請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63341完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周泰立(Tail-Li Chou) | |
| dc.contributor.author | Kuo-Chun Hung | en |
| dc.contributor.author | 洪國鈞 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:35:54Z | - |
| dc.date.available | 2012-11-22 | |
| dc.date.copyright | 2012-11-22 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-10-24 | |
| dc.identifier.citation | Bitan, T., Burman, D. D., Chou, T. L., Lu, D., Cone, N. E., Cao, F. ... Booth, J. R. (2007). The interaction between orthographic and phonological information in children: An fMRI study. Human Brain Mapping, 28, 880-891.
Boersma, P., & Weenink, D. (2007). Praat: Doing phonetics by computer. (Version No. 4.6.09). Retrieved from http://www.praat.org. Burock, M. A., Buckner, R. L., Woldorff, M. G., Rosen, B. R., Dale, A. M. (1998). Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. Neuroreport, 3735–3739. Chen, J. H. (1997). Wechsler Intelligence Scale for Children (WISC-III) Manual for Taiwan. Taipei: Chinese Behavioral Science Corporation. Chou, T. L., Booth, J. R., Bitan, T., Burman, D. D., Bigio, J. D., Cone, N. E., Lu, D., & Cao, F. (2006a). Developmental and skill effects on the neural correlates of semantic processing to visually presented words. Human Brain Mapping, 27, 915-924. Chou, T. L., Booth, J. R., Burman, D. D., Bitan, T., Bigio, J. D., Lu, D., & Cone, N. E. (2006b). Developmental changes in the neural correlates of semantic processing. Neuroimage, 29, 1141-1149. Chou, T. L., Chen, C. W., Fan, L. Y., Chen, S. Y., & Booth, J. R. (2009). Testing for a cultural influence on reading for meaning in the developing brain: The neural basis of semantic processing in Chinese children. Frontiers in Human Neuroscience, 3(27), 1-9. Christensen, T., Antonucci, S., Lockwood, J., Kittleson, M., & Plante, E. (2008). Cortical and subcortical contributions to the attentive processing of speech. Neuroreport. 19, 1101–1105. Crosson, B. (2002). Models of subcortical functions in language: Current status. Journal of Neurolinguist. 10, 277 – 300. Davidoff, J., & Roberson, D. (2004). Preserved thematic and impaired taxonomic categorisation: A case study. Language and Cogntive Processes, 19, 137-174. Demonet, J., Chollet, F., Ramsay, S., Cardebat, D., Nespoulous, J., Wise, R., Rascol, A., & Frackowiak, R. (1992). The anatomy of phonology and semantic processing in normal subjects. Brain, 115, 1753-1768. Estes, Z., Golonka, S., & Jones, L. L. (2011). Thematic thinking: The apprehension and consequences of thematic relations. Psychology of Learning and Motivation, 54, 249–294. Fan, L. Y., Lee, S. H., & Chou, T. L. (2010). Interaction between brain regions during semantic processing in Chinese adults. Language and Linguistics, 11, 159-182. Firth, C., & Friston, K. (1996). The role of the thalamus in ‘‘Top Down’’ modulation of attention to sound. Neuroimage, 4, 210–215. Golonka, S. & Estes, Z. (2009). Thematic relations affect similarity via commonalities. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 1454-1464. Grossman, M., Troiani, V., Koenig, P., Work, M., & Moore, P. (2007). How necessary are the stripes of a tiger? Diagnostic and characteristic features in an fMRI study of word meaning. Neuropsychologia, 45, 1055–1064. Hampton, J. A. (2006). Concepts as prototypes. The Psychology of Learning and Motivation: Advances in Research and Theory, 46, 79-113. Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. National Review Neuroscience, 8, 393-402. Academia Sinica. (1998). Academia Sinica Balanced Corpus (3rd ed.). Taipei, Taiwan: Huang, C. R. Hue, C. W., Kao, C. H., Lo, M. (2005). Association norms for 600 Chinese characters. Taiwanese Psychological Association. Hwang, K., Velanova, K., & Luna, B. (2010). Strengthening of top-down frontal cognitive control networks underlying the development of inhibitory control: An fMRI effective connectivity study. Journal of Neuroscience, 30, 15535-15545. Hung, K. C., Lee, S. H., Chen, S. Y., & Chou, T. L. (2010). Effect of semantic radical and semantic association on semantic processing of Chinese characters for adults and fifth graders. Chinese Journal of Psychology, 52, 327-344. Josephs, O., & Henson, R. N. (1999). Event-related functional magnetic resonance imaging: Modelling, inference and optimization. Philosophical Transactions of the Royal Society B, 354, 1215–1228. Jung-Beeman, M. (2005). Bilateral brain processes for comprehending natural language. Trends in Cognitive Sciences, 9, 512-518. Ketteler D., Kastrau F., Vohn R., Huber W. (2008). The subcortical role of language processing. High level linguistic features such as ambiguity-resolution and the human brain; An fMRI study. Neuroimage. 39, 2002-9. Kirk, R. E. (1995). Experimental Design: Procedures for the Behavioural Sciences, (3rd ed.). Brooks/Cole, Belmont, CA. Krackow, E., Gordon, P. (1998). Are lions and tigers substitutes or associates? Evidence against slot filler accounts of children’s early categorization. Child Development 69, 347–354. Kraut, M. A., Kremen, S., Segal, J. B., Calhoun, V., Moo, L. R., & Hart, J. (2002). Object activation from features in the semantic system. Jouranl of Cognitve Neuroscience. 14, 24 – 36. Kuperberg, G. R., Mcguire, P. K., Bullmore, E. T., Brammer, M. J., Rabe-Hesketh, S., Wright, I. C., … David, A. S. (2000). Common and distinct neural substrates for pragmatic , semantic, and syntactic processing of spoken sentences: An fMRI study. Journal of Cognitive Neuroscience, 12, 321-341. Lau, E. F., Philips, C., & Poeppel, D. (2008). A cortical network for semantics: (de)constructing the N400. Nature Reviews Neuroscience, 9, 920-933. Lee, S. H., Booth, J. R., Chen, S. Y., Chou, T. L. (2011). Developmental changes in the inferior frontal cortex for selecting semantic representations. Developmental Cognitive Neuroscience, 1, 338-50. Lin, E. L. & Murphy, G. L. (2001). Thematic relations in adults’ concepts. Journal of Experimental Psychology: General, 130, 3-28. Mandler, J., (1994). Precursors of linguistic knowledge. Philosophical Transactions of The Royal Society, Series B 346, 63–69. Moss, H. E., Ostrin, R., Tyler, L. K., Marslen-Wilson, W. D. (1995). Accessing different types of lexical semantic information: Evidence from priming. Journal of Experimental Psychology: Learning, Memory and Cognition, 21, 863–883. Murphy, G. L. (2001). Causes of taxonomic sorting by adults: A test of the thematic-to-taxonomic shift. Psychonomic Bulletin & Review, 8, 834-839. Nation, K., & Snowling, M. J. (1999). Developmental differences in sensitivity to semantic relations among good and poor comprehenders: Evidence from semantic priming. Cognition, 70, B1-B13. Noppeney, U., & Price, C. J. (2004). An fMRI study of syntactic adaptation. Journal of Cognitive Neuroscience 16, 702–713. Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8, 976-987. Petrey, S. (1977). Word associations and the development of lexical memory. Cognition, 18, 1191-1210. Sachs, O., Weis, S., Zellagui, N., Huber, W., Zvyagintsev, M., Mathiak, K., & Kircher, T. (2008a). Automatic processing of semantic relations in fMRI: Neural activation during semantic priming of taxonomic and thematic categories. Brain Research, 1218, 194-205. Sachs, O., Weis, S., Krings, T., Huber, W., & Kircher, T. (2008b). Categorical and thematic knowledge representation in the brain: Neural correlates of taxonomic and thematic conceptual relations. Neuropsychologia, 46, 409-418. Sass, K., Sachs, O., Krach, S., & Kircher, T. (2009). Taxonomic and thematic categories: Neural correlates of categorization in an auditory-to-visual priming task using fMRI. Brain Research, 1270, 78-87. Schwartz, M. F., Kimberg, D. Y., Walker, G. M., Brecher, A., Faseyitan, O. K., Dell, G. S., Mirman, D., & Coslett, H. B. (2011). Neuroanatomical dissociation for taxonomic and thematic knowledge in the human brain. Proceedings of the National Academic Science U S A. 108, 8520-4. Smiley, S. S. & Brown, A. L. (1979). Conceptual preference for thematic or taxonomic relations: A nonmonotonic age trend from preschool to old age. Journal of Experimental Child Psychology, 28, 249-257. Tsao, F. M., Liu, H. M., & Kuhl, P. K. (2006). Perception of native and nonnative affricate-fricative contrasts: Cross-Language tests on adults and infants. The Journal of the Acoustical Society of America, 120, 2285-2294. Tyler, L. K., & Moss, H. E. (1997). Functional properties of concepts: Studies of normal and brain-damaged patients. Cognitive Neuropsychology 14, 511–545. Wahl, M., Marzinzik, F., Friederici, A., Hahne, A., Kupsch, A., Schneider, G. H., … Klostermann, F. (2008). The human thalamus processes syntactic and semantic language violations. Neuron, 59, 695–707. Wong, C. H., Chen, S. Y., Chou, T. L., & Lee, S. H. (2011). The impacts of word recognition ability and semantic relation on semantic processing for third graders. Chinese Journal of Psychology, 53, 293-307 Wu, J. T., & Liu, I. M. (1987). Exploring the phonetic and semantic features of Chinese words. Taiwan National Science Council, Technical Report NSC75-0301-H002-024. Zatorre, R. J., & Samson, S. (1991). Role of the right temporal neocortex in retension of pitch in auditory short-term memory. Brain, 114, 2403-2417. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63341 | - |
| dc.description.abstract | 過去研究發現,孩童或成人處理具有功能語意關係(亦即出現在相同的時間、空間,或是具有因果關係的事物)的刺激時,皆會產生語意處理的加速現象。然而,很少有研究探討處理功能語意關係的發展差異,及同時控制刺激的語意關聯強度得以更清楚地觀察功能語意關係的處理。因此,本研究透過跨感官語意關聯判斷作業及功能性磁振造影,探討處理功能語意關係的神經機制及其發展的變化。本研究共有十八位孩童與十八位成人參與者,他們必須判斷先呈現的視覺刺激字及後呈現的聽覺刺激字是否有語意相關,其中相關的字對又分為高功能關係(如:船─港)及低功能關係(如:錢─稅)。行為結果發現僅有成人組出現功能語意關係的促進效果,孩童組則無此促進效果。腦影像結果發現相較於處理高功能語意字對,成人組在處理低功能語意字對時,需要活化更多的左前側顳中迴(MTG),表示需要更多的資源進行功能語意關係整合。在發展變化的比較中,相較於孩童在處理低功能語意字對時,成人活化較多的左前側顳中迴(MTG)及右側視丘(thalamus)。研究結果顯示,成人活化更多的顳中迴藉以更有效率地整合及聯結功能關係訊息。成人也會活化更多的視丘藉以調節大腦皮質區域,降低聽覺刺激同音字的激發閾值。 | zh_TW |
| dc.description.abstract | Past studies have found the thematic relation, which held together by external relations, unifying scenes or events, can speed up semantic processing in either children or adults. However, few studies examine developmental changes and control semantic association to observe the process of thematic relations. Therefore, this thesis is designed to examine the neural correlates of the thematic effect and the developmental differences in processing thematic relations. A cross-modal semantic judgment task was used in functional magnetic resonance imaging (fMRI). Eighteen children and eighteen adults participated in this study. They were asked to determine whether a written character and a subsequent spoken character were related in meaning in an MRI scanner. The character pairs were divided into strong (e.g., ship - port) and weak (e.g., money - tax) thematic relations. The behavioral results showed a thematic effect in adults but not in children. The imaging results showed greater activation in left anterior MTG for the weak as compared to the strong thematic relation in adults. Greater activation in the MTG may suggest a greater demand on integrating thematic features. Moreover, developmental increases in activation were found in left anterior MTG and right thalamus for the weak as compared to the strong thematic relation. In comparison with children, greater MTG activation in adults suggests that they may efficiently integrate and associate thematic related information. Greater thalamus activation in adults suggests a greater regulating mechanism to the cortical regions that decrease the threshold of the competing homophones of the auditory stimulus. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:35:54Z (GMT). No. of bitstreams: 1 ntu-101-R99227114-1.pdf: 573993 bytes, checksum: b7ddb214f66d8f0d38047571e28d9285 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Introduction 1
Methods 7 Participants 7 Procedures 7 Stimulus characteristics 10 MRI data acquisition 11 Image analysis 12 Results 15 Behavioral performance 15 Brain activation patterns 16 Discussion 18 References 24 Tables 32 Figures 37 Appendix A: Character pairs used in the study 40 | |
| dc.language.iso | en | |
| dc.subject | 發展 | zh_TW |
| dc.subject | 跨感官語意關聯判斷作業 | zh_TW |
| dc.subject | 功能語意關係 | zh_TW |
| dc.subject | 功能性磁振造影 | zh_TW |
| dc.subject | cross-modal task | en |
| dc.subject | thematic relation | en |
| dc.subject | fMRI | en |
| dc.subject | development | en |
| dc.title | 以功能性磁振造影探討在跨感官語意判斷作業中功能語意關係的發展差異 | zh_TW |
| dc.title | The Development Differences of Thematic Relation Processing in a Cross-modal Semantic Judgment Task – an fMRI Study | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳修元(Shiou-Yuan Chen),陳欣進(Hsin-Chin Chen) | |
| dc.subject.keyword | 功能語意關係,功能性磁振造影,發展,跨感官語意關聯判斷作業, | zh_TW |
| dc.subject.keyword | thematic relation,fMRI,development,cross-modal task, | en |
| dc.relation.page | 40 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-10-24 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 心理學研究所 | zh_TW |
| 顯示於系所單位: | 心理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 560.54 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
