. 321-342, 2007.
[29] G. Rilling and P. Flandrin, 'One or Two Frequencies? The Empirical Mode Decomposition Answers,' Signal Processing, IEEE Transactions on, vol. 56, pp. 85-95, 2008.
[30] M. Blanco-Velasco, B. Weng, and K. E. Barner, 'ECG signal denoising and baseline wander correction based on the empirical mode decomposition,' Computers in Biology and Medicine, vol. 38, p. 1, 2008.
[31] B. U. Kohler, C. Hennig, and R. Orglmeister, 'The principles of software QRS detection,' Engineering in Medicine and Biology Magazine, IEEE, vol. 21, pp. 42-57, 2002.
[32] Y. C. Yeh and W. J. Wang, 'QRS complexes detection for ECG signal: The Difference Operation Method,' Computer methods and programs in biomedicine, vol. 91, pp. 245-254, 2008.
[33] J. Gu-Young and Y. Kee-Ho, 'Development of ambulatory ECG monitoring device with ST shape classification,' in Control, Automation and Systems, 2007. ICCAS '07. International Conference on, 2007, pp. 1591-1595.
[34] S. Zhao, H. Chao, L. Jingsheng, and M. Q. H. Meng, 'An algorithm of ST segment classification and detection,' in Automation and Logistics (ICAL), 2010 IEEE International Conference on, 2010, pp. 559-564.
[35] S. C. Bulusu, M. Faezipour, V. Ng, M. Nourani, L. S. Tamil, and S. Banerjee, 'Transient ST-segment episode detection for ECG beat classification,' in Life Science Systems and Applications Workshop (LiSSA), 2011 IEEE/NIH, 2011, pp. 121-124.
[36] WIKIPEDIA Electrocardiography. Available: http://en.wikipedia.org/wiki/Electrocardiography
[37] P. Raphisak, S. C. Schuckers, and A. de Jongh Curry, 'An algorithm for EMG noise detection in large ECG data,' in Computers in Cardiology, 2004, 2004, pp. 369-372.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63345-
dc.description.abstract心臟血管疾病長久以來一直位居國人十大死因之第二位。心電圖在心血管疾病的診斷上扮演相當重要的角色,利用心電圖檢測心臟疾病是最為簡便的方式之一,因其具有非侵入式、可即時偵測和容易取得...等優點,因此在臨床上被廣泛使用。傳統心電圖是由醫師以肉眼進行診斷,對於受到雜訊干擾的部分,肉眼可輕易跳過,但隨著遠端無線照護系統的發展,即時監控和心電圖初期診斷便是其中一項重要指標,此時心電圖的初步診斷工作便會由程式取代。由於即時監控需長時間記錄心電圖狀況,傳統醫院所採用之標準十二導程心電圖並不適用,因此多以行動心電圖記錄儀器(如單導或三導程之可攜式心電圖記錄器)做為測量工具,方便病人攜掛於身上。然而,一般由行動心電圖記錄儀器所測量之心電圖波形,容易受到環境、病人的動作等生理因素的干擾而影響記錄結果。常見的雜訊如50/60 Hz市電干擾、肌肉收縮所產生之肌電干擾、呼吸所造成之基線漂移以及運動時電極貼片和皮膚間相對摩擦所產生之移動假影。這些干擾的存在,皆會影響醫師或程式的判讀。因此,心電圖雜訊濾除對於心電圖診斷系統而言是非常重要的前置處理步驟。
  本論文提出一套結合可適性移動平均濾波器和總體經驗模態分解法之訊號處理架構。可適性移動平均濾波器用來進行基線標移的回復,做為偵測及消除肌電干擾之前置處理,基線漂移復原後的訊號經總體經驗模態分解法進行頻帶拆解後,結合QRS偵測演算法,排除QRS對於結果的影響,僅取出受肌電干擾影響的成分進行雜訊估計與消除,再利用移動窗形變異數,標記出訊號曾受到肌電干擾影響的部位並做處理後之訊號評分,供使用者參考。並以互相關函數、均方根誤差百分比和心電圖特徵誤差為性能指標,檢驗經過上述訊號處理後心電圖的品質。由實驗結果初步證實使用本論文所提出之方法可有效壓抑心電圖中基線漂移和肌電干擾且不會對心電圖特徵造成破壞。
zh_TW
dc.description.abstractCardiovascular disease has been listed as the second rank of the top ten leading causes of death. Electrocardiogram(ECG) has played an important role and has been widely used clinically because it is a non-invasive, real-time, quick and easy-to-implement technique. Cardiovascular disease was diagnosed traditionally by inspection from doctors. For doctors, ECG noise can be easily ignored by visual inspection. Nevertheless, with the advance of science and technology, remote monitoring and diagnosis have become important processes to automatically detecting cardiovascular disease. However, in holter devices, ECG recordings are often corrupted by artifacts in some real practice, such as 50/60Hz power line interference, muscle contraction induced electromyogram(EMG), movement(or breath) induced baseline wandering or motion artifact. These aforementioned noises might result in misleading ECG detection. Thus, pre-processing of ECG noise is a very important task in such ECG analysis systems.
In this thesis, an effective approach to eliminate baseline wander and EMG noise from ECG based on modified moving average filter and ensemble empirical mode decomposition (EEMD) was proposed. Modified moving average filter is used to eliminate ECG base line drift. It can be viewed as a pre-processing of the EEMD-based EMG reduction method. If data is interfered by EMG noise, EEMD is first used to decompose ECG data into different frequency components. By combination of proper QRS detection algorithms, only noise part will be extracted without affecting QRS complex or other ECG component. Finally, EMG noise can be estimated and removed from original ECG data. Then, by moving variance detection method, EMG positions can be detected and marked as reference to users.
Cross correlation coefficient (Corr-Coef), percentage root-mean-square difference (PRD) and ECG morphology were used to examine the artificial data performance of proposed algorithm. Results showed that proposed de-noising framework successfully eliminate baseline wander and EMG interferences without significantly distorting the ECG waveform.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:36:07Z (GMT). No. of bitstreams: 1
ntu-101-R99943007-1.pdf: 4578137 bytes, checksum: 4f2fa5b464d33e75055413e47087766e (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書…………………………………………………………………….……………. i
誌謝……………………………………………………………………………………...…………. iii
摘要……………………………………………………………………..…………………...……… v
ABSTRACT………………………………………………………………………………...…….. vii
目錄………………………………………………………………………………...………….…… ix
圖目錄………………………………………………………………………………………..……. xii
表目錄…………………………………………………………………...…………………...…… xvi
1. 第一章 緒論…………………………………………………………………………. 1
1.1 研究動機與目的……………………………………………………….……………….… 1
1.2 文獻回顧………………………………………………………………………………..… 2
1.3 論文組織……………………………………………………………………………..…… 4
2. 第二章 心電圖原理與量測………………………...……………………………………….. 6
2.1 心電圖原理簡介………………………………………………………………………..… 6
2.1.1心電圖基本原理…………………………………………………………………… 6
2.1.2常見心電圖之干擾………………………………………………………………… 7
2.2 心電圖量測與資料收集…………………………………………………………..……… 9
2.2.1心電圖量測………………………………………………………………………… 9
2.2.2所使用之心電圖量測儀器……………………………………………...………… 10
2.2.3心電圖資料庫收集…………………………...…………………………………… 11
2.3性能指標…………………………………………………………………………..……… 13
2.3.1互相關係數……………………………………………………………….……….. 13
2.3.2心電圖特徵之均方根誤差百分比……………………………..……………….. 13
3. 第三章 基準線漂移還原………………………...………………………………….. 14
3.1移動平均濾波器………………………………………………………….………….…… 14
3.2移動平均濾波器應用於基線漂移估計之問題………………..………………………… 15
3.3可適性移動平均濾波器……………………………………….……………………….… 16
3.3.1擴大取樣間距………………………………………………………….…………… 16
3.3.2斜率判別式……………………………………………………………………….… 17
3.3.3延遲補償……………………………………………………………………….....… 18
3.3.4結合第二級移動平均濾波…………………………………….…………………… 21
3.3.5參數選定……………………………………………………………………….…… 24
3.4結合經驗模態分解法於基線漂移之處理…………………….…….…………………… 26
3.4.1經驗模態分解法…..……………………………………………………...………… 26
3.4.2結合可適性移動平均濾波器與EMD於基線漂移之處理……………………….. 32
4. 第四章 心跳偵測……………………….……………….………….……….………..……… 38
4.1 R波偵測…………………………………………………………………….……….…… 38
4.1.1利用可適性移動平均濾波器…..…………………………………………….…… 38
4.1.2利用經驗模態分解法……………..….…………………………………………… 39
4.1.3內插法………………………………..……………………………………………. 42
4.2 P、Q、S和T波偵測……………………………………………………….……….…… 43
5. 第五章 肌電干擾消除……………………………………………………………………..… 46
5.1以總體經驗模態分解法為基礎的肌電干擾消除演算法………..……………………… 46
5.1.1經驗模態分解法之混模問題………………………………...…………………… 46
5.1.2總體經驗模態分解法………………………………………….………………….. 48
5.1.3以EEMD為基礎的肌電干擾消除方法……………………….…………………. 50
5.1.3.1方法一………………………………………………………………..…….. 52
5.1.3.2方法二……………………….………………………………………….….. 57
5.2肌電干擾偵測與標記……………………………………………………………..……… 66
5.2.1肌電干擾偵測……………………………………………………………….…….. 67
5.2.2肌電干擾標記……………………………………………………………….…….. 69
  5.3干擾程度評分……………………………………………………………..……………… 69
5.4所提出干擾消除之最終架構……….……...…………………………………………..… 71
6. 第六章 實驗結果分析………………………...………………………………….. 73
6.1模擬數據處理後之品質…………………………………………………………..……… 73
6.1.1模擬修正基線漂移之結果………………………………………………….…….. 73
6.1.2模擬修正肌電干擾之結果…………………………………………………….….. 76
6.2實際訊號處理後之品質…………………………………………………………..……… 78
6.2.1實際訊號修正基線漂移之結果……………………………………………….….. 79
6.2.2實際訊號修正肌電干擾之結果………………………………………….……….. 82
8. 第七章 結論與展望………………………...………………………………….. 87
參考文獻…………………………………………………………………….…… 89
dc.language.isozh-TW
dc.title以總體經驗模態分解法為基礎的心電圖肌電干擾消除演算法zh_TW
dc.titleAn Approach to Eliminating EMG noise from ECG using Ensemble Empirical Mode Decompositionen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee嚴震東(Chen-Tung Yen),蔡孟利(Meng-Li Tsai),闕志達(Tzi-Dar Chiueh),張帆人(Fan-Ren Chang)
dc.subject.keyword心電圖,移動平均濾波,經驗模態分解法,基線漂移,肌電干擾,移動窗型變異量,zh_TW
dc.subject.keywordECG,Baseline wander,EMG,Moving Average,Empirical Mode Decomposition,Moving Variance,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2012-10-23
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
4.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved