Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63322
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林清富(Ching-Fuh Lin)
dc.contributor.authorChi-Hsing Hsuen
dc.contributor.author徐繼興zh_TW
dc.date.accessioned2021-06-16T16:34:50Z-
dc.date.available2017-11-15
dc.date.copyright2012-11-15
dc.date.issued2012
dc.date.submitted2012-11-12
dc.identifier.citation[1] 油價資訊查詢 - 經濟部能源局
[2] 賴建宇“全球最可怕的三座核電廠 台灣有兩座”, 天下雜誌 474 期, 2011-06-14
[3] M. E. Ashry “RENEWABLES 2012 GLOBAL STATUS REPORT” REN21, France.
[4] “綠能產業因應世界經濟情勢衰退之策略分析” 經濟部能源局, 101年3月13日
[5] M. A. Green, K. Emery, Y. Hishikawa and W. Warta, 'Solar cell efficiency tables (version 36),' Progress in Photovoltaics 18, 346-352 (2010).
[6] http://www.orgworld.de/
[7] http://www.semi.org/ch/node/20091, Alex Carter
[8] F.C. Krebs, 'Fabrication and processing of polymer solar cells: a review of printing and coating techniques', Solar Energy Materials and Solar Cells 93 (2009) 394–412.
[9] C.J. Brabec, J.R. Durrant, Solution-processed organic solar cells, MRS Bulletin 33 (2008) 670–675.
[10] F. C. Krebs, S. A. Gevorgyan, and J. Alstrup'A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies'J. Mater. Chem., 19, pp.5442-5451(2009)
[11] M.R. Lilliedal, A.J. Medford, M.V. Madsen, K. Norrman, F.C. Krebs, The effect of post-processing treatments on inflection points in current–voltage curves of roll-to-roll processed polymer photovoltaics, Solar Energy Materials and Solar Cells 94 (2010) 2018–2031.
[12] W. Cai, X. Gong, Y. Cao, Polymer solar cells: recent development and possible routes for improvement in the performance, Solar Energy Materials and Solar Cells 94 (2010) 114–127.
[13] G. Li, R. Zhu and Y. Yang, Polymer solar cells, Nature Photonics Volume 6, PP 153–161 (2012)
[14] Mikkel Jorgensen, K. Norrman, F.C. Krebs, 'Stability/degradation of polymer solar cells', Solar Energy Materials and Solar Cells 92 (2008) 686–714.
[15] C.J. Brabec, 'Organic photovoltaics: technology and market', Solar Energy Materials and Solar Cells 83 (2004) 273–292.
[16] C.W. Tang, Appl.Phys. Lett. 48, 183-185(1986)
[17] P. Peumans, V. Bulovi, and S. R. Forrest, Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diode, Appl. Phys. Lett. 79, 126(2001).
[18] http://www.solarmer.com
[19] Letian Dou, Jing Gao, Eric Richard, Jingbi You, Chun-Chao Chen, Kitty C. Cha, Youjun He, Gang Li, and Yang Yang. Systematic Investigation of Benzodithiophene- and Diketopyrrolopyrrole-Based Low-Bandgap Polymers Designed for Single Junction and Tandem Polymer Solar Cells, J. Am. Chem. Soc. 134 (2012) 10071−10079.
[20] Xuanhua Li, Wallace C. H. Choy, Lijun Huo, Fengxian Xie, Wei E. I. Sha, Baofu Ding, Xia Guo, Yongfang Li, Jianhui Hou, Jingbi You, and Yang Yang. Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells, Adv. Mater. 24 (2012) 3046–3052.
[21] Jingbi You, Xuanhua Li, Feng-xian Xie, Wei E. I. Sha, Johnson H. W. Kwong, Gang Li,Wallace C. H. Choy, and Yang Yang. Surface Plasmon and Scattering-Enhanced Low-Bandgap Polymer Solar Cell by a Metal Grating Back Electrode, Advanced Energy Materials. (2012).
[22] Letian Dou, Jingbi You, Jun Yang, Chun-Chao Chen, Youjun He, Seiichiro Murase, Tom Moriarty, Keith Emery, Gang Li and Yang Yang. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer, NATURE PHOTONICS. 6 (2012) 180.
[23] Karg, W. Riess, V. Dyakonov, and M. Schwoerer, Electrical and optical characterization of poly(phentlene-vinylene) light emitting diode, Synth. Met. 54, 427(1993).
[24] K. Kim, J. Liu, M. A. G. Namboothiry and D. L. Carroll, 'Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics,' Appl. Phys. Lett. 90, 163511 (2007). (P3ht pcbm)
[25] Ma, W. Yang, C., Gong, X., Lee, K. & Heeger, A. J. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617–1622 (2005)
[26] G. Li, V. Shrotriya, Y. Yao, Y. Yang, Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene), Journal of Applied Physics 98 (2005) 43704–43708.
[27] G. Yu, J. Gao, J.Hummelen, F. Wudl, A. J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunction, Science 270, 1789(1995).
[28] 2010-06-23 | Courtesy: NREL; Solarmer Energy, Inc. | solarserver.com c Heindl Server GmbH
[29] P. Schilinsky, C. Waldauf, and C. J. Brabec. Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors, Applied Physics Letters. 81 (2002) 3885.
[30] F. Padinger, R. S. Rittberger, N. S. Sariciftci, 'Effects of Postproduction Treatment on Plastic Solar Cells', Advanced Functional Materials 13, 2003, 85-88
[31] G. Li, V. Shrotriya, Y. Yao, Y. Yang, 'Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly (3-hexylthiophene)', J. Appl. Phys 98, 2005, 043704.
[32] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, 'Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology', Advanced Functional Materials 15, 2005, 1617-1622.
[33] Muhlbacher, D. et al. High photovoltaic performance of a low-bandgap polymer. Adv. Mater. 18, 2884–2889 (2006).
[34] J. S. Moon, J. Jo, and A. J. Heeger, 'Nanomorphology of PCDTBT:PC70BM Bulk Heterojunction Solar Cells' Vol. 2, Issue 3, pp. 304–308 (2012)
[35] H. Y. Chen, J. H. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, 'Polymer solar cells with enhanced open-circuit voltage and efficiency' Nature Photonics 3, pp. 649-653(2009)
[36] Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu 'For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%',Adv. Mat., Vol 22, Issue 20, pages E135–E138, May 25, 2010
[37] L. Dou, J. You, J. Yang, C. C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li and Y. Yang, 'Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer', Nature Photonics, Volume 6, Pages 180–185, (2012)
[38] J. You, C. C. Chen, L. Dou, S. Murase, H. S. Duan, S. A. Hawks, T. Xu, H. Jung Son, L. Yu, G. Li and Y. Yang, 'Metal Oxide Nanoparticles as an Electron-Transport Layer in High-Performance and Stable Inverted Polymer Solar Cells', Advanced Materials, Vol 24, pages 5267–5272, October 2, 2012
[39] K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D.D.C. Bradley, J.R. Durrant, Degradation of organic solar cells due to air exposure, Solar Energy Materials and Solar Cells 90 (2006) 3520–3530.
[40] S. E. Shaheen, M. S. White, D. C. Olson, N. Kopidakis and D. S. Ginley, 'Inverted bulk-heterojunction plastic solar cells,' SPIE Newsroom 10.1117/2.1200705.0756 (2007)
[41] M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, 'Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer,' Appl. Phys. Lett. 89 143517 (2006).
[42] Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter and A. J. Heeger, 'Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer,' Adv. Mater. 23 1679–1683 (2011).
[43] M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, D. S. Ginley, 'Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer.' Applied Physics Letters 89, 2006, 143517.
[44] G. Li, C. W. Chu, V. Shrotriya, J. Huang, Y. Yang, 'Efficient inverted polymer solar cells', Applied Physics Letters 88, 2006, 253503.
[45] C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, C. J. Brabec, 'Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact', Applied Physics Letters 89, 2006, 233517.
[46] S. K. Hau, H. L. Yip, O. Acton, N. S. Baek, H. Ma, A. K. Y. Jen, 'Interfacial modification to improve inverted polymer solar cells', J. Mater. Chem. 18, 2008, 5113-5119.
[47] S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O'Malley, A. K. Y. Jen, 'Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer', Applied Physics Letters 92, 2008, 253301.
[48] S. K. Hau, H. L. Yip, H. Ma, A. K. Y. Jen, 'High performance ambient processed inverted polymer solar cells through interfacial modification with a fullerene self-assembled monolayer', Applied Physics Letters 93, 2008,
[49] H.-H. Liao, L.-M. Chen, Z. Xu, G. Li, Y. Yang, Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer, Appl. Phys. Lett. 92 (2008) 173303
[50] Yanming Sun, Jung Hwa Seo, Christopher J. Takacs, Jason Seifter, and Alan J. Heeger. Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer, Adv. Mater. 23 (2011) 1679–1683.
[51] Cephas E. Small, Song Chen, Jegadesan Subbiah, Chad M. Amb, Sai-Wing Tsang, Tzung-Han Lai, John R. Reynolds and Franky So. High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells, Nature Photonics. 6 (2011) 115–120.
[52] Chih-Yu Chang, Cheng-EnWu, Shih-Yung Chen, Chaohua Cui, Yen-Ju Cheng, Chain-Shu Hsu, Yuh-Lin Wang, and Yongfang Li. Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods, Angew Chem Int Ed Engl. 50 (2011) 9386-9390.
[53] Xuanhua Li, Wallace C. H. Choy, Lijun Huo, Fengxian Xie, Wei E. I. Sha, Baofu Ding, Xia Guo, Yongfang Li, Jianhui Hou, Jingbi You, and Yang Yang. Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells, Adv. Mater. 24 (2012) 3046–3052.
[54] S. B. Jo, W. H. Lee, L. Qiu, and K. Cho, 'Polymer blends with semiconducting nanowires for organic electronics', J. Mater. Chem., 2012, 22, 4244
[55] C. Y. Chang, C. E. Wu, S. Y. Chen, C. Cui, Y. J. Cheng, C. S. Hsu,Y. L. Wang, and Y. F. Li, 'Enhanced Performance and Stability of a Polymer Solar Cell by Incorporation of Vertically Aligned, Cross-Linked Fullerene Nanorods', Volume 50, Issue 40, pages 9386–9390, 2011
[56] D. C. Olson, Y. J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J. A. Voigt, J. W. P. Hsu, 'Effect of polymer processing on the performance of poly(3-hexylthiophene)/ZnO nanorod photovoltaic devices', Journal of Physical Chemistry C 111, 2007, 16640-16645.
[57] D. C. Olson, S. E. Shaheen, R. T. Collins, D. S. Ginley, 'The effect of atmosphere and ZnO morphology on the performance of hybrid poly (3-hexylthiophene)/ZnO nanofiber photovoltaic devices', Journal of Physical Chemistry C 111, 2007, 16670-16678.
[58] K. Takanezawa, K. Hirota, Q. S. Wei, K. Tajima, K. Hashimoto, 'Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices', Journal of Physical Chemistry C 111, 2007, 7218-7223.
[59] 蔡進譯,“超高效率太陽電池-從愛因斯坦的光電效應談起,”物理雙月刊 27,701-719 (2005)。
[60] A. Moliton and J. –M. Nunzi, 'How to model the behaviour of organic photovoltaic cells,' Polym. Int. 55, 583-600 (2006).
[61] 周貞佑, “氧化鋅奈米柱與導電高分子有機無機混成太陽能電池,”國立台灣大學光電工程研究所碩士論文 (2009)。
[62] 楊柏青, “溶液製程高分子太陽能電池之形貌改良與穩定性分析,”國立台灣大學光電工程研究所碩士論文 (2012)。
[63] J. B. Baxter, C. A. Schmuttenmaer, 'Conductivity of ZnO Nanowires, Nanoparticles, and Thin Films Using Time-Resolved Terahertz Spectroscopy', Journal of Physical Chemistry B 110, 2006, 25229-25239.
[64] 陳壽安, '導電高分子:新世代光電材料', 物理雙月刊 23, 2001.
[65] 韓于凱,塑膠材料研發團隊簡訊(第三期)
[66] B. A. Gregg, J. Phys. Chem. B 107, 4688 (2003).
[67] J. J. Dittmer, E. A. Marseglia, and R. H. Friend, “Trapping in dye/ polymer blend photovoltaic Cells,” Adv. Mater. 12, 1270-1274 (2000).
[68] Jarzab, D. et al. Charge Transfer Dynamics in Polymer-Fullerene Blends for Efficient Solar Cells. J. Phys. Chem. B, 113, 16513–16517 (2009
[69] M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. J. Brabec, 'Design rule for donors in bulk-heterojunction solar cells – Towards 10% energy-conversion efficiency,' Adv. Mater. 18, 789–794 (2006).
[70] J. T. Shieh, C. H. Liu, H. F. Meng, S. R. Tseng, Y. C. Chao, and S. F. Horng, 'The effect of carrier mobility in organic solar cells' JOURNAL OF APPLIED PHYSICS, 2010
[71] K. M. Coakley, M. D. McGehee, 'Conjugated polymer photovoltaic cells', Chemistry of Materials 16, 2004, 4533-4542.
[72] C. W. Tang, 'Two-layer organic photovoltaic cell', Applied Physics Letters 48, 1986, 183-185.
[73] G. Yu, J. Gao, J.Hummelen, F. Wudl, A. J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunction, Science 270, 1789(1995)
[74] F. Padinger, R. S. Rittberger, N. S. Sariciftci, 'Effects of Postproduction Treatment on Plastic Solar Cells', Advanced Functional Materials 13, 2003,
[75] J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong, A. J. Heeger, 'New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer', Adv. Mater. 18, 2006, 572.
[76] G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery Y. Yang, 'High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends', Nat. Mater. 4, 2005, 864-868.
[77] E. Bundgaard and F. C. Krebs, 'Low band gap polymers for organic photovoltaics,' Sol. Energy Mater. Sol. Cells 91, 954-985 (2007).
[78] http://www.solarmer.com/
[79] L. Huo, S. Zhang, X. Guo, F. Xu, Y. Li, and J. Hou, 'Replacing Alkoxy Groups with Alkylthienyl Groups: A Feasible Approach To Improve the Properties of Photovoltaic Polymers', Angew. Chem. Int. Ed. Vol 50, Issue 41, pp. 9697–9702, October, (2011)
[80] H. Y. Chen, J. H. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, 'Polymer solar cells with enhanced open-circuit voltage and efficiency' Nature Photonics 3, pp. 649-653(2009)
[81] Chih-Yu Chang, Cheng-EnWu, Shih-Yung Chen, Chaohua Cui, Yen-Ju Cheng, Chain-Shu Hsu, Yuh-Lin Wang, and Yongfang Li. Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods, Angew Chem Int Ed Engl. 50 (2011) 9386-9390.
[82] J. Hou, M. H. Park, S. Zhang, Y. Yao, L. M. Chen, J. H. Li and Y. Yang, 'Bandgap and Molecular Energy Level Control of Conjugated Polymer Photovoltaic Materials Based on Benzo[1,2-b:4,5-b']dithiophene', Macromolecules, 2008, 41 (16), pp 6012–6018
[83] Y. He, Y. Li , 'Fullerene derivative acceptors for high performance polymer solar cells.', Phys. Chem. Chem. Phys., 2011,13, 1970-1983
[84] M. S. Su, C. Y. Kuo, M. C. Yuan, U.S.Jeng, C. J. Su, and K.H. Wei, 'Improving Device Efficiency of Polymer/Fullerene Bulk Heterojunction Solar Cells Through Enhanced Crystallinity and Reduced Grain Boundaries Induced by Solvent Additives', Angew. Chem. Int. Ed. Vol. 23, Issue 29, pp. 3315–3319, August 2, (2011)
[85] H. Y. Chen, J. H. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, 'Polymer solar cells with enhanced open-circuit voltage and efficiency' Nature Photonics 3, pp. 649-653(2009)
[86] Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu 'For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%',Adv. Mat., Vol 22, Issue 20, pages E135–E138, May 25, 2010
[87] L. Dou, J. You, J. Yang, C. C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li and Y. Yang, 'Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer', Nature Photonics, Volume 6, Pages 180–185, (2012)
[88] S. B. Jo, W. H. Lee, L. Qiu, and K. Cho, 'Polymer blends with semiconducting nanowires for organic electronics', J. Mater. Chem., 2012, 22, 4244
[89] C. Y. Chang, C. E. Wu, S. Y. Chen, C. Cui, Y. J. Cheng, C. S. Hsu,Y. L. Wang, and Y. F. Li, 'Enhanced Performance and Stability of a Polymer Solar Cell by Incorporation of Vertically Aligned, Cross-Linked Fullerene Nanorods', Volume 50, Issue 40, pages 9386–9390, 2011
[90] Wendy U. Huynh, Janke J. Dittmer, A. Paul Alivisatos, 'Hybrid Nanorod-Polymer Solar Cells', Science, 29 March 2002,Vol. 295(pp. 2425-2427)
[91] H. Bi and R. R. LaPierre, 'A GaAs nanowire/P3HT hybrid photovoltaic device', Nanotechnology 20 (2009) 465205 (5pp)
[92] http://en.wikipedia.org/wiki/Zinc_oxide.
[93] W. I. Park, D. H. Kim, S. W. Jung, G. C. Yi, Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods, Applied Physics Letters 80, 2002, 4232-4234.
[94] Q. C. Li, V. Kumar, Y. Li, H. T. Zhang, T. J. Marks, R. P. H. Chang, Fabrication of ZnO nanorods and nanotubes in aqueous solutions, Chemistry of Materials 17, 2005, 1001-1006.
[95] X. Liu, X. H. Wu, H. Cao, R. P. H. Chang, Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition, Journal of Applied Physics 95, 2004, 3141-3147.
[96] Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, P. H. Fleming, Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy, Applied Physics Letters 81, 2002, 3046-3048.
[97] M. Guo, P. Diao, X. D. Wang, S. M. Cai, The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films, Journal of Solid State Chemistry 178, 2005, 3210-3215.
[98] L. Vayssieres, Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions, Advanced Materials 15, 2003, 464-466.
[99] J.-S. Huang, C.-F. Lin, Influences of ZnO sol-gel thin film characteristics on ZnO nanowire arrays prepared at low temperature using all solution-based processing, Journal of Applied Physics 103, 2008, 014304.
[100] M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, 'Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer,' Appl. Phys. Lett. 89 143517 (2006).
[101] M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, D.S. Ginley, Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer, Applied Physics Letters 89 (2006) 143517-1–3.
[102] A.K.K. Kyaw, X.W. Sun, C.Y. Jiang, G.Q. Lo, D.W. Zhao, D.L. Kwong, An inverted organic solar cell employing a sol–gel derived ZnO electron selective layer and thermal evaporated MoO hole selective layer, Applied Physics Letters 93 (2008) 221107–221109.
[103] Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter and A. J. Heeger, 'Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer,' Adv. Mater. 23 1679–1683 (2011).
[104] D. C. Olson, Y. J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J. A. Voigt, J. W. P. Hsu, 'Effect of polymer processing on the performance of poly(3-hexylthiophene)/ZnO nanorod photovoltaic devices', Journal of Physical Chemistry C 111, 2007, 16640-16645.
[105] D. C. Olson, S. E. Shaheen, R. T. Collins, D. S. Ginley, 'The effect of atmosphere and ZnO morphology on the performance of hybrid poly (3-hexylthiophene)/ZnO nanofiber photovoltaic devices', Journal of Physical Chemistry C 111, 2007, 16670-16678.
[106] K. Takanezawa, K. Hirota, Q. S. Wei, K. Tajima, K. Hashimoto, 'Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices', Journal of Physical Chemistry C 111, 2007, 7218-7223.
[107] M. Helgesen, R. Sondergaard and F. C. Krebs, 'Advanced materials and processes for polymer solar cell devices', J. Mater. Chem., 2010, 20, 36–60
[108] J. S. Huang, C.-Y. Chou, M.-Y. Liu, K.-H. Tsai, W.-H. Lin, C.-F. Lin, Solution-processed vanadium oxide as an anode interlayer for inverted polymer solar cells hybridized with ZnO nanorods, Organic Electronics 10 (2009)1060–1065
[109] Li Wang, Yong Pu, Wenqing Fang, Jiangnan Dai, Changda Zheng, Chunlan Mo, Chanbin Xiong, Fengyi Jiang, Thin Solid Films 491, 323-327(2005)
[110] Radhouane Bel Hadj Tahar, Noureddine Bel Hadj Tahar, HOURNALOFMATERIALS SCIENCE 40, 5285-5289(2005)
[111] Jin-Seong Park, Jae Kyeong Jeong, Yeon-Gon Mo, Hye Dong Kim, SunLi Kim, APPLIED PYSICS LETTERS 90, 262106(2007)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63322-
dc.description.abstract能源議題在近年來受到廣泛重視,石油的枯竭與環保議題使得許多新興替代能源被積極開發,其中太陽光能發電技術因取之不竭且不會造成環境多餘負擔而成為新興產業,近來該技術中,由於導電高分子太陽電池較佳的成本效益、質輕可撓應用廣等特性而廣受注目,故本研究主要針對高分子太陽電池技術結構改良以提升光電轉換效率。
本論文以低成本之溶液製程高分子太陽電池為基礎,加以近來光電轉換效率也因為低能隙材料的使用而快速上升,並採用高元件穩定度的倒置結構,研究著於重低能隙材料倒置結構太陽能電池的形貌控制與結構優化,其中重點有利用混合溶劑與添加劑控制低能隙PBDTTT-C-T:PC71BM材料系統的主動層形貌,使主動層內部施體受體分部被控制,達到優化元件效率的效果,元件光電轉換效率可達4.61%。而在倒置結構中,無毒且可以簡單製程大量生產的氧化鋅被廣泛做為元件陰極中介層,在倒置結構中非常重要,目前氧化鋅薄膜製做方式中,應用在有機太陽電池的製做,以溶膠-凝膠法(sol-gel)製程最為普遍,因該製程為簡單的溶液製程,且不需昂貴真空製程設備而成本低廉。本研究發現可藉由控制sol-gel法溶液製程氧化鋅層的成膜,來控制氧化鋅層與有機主動層的介面形貌,使低能隙導電高分子主動層與氧化鋅達到良好的接觸,增加光吸收產生載子導出機率,使元件效率提升到5.56%,其中因為該層形貌造成的效率差異可達40%,影響甚鉅,而使用此法改良形貌增進效率,其方法不僅簡單,也可被應用於多數的倒置低能隙材料有機太陽電池系統。
研究中也提出利用氧化鋅奈米柱結構來解決高分子太陽電池之激子擴散長度短與載子移動率過低這兩項問題,利用水熱法在氧化鋅種子層上生長奈米柱結構,製做成伸入主動層的載子傳輸路逕,元件的光電流因為有效的載子傳輸效率大幅提升,並提出退火輔助主動層 分層塗佈法,使元件的主動層垂直分層形貌更佳,解決奈米柱元件填充因子過低的問題,使元件的填充因子上升到50%,併聯電阻效能也被提升。而藉由控制氧化鋅奈米柱形貌,包括柱直徑與柱間間隙大小,使得奈米柱間有更多空隙可讓主動層滲入,形成指狀交叉結構,同時改善元件的奈米柱清洗步驟、退火程序及利用主動層分層塗佈手續,可以進一步提升元件的效能,大幅提高元件短路電流。經過退火輔助主動層分層塗佈法之低能隙高分子混成氧化鋅奈米柱元件效率可達7.05%,是奈米結構太陽電池的一大突破,使單層高效率之奈米結構太陽電池深具潛力。
我們期待利用主動層形貌控制法,氧化鋅奈米柱平台搭配分層塗佈法,造出通用於多種材料的高光電轉換效率有機太陽電池結構平台及製程技術,讓低成本、適合大面積製造的高分子太陽電池技術更往商用化目標邁進一步。
zh_TW
dc.description.abstractThe development of renewable energy technologies has become an important issue because of the energy crisis. Among them the photovoltaic technology stands out due to the abundance of sun light and less contamination to the environment. Especially the organic photovoltaic (OPV) based on polymer–fullerene composite system, the cost effectiveness of solution process and mechanical flexibility makes it received much attention.
In this dissertation, it is mainly focus on solution processed polymer solar cell systems, and because of the high stability, we employ the inverted device configuration to fabricated polymer solar cells. In chapter three, the mechanism of blended solvent with solvent additive method is discussed, as the way to control the photoactive layer morphology of the new kind low band gap polymer and fullerene system PCDTTT-C-T:PC[70]BM inverted solar cell. This method easily changes photoactive layer solution’s viscosity and fullerene derivative’s cluster size, and devices’ power conversion efficiency(PCE) can be improved to 4.61%. It is simple, costless, and can be applied to plenty of polymer solar cell system to optimize device performance. We also found the interface morphology between a ZnO electron transporting layer and a low band gap polymer photoactive layer affects the power conversion efficiency (PCE) enormously for inverted structure solar cells. By simply changing the concentration and spin speed of ZnO sol-gel, the ZnO morphology can be controlled, and thus the best morphology to enhance device’s PCE can be shaped. The cell conversion efficiency can be improved to more than 40% PCE enhancement by applying this method to create the ZnO layer with lower peak-to-valley difference, but higher roughness surface density. Such feature improves the morphology of the photoactive layer and the carrier transportation. The best cell PCE in this work is 5.56% for a low band gap material PBDTTT-C-T:PC[70]BM inverted structure solar cell. This solution process optimization method can be further applied to various low band gap polymer solar cells as a way to accelerate the commercial development of organic solar cell systems.
In the second part of this research, the ZnO nano rod structure is also introduce to help the carrier transport, which is relatively low in organic material because of short exciton diffusion length and carrier mobility. The ZnO nano rod fabricated bt hydrothermal method successfully increasing device shour circuit current, which because of the nanostructure forming a finger-like cross morphology with the photoactive layer, increasing the probability of effective carrier transport. By photoactive layered coating method with annealing process, the low devices’ FF and Rsh can be solved. At the mean while, improving the cleaning process of ZnO nano rod and tuning annealing temperature further increasing device PCE to 7.05%, which is a breakthrough of ZnO nano rod polymer solar cell.
We hope to create a high efficiency universal platform with ZnO nano rod for different low band gap polymer solar cell, combining with blended solvent with solvent additive method, To reach the goal of cells commercialization.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:34:50Z (GMT). No. of bitstreams: 1
ntu-101-R99941030-1.pdf: 4725375 bytes, checksum: 4278c0fe2ccee3199e73d9a7c7ea38eb (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 II
摘要 III
Abstract V
目錄 VII
圖目錄 IX
表目錄 XI
第一章 緒論 1
1.1 研究背景 1
1.1.1太陽光能源市場現狀 1
1.1.2 太陽電池發展簡介 5
1.1.3 高分子太陽電池發展進程 8
1.2 高分子太陽電池文獻回顧 9
1.2.1 高分子太陽電池演進 9
1.2.2倒置太陽電池結構 11
1.2.3低能隙材料及串接式太陽電池 13
1.2.4高分子太陽電池奈米結構 16
第二章技術原理 18
2.1 太陽能電池技術原理簡介 18
2.1.1 太陽電池基本工作原理[59-62] 18
2.1.2 太陽能電池基本參數 20
2.2高分子太陽電池技術 22
2.2.1 高分子太陽電池技術原理 22
2.2.2 高分子太陽電池結構發展 24
第三章 低能隙高分子太陽電池溶液製程形貌控制法 27
3.1高效率低能隙高分子 27
3.1.1低能隙高分子材料介紹 27
3.1.2混合溶劑與添加劑對元件之影響 29
3.2研究動機 30
3.3 元件製備流程 31
3.3.1 溶液配製 31
3.3.2 元件製作流程 33
3.4 結果與討論 35
3.4.1 主動層形貌控制 35
3.4.1.1不同添加劑之影響 35
3.4.1.2 主動層濃度提升之影響 40
3.4.2 氧化鋅層形貌控制 48
3.4.2.1 氧化鋅層形貌分析 48
3.4.2.2 主動層表面形貌與氧化鋅形貌關聯 55
3.5 結論 60
第四章氧化鋅奈米柱結構太陽電池 61
4.1氧化鋅奈米柱簡介 61
4.1.1氧化鋅奈米柱特性 61
4.1.2水熱法氧化鋅奈米柱製做原理 63
4.2 實驗動機 63
4.3水熱法生長氧化鋅奈米柱實驗步驟 64
4.3.1 溶液配製 64
4.3.2 元件製作流程 66
4.4 結果與討論 69
4.4.1氧化鋅奈米柱元件表現 69
4.4.2主動層分層圖佈法處理 72
4.4.3氧化鋅奈米住形貌優化 74
4.4.4奈米柱生長液清潔法改善及奈米柱退火溫度改良 82
4.5 結論 86
第五章 結論與未來展望 87
5.1 結論 87
5.2 未來展望 88
參考文獻 90
dc.language.isozh-TW
dc.title溶液製程低能隙高分子倒置結構太陽能電池形貌及結構改良zh_TW
dc.titleMorphology and Structure Improvement of Solution-processed Low Band Gap Inverted Polymer Solar Cellsen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee吳志毅(Chih-I Wu),陳奕君(I-Chun Cheng),黃鼎偉(Ding-wei Huang),吳肇欣(Chao-Hsin Wu)
dc.subject.keyword高分子太陽能電池,溶液製程,倒置結構,低能隙材料,混合溶劑及添加劑,氧化鋅電子傳輸層,氧化鋅奈米柱,zh_TW
dc.subject.keywordpolymer solar cells,solution process,inverted structure,low band gap polymer,blended solvent and additive solvent,ZnO electron transporting layer,ZnO nano rod,en
dc.relation.page100
dc.rights.note有償授權
dc.date.accepted2012-11-12
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
4.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved