Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63319
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡孟君
dc.contributor.authorYu-Shian Lien
dc.contributor.author李育賢zh_TW
dc.date.accessioned2021-06-16T16:34:40Z-
dc.date.available2018-03-04
dc.date.copyright2013-03-04
dc.date.issued2012
dc.date.submitted2012-11-14
dc.identifier.citation參考資料
Abbaszade IG, Arensburg J, Park CH, Kasa-Vubu JZ, Orly J, Payne AH. 1997.
Isolation of a new mouse 3beta-hydroxysteroid dehydrogenase isoform,
3beta-HSD VI, expressed during early pregnancy. Endocrinology
138(4):1392-1399.
Abbaszade IG, Clarke TR, Park CH, Payne AH. 1995. The mouse 3
beta-hydroxysteroid dehydrogenase multigene family includes two
functionally distinct groups of proteins. Mol Endocrinol 9(9):1214-1222.
Albrecht ED, Pepe GJ. 1990. Placental steroid hormone biosynthesis in primate
pregnancy. Endocr Rev 11(1):124-150.
Bird IM, Mathis JM, Mason JI, Rainey WE. 1995. Ca(2+)-regulated expression of
steroid hydroxylases in H295R human adrenocortical cells. Endocrinology
136(12):5677-5684.
Bollag WB, Jung E, Calle RA. 2002. Mechanism of angiotensin II-induced
phospholipase D activation in bovine adrenal glomerulosa cells. Mol Cell
Endocrinol 192(1-2):7-16.
Bose HS, Lingappa VR, Miller WL. 2002. Rapid regulation of steroidogenesis by
mitochondrial protein import. Nature 417(6884):87-91.
Boyes J, Byfield P, Nakatani Y, Ogryzko V. 1998. Regulation of activity of the
transcription factor GATA-1 by acetylation. Nature 396(6711):594-598.
Brand C, Nury D, Chambaz EM, Feige JJ, Bailly S. 2000. Transcriptional regulation
of the gene encoding the StAR protein in the human adrenocortical cell line,
H295R by cAMP and TGFbeta1. Endocr Res 26(4):1045-1053.
Buchwalter G, Gross C, Wasylyk B. 2004. Ets ternary complex transcription factors.
Gene 324:1-14.
Chen WY, Weng JH, Huang CC, Chung BC. 2007. Histone deacetylase inhibitors
reduce steroidogenesis through SCF-mediated ubiquitination and degradation
of steroidogenic factor 1 (NR5A1). Mol Cell Biol 27(20):7284-7290.
Christy B, Nathans D. 1989. DNA binding site of the growth factor-inducible protein
Zif268. Proc Natl Acad Sci U S A 86(22):8737-8741.
Clarke TR, Bain PA, Burmeister M, Payne AH. 1996. Isolation and characterization of
several members of the murine Hsd3b gene family. DNA Cell Biol
15(5):387-399.
Clyne CD, Speed CJ, Zhou J, Simpson ER. 2002. Liver receptor homologue-1
(LRH-1) regulates expression of aromatase in preadipocytes. J Biol Chem
277(23):20591-20597.
Cohen AI, Bloch E, Celozzi E. 1957. In vitro response of functional experimental
27
adrenal tumors to corticotropin ACTH. Proc Soc Exp Biol Med 95(2):304-309.
Condon JC, Pezzi V, Drummond BM, Yin S, Rainey WE. 2002.
Calmodulin-dependent kinase I regulates adrenal cell expression of
aldosterone synthase. Endocrinology 143(9):3651-3657.
Couet J, Simard J, Martel C, Trudel C, Labrie Y, Labrie F. 1992. Regulation of
3-ketosteroid reductase messenger ribonucleic acid levels and 3
beta-hydroxysteroid dehydrogenase/delta 5-delta 4-isomerase activity in rat
liver by sex steroids and pituitary hormones. Endocrinology
131(6):3034-3044.
Crossley M, Orkin SH. 1994. Phosphorylation of the erythroid transcription factor
GATA-1. J Biol Chem 269(24):16589-16596.
Doi J, Takemori H, Ohta M, Nonaka Y, Okamoto M. 2001. Differential regulation of 3
beta-hydroxysteroid dehydrogenase type II and 17 alpha-hydroxylase/lyase
P450 in human adrenocortical carcinoma cells by epidermal growth factor and
basic fibroblast growth factor. Journal of Endocrinology 168(1):87-94.
Doi M, Takahashi Y, Komatsu R, Yamazaki F, Yamada H, Haraguchi S, Emoto N,
Okuno Y, Tsujimoto G, Kanematsu A, Ogawa O, Todo T, Tsutsui K, van der
Horst GT, Okamura H. 2010. Salt-sensitive hypertension in circadian
clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6. Nature
medicine 16(1):67-74.
Dumont M, Luu-The V, Dupont E, Pelletier G, Labrie F. 1992. Characterization,
expression, and immunohistochemical localization of 3 beta-hydroxysteroid
dehydrogenase/delta 5-delta 4 isomerase in human skin. J Invest Dermatol
99(4):415-421.
Falender AE, Lanz R, Malenfant D, Belanger L, Richards JS. 2003. Differential
expression of steroidogenic factor-1 and FTF/LRH-1 in the rodent ovary.
Endocrinology 144(8):3598-3610.
Feltus FA, Kovacs WJ, Nicholson W, Silva CM, Nagdas SK, Ducharme NA, Melner
MH. 2003. Epidermal growth factor increases cortisol production and type II 3
beta-hydroxysteroid dehydrogenase/Delta(5)-Delta(4)-isomerase expression in
human adrenocortical carcinoma cells: evidence for a Stat5-dependent
mechanism. Endocrinology 144(5):1847-1853.
Fluck CE, Miller WL. 2004. GATA-4 and GATA-6 modulate tissue-specific
transcription of the human gene for P450c17 by direct interaction with Sp1.
Mol Endocrinol 18(5):1144-1157.
Galarneau L, Pare JF, Allard D, Hamel D, Levesque L, Tugwood JD, Green S,
Belanger L. 1996. The alpha1-fetoprotein locus is activated by a nuclear
receptor of the Drosophila FTZ-F1 family. Mol Cell Biol 16(7):3853-3865.
28
Gingras S, Cote S, Simard J. 2001. Multiple signal transduction pathways mediate
interleukin-4-induced 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4
isomerase in normal and tumoral target tissues. J Steroid Biochem Mol Biol
76(1-5):213-225.
Gingras S, Moriggl R, Groner B, Simard J. 1999. Induction of 3beta-hydroxysteroid
dehydrogenase/delta5-delta4 isomerase type 1 gene transcription in human
breast cancer cell lines and in normal mammary epithelial cells by
interleukin-4 and interleukin-13. Mol Endocrinol 13(1):66-81.
Gingras S, Simard J. 1999. Induction of 3beta-hydroxysteroid
dehydrogenase/isomerase type 1 expression by interleukin-4 in human normal
prostate epithelial cells, immortalized keratinocytes, colon, and cervix cancer
cell lines. Endocrinology 140(10):4573-4584.
Guerin SL, Leclerc S, Verreault H, Labrie F, Luu-The V. 1995. Overlapping cis-acting
elements located in the first intron of the gene for type I 3 beta-hydroxysteroid
dehydrogenase modulate its transcriptional activity. Mol Endocrinol
9(11):1583-1597.
Hietakangas V, Anckar J, Blomster HA, Fujimoto M, Palvimo JJ, Nakai A, Sistonen L.
2006. PDSM, a motif for phosphorylation-dependent SUMO modification.
Proc Natl Acad Sci U S A 103(1):45-50.
Hilscherova K, Jones PD, Gracia T, Newsted JL, Zhang X, Sanderson JT, Yu RM, Wu
RS, Giesy JP. 2004. Assessment of the effects of chemicals on the expression
of ten steroidogenic genes in the H295R cell line using real-time PCR.
Toxicological sciences : an official journal of the Society of Toxicology
81(1):78-89.
Hinshelwood MM, Repa JJ, Shelton JM, Richardson JA, Mangelsdorf DJ, Mendelson
CR. 2003. Expression of LRH-1 and SF-1 in the mouse ovary: localization in
different cell types correlates with differing function. Mol Cell Endocrinol
207(1-2):39-45.
Honda S, Morohashi K, Nomura M, Takeya H, Kitajima M, Omura T. 1993. Ad4BP
regulating steroidogenic P-450 gene is a member of steroid hormone receptor
superfamily. J Biol Chem 268(10):7494-7502.
Hsieh H-T. 2007. Characterization of LRH-1 and its regulation of transcriptional
activity by PIASy.
Hunyady L, Gaborik Z, Shah BH, Jagadeesh G, Clark AJL, Catt KJ. 2004. Structural
determinants of agonist-induced signaling and regulation of the angiotensin
AT(1) receptor. Mol Cell Endocrinol 217(1-2):89-100.
Ian Mason J. 1993. The 3beta-hydroxysteroid dehydrogenase gene family of enzymes.
Trends Endocrinol Metab 4(6):199-203.
29
Ishida M, Marrero MB, Schieffer B, Ishida T, Bernstein KE, Berk BC. 1995.
Angiotensin-Ii Activates Pp60(C-Src) in Vascular Smooth-Muscle Cells.
Circulation Research 77(6):1053-1059.
Jamieson GA, Jr., Mayforth RD, Villereal ML, Sukhatme VP. 1989. Multiple
intracellular pathways induce expression of a zinc-finger encoding gene
(EGR1): relationship to activation of the Na/H exchanger. J Cell Physiol
139(2):262-268.
Jimenez P, Saner K, Mayhew B, Rainey WE. 2003. GATA-6 is expressed in the
human adrenal and regulates transcription of genes required for adrenal
androgen biosynthesis. Endocrinology 144(10):4285-4288.
Joseph LJ, Le Beau MM, Jamieson GA, Jr., Acharya S, Shows TB, Rowley JD,
Sukhatme VP. 1988. Molecular cloning, sequencing, and mapping of EGR2, a
human early growth response gene encoding a protein with 'zinc-binding
finger' structure. Proc Natl Acad Sci U S A 85(19):7164-7168.
Knapska E, Kaczmarek L. 2004. A gene for neuronal plasticity in the mammalian
brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Progress in neurobiology
74(4):183-211.
Ko LJ, Engel JD. 1993. DNA-binding specificities of the GATA transcription factor
family. Mol Cell Biol 13(7):4011-4022.
Lachance Y, Luu-The V, Labrie C, Simard J, Dumont M, de Launoit Y, Guerin S,
Leblanc G, Labrie F. 1990. Characterization of human 3 beta-hydroxysteroid
dehydrogenase/delta 5-delta 4-isomerase gene and its expression in
mammalian cells. J Biol Chem 265(33):20469-20475.
Lachance Y, Luu-The V, Verreault H, Dumont M, Rheaume E, Leblanc G, Labrie F.
1991. Structure of the human type II 3 beta-hydroxysteroid
dehydrogenase/delta 5-delta 4 isomerase (3 beta-HSD) gene: adrenal and
gonadal specificity. DNA Cell Biol 10(10):701-711.
Lebrethon MC, Jaillard C, Defayes G, Begeot M, Saez JM. 1994. Human cultured
adrenal fasciculata-reticularis cells are targets for angiotensin-II: effects on
cytochrome P450 cholesterol side-chain cleavage, cytochrome P450 17
alpha-hydroxylase, and 3 beta-hydroxysteroid-dehydrogenase messenger
ribonucleic acid and proteins and on steroidogenic responsiveness to
corticotropin and angiotensin-II. J Clin Endocrinol Metab 78(5):1212-1219.
Leers-Sucheta S, Morohashi K, Mason JI, Melner MH. 1997. Synergistic activation of
the human type II 3beta-hydroxysteroid dehydrogenase/delta5-delta4
isomerase promoter by the transcription factor steroidogenic factor-1/adrenal
4-binding protein and phorbol ester. J Biol Chem 272(12):7960-7967.
Liu C, Calogero A, Ragona G, Adamson E, Mercola D. 1996. EGR-1, the reluctant
30
suppression factor: EGR-1 is known to function in the regulation of growth,
differentiation, and also has significant tumor suppressor activity and a
mechanism involving the induction of TGF-beta1 is postulated to account for
this suppressor activity. Crit Rev Oncog 7(1-2):101-125.
Lorence MC, Corbin CJ, Kamimura N, Mahendroo MS, Mason JI. 1990a. Structural
analysis of the gene encoding human 3 beta-hydroxysteroid
dehydrogenase/delta 5----4-isomerase. Mol Endocrinol 4(12):1850-1855.
Lorence MC, Murry BA, Trant JM, Mason JI. 1990b. Human 3-Beta-Hydroxysteroid
Dehydrogenase Delta-5-]4-Isomerase from Placenta - Expression in
Nonsteroidogenic Cells of a Protein That Catalyzes the Dehydrogenation
Isomerization of C21 and C19 Steroids. Endocrinology 126(5):2493-2498.
Lowry JA, Atchley WR. 2000. Molecular evolution of the GATA family of
transcription factors: conservation within the DNA-binding domain. Journal of
molecular evolution 50(2):103-115.
Luo X, Ikeda Y, Parker KL. 1994. A cell-specific nuclear receptor is essential for
adrenal and gonadal development and sexual differentiation. Cell
77(4):481-490.
Martin LJ, Taniguchi H, Robert NM, Simard J, Tremblay JJ, Viger RS. 2005. GATA
factors and the nuclear receptors, steroidogenic factor 1/liver receptor
homolog 1, are key mutual partners in the regulation of the human
3beta-hydroxysteroid dehydrogenase type 2 promoter. Mol Endocrinol
19(9):2358-2370.
Martin LJ, Tremblay JJ. 2005. The human 3beta-hydroxysteroid
dehydrogenase/Delta5-Delta4 isomerase type 2 promoter is a novel target for
the immediate early orphan nuclear receptor Nur77 in steroidogenic cells.
Endocrinology 146(2):861-869.
Mason JI, Naville D, Evans BW, Thomas JL. 1998. Functional activity of
3beta-hydroxysteroid dehydrogenase/isomerase. Endocr Res 24(3-4):549-557.
McBride MW, McVie AJ, Burridge SM, Brintnell B, Craig N, Wallace AM, Wilson
RH, Varley J, Sutcliffe RG. 1999. Cloning, expression, and physical mapping
of the 3 beta-hydroxysteroid dehydrogenase gene cluster
(HSD3BP1-HSD3BP5) in human. Genomics 61(3):277-284.
Miller WL. 2007. StAR search--what we know about how the steroidogenic acute
regulatory protein mediates mitochondrial cholesterol import. Mol Endocrinol
21(3):589-601.
Molkentin JD. 2000. The zinc finger-containing transcription factors GATA-4, -5, and
-6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol
Chem 275(50):38949-38952.
31
Morohashi K, Honda S, Inomata Y, Handa H, Omura T. 1992. A common trans-acting
factor, Ad4-binding protein, to the promoters of steroidogenic P-450s. J Biol
Chem 267(25):17913-17919.
Morohashi K, Iida H, Nomura M, Hatano O, Honda S, Tsukiyama T, Niwa O, Hara T,
Takakusu A, Shibata Y, et al. 1994. Functional difference between Ad4BP and
ELP, and their distributions in steroidogenic tissues. Mol Endocrinol
8(5):643-653.
Nikam SS, Tennekoon GI, Christy BA, Yoshino JE, Rutkowski JL. 1995. The zinc
finger transcription factor Zif268/Egr-1 is essential for Schwann cell
expression of the p75 NGF receptor. Mol Cell Neurosci 6(4):337-348.
Nogueira EF, Bollag WB, Rainey WE. 2009a. Angiotensin II regulation of
adrenocortical gene transcription. Mol Cell Endocrinol 302(2):230-236.
Nogueira EF, Vargas CA, Otis M, Gallo-Payet N, Bollag WB, Rainey WE. 2007.
Angiotensin-II acute regulation of rapid response genes in human, bovine, and
rat adrenocortical cells. J Mol Endocrinol 39(6):365-374.
Nogueira EF, Xing Y, Morris CA, Rainey WE. 2009b. Role of angiotensin II-induced
rapid response genes in the regulation of enzymes needed for aldosterone
synthesis. J Mol Endocrinol 42(4):319-330.
Pare JF, Malenfant D, Courtemanche C, Jacob-Wagner M, Roy S, Allard D, Belanger
L. 2004. The fetoprotein transcription factor (FTF) gene is essential to
embryogenesis and cholesterol homeostasis and is regulated by a DR4 element.
J Biol Chem 279(20):21206-21216.
Payne AH, Hales DB. 2004. Overview of steroidogenic enzymes in the pathway from
cholesterol to active steroid hormones. Endocr Rev 25(6):947-970.
Pen jt. 2005. Preparation of LRH-1 Antibody & Regulation of CYP11A1 Gene by
LRH-1.
Peng L, Huang Y, Jin F, Jiang SW, Payne AH. 2004. Transcription enhancer factor-5
and a GATA-like protein determine placental-specific expression of the Type I
human 3beta-hydroxysteroid dehydrogenase gene, HSD3B1. Mol Endocrinol
18(8):2049-2060.
Peng N, Kim JW, Rainey WE, Carr BR, Attia GR. 2003. The role of the orphan
nuclear receptor, liver receptor homologue-1, in the regulation of human
corpus luteum 3beta-hydroxysteroid dehydrogenase type II. J Clin Endocrinol
Metab 88(12):6020-6028.
Pollack SE, Furth EE, Kallen CB, Arakane F, Kiriakidou M, Kozarsky KF, Strauss JF,
3rd. 1997. Localization of the steroidogenic acute regulatory protein in human
tissues. J Clin Endocrinol Metab 82(12):4243-4251.
Rainey WE, Bird IM, Mason JI. 1994. The NCI-H295 cell line: a pluripotent model
32
for human adrenocortical studies. Mol Cell Endocrinol 100(1-2):45-50.
Rainey WE, Saner K, Schimmer BP. 2004. Adrenocortical cell lines. Mol Cell
Endocrinol 228(1-2):23-38.
Rheaume E, Lachance Y, Zhao HF, Breton N, Dumont M, Delaunoit Y, Trudel C,
Luuthe V, Simard J, Labrie F. 1991. Structure and Expression of a New
Complementary-DNA Encoding the Almost Exclusive 3-Beta-Hydroxysteroid
Dehydrogenase Delta-5-Delta-4-Isomerase in Human Adrenals and Gonads.
Mol Endocrinol 5(8):1147-1157.
Romero DG, Plonczynski MW, Gomez-Sanchez EP, Yanes LL, Gomez-Sanchez CE.
2006a. RGS2 is regulated by angiotensin II and functions as a negative
feedback of aldosterone production in H295R human adrenocortical cells.
Endocrinology 147(8):3889-3897.
Romero DG, Rilli S, Plonczynski MW, Yanes LL, Zhou MY, Gomez-Sanchez EP,
Gomez-Sanchez CE. 2007. Adrenal transcription regulatory genes modulated
by angiotensin II and their role in steroidogenesis. Physiological genomics
30(1):26-34.
Romero DG, Welsh BL, Gomez-Sanchez EP, Yanes LL, Rilli S, Gomez-Sanchez CE.
2006b. Angiotensin II-mediated protein kinase D activation stimulates
aldosterone and cortisol secretion in H295R human adrenocortical cells.
Endocrinology 147(12):6046-6055.
Samuels LT, Helmreich ML, Lasater MB, Reich H. 1951. An enzyme in endocrine
tissues which oxidizes 5-3 hydroxy steroids to delta 5-3 unsaturated ketones.
Science 113(2939):490-491.
Schinner S, Willenberg HS, Krause D, Schott M, Lamounier-Zepter V, Krug AW,
Ehrhart-Bornstein M, Bornstein SR, Scherbaum WA. 2007. Adipocyte-derived
products induce the transcription of the StAR promoter and stimulate
aldosterone and cortisol secretion from adrenocortical cells through the
Wnt-signaling pathway. Int J Obes (Lond) 31(5):864-870.
Seta K, Nanamori M, Modrall JG, Neubig RR, Sadoshima J. 2002. AT1 receptor
mutant lacking heterotrimeric G protein coupling activates the Src-Ras-ERK
pathway without nuclear translocation of ERKs. J Biol Chem
277(11):9268-9277.
Sewer MB, Dammer EB, Jagarlapudi S. 2007a. Transcriptional regulation of
adrenocortical steroidogenic gene expression. Drug Metab Rev
39(2-3):371-388.
Sewer MB, Dammer EB, Jagarlapudi S. 2007b. Transcriptional regulation of
adrenocortical steroidogenic gene expression. Drug Metabolism Reviews
39(2-3):371-388.
33
Simard J, Ricketts ML, Gingras S, Soucy P, Feltus FA, Melner MH. 2005. Molecular
biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase
gene family. Endocr Rev 26(4):525-582.
Sirianni R, Carr BR, Pezzi V, Rainey WE. 2001. A role for src tyrosine kinase in
regulating adrenal aldosterone production. J Mol Endocrinol 26(3):207-215.
Sirianni R, Mayhew BA, Carr BR, Parker CR, Jr., Rainey WE. 2005a.
Corticotropin-releasing hormone (CRH) and urocortin act through type 1 CRH
receptors to stimulate dehydroepiandrosterone sulfate production in human
fetal adrenal cells. J Clin Endocrinol Metab 90(9):5393-5400.
Sirianni R, Rehman KS, Carr BR, Parker CR, Jr., Rainey WE. 2005b.
Corticotropin-releasing hormone directly stimulates cortisol and the cortisol
biosynthetic pathway in human fetal adrenal cells. J Clin Endocrinol Metab
90(1):279-285.
Sirianni R, Seely JB, Attia G, Stocco DM, Carr BR, Pezzi V, Rainey WE. 2002. Liver
receptor homologue-1 is expressed in human steroidogenic tissues and
activates transcription of genes encoding steroidogenic enzymes. J Endocrinol
174(3):R13-17.
Steger DJ, Hecht JH, Mellon PL. 1994. GATA-binding proteins regulate the human
gonadotropin alpha-subunit gene in the placenta and pituitary gland. Mol Cell
Biol 14(8):5592-5602.
Strauss JF, 3rd, Kallen CB, Christenson LK, Watari H, Devoto L, Arakane F,
Kiriakidou M, Sugawara T. 1999. The steroidogenic acute regulatory protein
(StAR): a window into the complexities of intracellular cholesterol trafficking.
Recent Prog Horm Res 54:369-394; discussion 394-365.
Sugawara T, Holt JA, Driscoll D, Strauss JF, 3rd, Lin D, Miller WL, Patterson D,
Clancy KP, Hart IM, Clark BJ, et al. 1995. Human steroidogenic acute
regulatory protein: functional activity in COS-1 cells, tissue-specific
expression, and mapping of the structural gene to 8p11.2 and a pseudogene to
chromosome 13. Proc Natl Acad Sci U S A 92(11):4778-4782.
Suzuki J, Otsuka F, Inagaki K, Takeda M, Ogura T, Makino H. 2004. Novel action of
activin and bone morphogenetic protein in regulating aldosterone production
by human adrenocortical cells. Endocrinology 145(2):639-649.
The VL, Lachance Y, Labrie C, Leblanc G, Thomas JL, Strickler RC, Labrie F. 1989.
Full Length Cdna Structure and Deduced Amino-Acid Sequence of Human
3-Beta-Hydroxy-5-Ene Steroid Dehydrogenase. Mol Endocrinol
3(8):1310-1312.
Thiel G, Rossler OG. 2011. Immediate-early transcriptional response to angiotensin II
in human adrenocortical cells. Endocrinology 152(11):4211-4223.
34
Thomas JL, Mason JI, Blanco G, Veisaga ML. 2001. The engineered, cytosolic form
of human type I 3beta-hydroxysteroid dehydrogenase/isomerase: purification,
characterization and crystallization. J Mol Endocrinol 27(1):77-83.
Tremblay JJ, Viger RS. 2003. Novel roles for GATA transcription factors in the
regulation of steroidogenesis. J Steroid Biochem 85(2-5):291-298.
Tremblay Y, Beaudoin C. 1993. Regulation of 3 beta-hydroxysteroid dehydrogenase
and 17 beta-hydroxysteroid dehydrogenase messenger ribonucleic acid levels
by cyclic adenosine 3',5'-monophosphate and phorbol myristate acetate in
human choriocarcinoma cells. Mol Endocrinol 7(3):355-364.
Ueda H, Sun GC, Murata T, Hirose S. 1992. A novel DNA-binding motif abuts the
zinc finger domain of insect nuclear hormone receptor FTZ-F1 and mouse
embryonal long terminal repeat-binding protein. Mol Cell Biol
12(12):5667-5672.
Weiss MJ, Orkin SH. 1995. GATA transcription factors: key regulators of
hematopoiesis. Exp Hematol 23(2):99-107.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63319-
dc.description.abstract3β-hydroxysteroid dehydrogenase (3β-HSD) 是HSD3B基因的產物,可將受質
分子△5的氫原子經由同素異構作用轉移至△4。類固醇荷爾蒙為膽固醇衍生物,
當P450scc將膽固醇轉換成孕烯醇酮,後續反應幾乎都要3β-HSD作用才能產生最
終產物。脊椎動物體內存在多種HSD3B基因,並具有組織表現專一性。已知人類
體中有HSD3B1、HSD3B2與五個偽基因 (pseudogene),HSD3B1主要表現在胎盤
與周邊組織,而HSD3B2主要表現在腎上腺與性腺。
2009 年Doi 等人發現HSD3B1 mRNA 存在於腎上腺zona glomerulosa,而
HSD3B2 mRNA 大量表現於zona fasciculata,此現象與過去認為HSD3B1 只表現
在胎盤與周邊組織的認知不同。為探討HSD3B 啟動子的調控機制,從人類DNA
中建構出約2 kb 之HSD3B1 與HSD3B2 啟動子片段,檢測其於腎上腺皮質
(H295R) 與胎盤絨毛膜 (JEG-3) 細胞株的活性。結果HSD3B1 啟動子活性在
JEG-3 中特別明顯,而HSD3B2 啟動子在H295R 與JEG-3 都沒有顯現活性。此
外,給予forkolin、phorbol ester、血管張力素 (angiotensin II,Ang II) 與鉀離子
對HSD3B2 啟動子的轉錄活性皆無明顯的效應。但Ang II 會增加HSD3B1 啟動
子轉錄活性,且Ang II 下游轉錄因子Egr-1 具有同樣的效力,說明HSD3B1 啟動
子可能會受到Ang II-Egr-1 訊息路徑調控。
HSD3B1 啟動子在JEG-3 中有很顯著的活性。進一步建構不同長度的啟動
子於細胞中分析其活性,發現上游約238~500 bp 處可能有抑制性序列存在,而
在近端 50 ~ 100 bp 區域則找到兩個GATA 結合位。GATA 結合位發生突變會使
HSD3B1 啟動子活性顯著減少,代表這兩個結合位對於HSD3B1 啟動子活性是相
當重要的。此外,我們的實驗還顯示intron 1 的刪除會影響抑制性序列與GATA
序列的作用。這些結果說明活動於intron 1、抑制性序列與GATA 序列之分子,
可能會有交互作用進而調控HSD3B1 基因的表現。
zh_TW
dc.description.abstract3β-hydroxysteroid dehydrogenase (3β-HSD) is encoded by HSD3B gene. It catalyzes the conversion of △5-3β-hydroxysteroids into △4-ketosteroids. Steroids hormones are all derived from cholesterol, which is initially cleaved by the cytochrome P450scc to form prenenolone. 3β-HSD is involved in the subsequent formation of all classes of steroid hormones. There are multiple genes for HSD3B in vertebrate species and these genes showed tissue-specific expression. Human have two HSD3B genes, HSD3B1 and HSD3B2, and five pseudogene. HSD3B1 is the major type of placenta and peripheral tissues, and HSD3B2 is the major type of adrenal gland and gonads.
In 2009, Doi et al. identified that HSD3B1 mRNA is present in the zona glomerulosa of human adrenal gland and HSD3B2 mRNA is dominantly present in the zona fasciculate. This result is different from previous notion. To study the regulation of HSD3B, I constructed about 2 kb promoter regions of HSD3B1 and HSD3B2 and examined the promoter activity in human adrenocortical (H295R) and placental chorion (JEG-3) cell. Activity of HSD3B1 promoter is strong in JEG-3, but HSD3B2 promoter has no significant activity in these cells. Treatment with forskolin, PMA, angiotensin II and potassium could not influence the promoter activity of HSD3B2 in H295R cells. However, angiotensin II and its downstream signal Egr-1 increased the activity of HSD3B1 promoter. It indicates that HSD3B1 promoter may be regulated by Ang II- Egr-1 pathway.
Since HSD3B1 promoter shows a strong activity in JEG-3 cells, I further constructed deletion fragments of the promoter to examine the activity. A potential inhibitory sequences between -238 and -500 bp and two GATA binding sequences between -100 and -50 bp were identified. Mutation at either of the GATA core sequences remarkably decreased the activity of HSD3B1 promoter, indicating that both of GATA binding sites are important for the promoter function. Moreover, we found that intron 1 of HSD3B1 can influence the function of inhibitory sequences and GATA site. These results suggest that the factors involving in intron 1, inhibitory sequences, and GATA binding sites may interact to modulate the expression of HSD3B1 in JEG-3 cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:34:40Z (GMT). No. of bitstreams: 1
ntu-101-R99441016-1.pdf: 1049717 bytes, checksum: d5cab5b98ad8618f11402005278dee1b (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄................................................................................................................................ I
圖次.............................................................................................................................. III
中文摘要...................................................................................................................... IV
英文摘要....................................................................................................................... V
第一章 序論.................................................................................................................. 1
一、固醇類荷爾蒙的生成.................................................................................... 1
二、腎上腺皮質構造與固醇類荷爾蒙的調控.................................................... 1
(一) 腎上腺皮質的構造 ............................................................................... 1
(二) 固醇類荷爾蒙的調控 ........................................................................... 2
三、胎盤中固醇類荷爾蒙的生成........................................................................ 3
四、HSD3B 基因 .................................................................................................. 3
(一) 3β-hydroxysteroid dehydrogenase (3β-HSD) 的生理功能 .................. 3
(二) HSD3B 基因家族 ................................................................................... 4
1. 大鼠Hsd3b 基因 ................................................................................ 4
2. 小鼠Hsd3b 基因 ................................................................................ 4
3. 人類HSD3B 基因 .............................................................................. 5
(三) 人類HSD3B2 啟動子的特性 ............................................................... 5
(四) 人類HSD3B1 啟動子的特性 ............................................................... 6
五、轉錄因子........................................................................................................ 7
(一) NR5A 家族 ............................................................................................ 7
(二) GATA 家族 ............................................................................................ 8
(三) Early growth response factor-1 .............................................................. 9
六、實驗目的...................................................................................................... 10
第二章 材料與方法.................................................................................................... 11
II
一、細胞培養...................................................................................................... 11
二、質體.............................................................................................................. 11
三、定點突變...................................................................................................... 14
四、暫時性轉染法 (Transient transfection) ...................................................... 15
五、藥物處理流程.............................................................................................. 16
六、冷光酶活性分析 (Luciferase assay) .......................................................... 16
七、統計分析...................................................................................................... 17
第三章 結果................................................................................................................ 18
一、建構HSD3B1 與HSD3B2 啟動子 ............................................................. 18
二、HSD3B1 與HSD3B2 啟動子在不同細胞中的活性 .................................. 18
三、Forskolin 與PMA 對H295R 細胞中HSD3B 啟動子轉錄活性的效應 ... 18
四、血管張力素與鉀離子對H295R 細胞中HSD3B 啟動子轉錄活性的效
應…….......................................................................................................... 19
五、H295R 細胞中過量表現Egr1 對於HSD3B 啟動子轉錄活性的影響 ..... 19
六、SF-1 或LRH-1 對HSD3B 啟動子轉錄活性的影響 ................................. 20
七、HSD3B1 啟動子在JEG-3 細胞中有相當顯著的轉錄活性 ...................... 20
八、HSD3B1 啟動子具有GATA 結合位 .......................................................... 20
九、Intron 1 對於JEG-3 細胞中HSD3B1 啟動子轉錄活性的影響 ............... 21
十、Intron 1 對於HSD3B1 啟動子GATA 結合位的影響 ............................... 21
第四章 討論................................................................................................................ 22
一、HSD3B1 與HSD3B2 啟動子之比較 .......................................................... 22
二、HSD3B1 與HSD3B2 啟動子於H295R 細胞之調控................................. 23
三、轉錄因子Egr-1 對於HSD3B 啟動子的影響 ............................................ 24
四、HSD3B1 啟動子於JEG-3 細胞之調控 ...................................................... 25
參考文獻...................................................................................................................... 27
圖................................................................................................................................. 36
III
圖次
圖一、HSD3B1 與HSD3B2 啟動子序列比對 .......................................................... 36
圖二、HSD3B1 與HSD3B2 啟動子在不同細胞中轉錄活性的比較 ...................... 37
圖三、Forskolin 與PMA 對HSD3B 啟動子於H295R 細胞中的效應 ................... 38
圖四、血管張力素對HSD3B 啟動子於H295R 細胞中的效應 .............................. 39
圖五、鉀離子對HSD3B 啟動子於H295R 細胞中的效應 ...................................... 40
圖六、Egr-1 對HSD3B 啟動子於293T 與H295R 細胞中的效應 ......................... 41
圖七、LRH-1 與SF-1 對HSD3B 啟動子於293T 細胞中的效應 ........................... 42
圖八、HSD3B1 啟動子於JEG3 細胞中具有顯著的轉錄活性 ............................... 43
圖九、HSD3B1 啟動子具有GATA 結合位 .............................................................. 44
圖十、Intron 1 對於JEG-3 細胞中HSD3B1 啟動子轉錄活性的影響 ................... 45
圖十一、Intron 1 對於GATA 結合位突變的影響 ................................................... 46
附圖一、固醇類荷爾蒙生成路徑.............................................................................. 47
附表一、不同物種之3β-HSD 的酵素特性與主要表現組織 .................................. 48
dc.language.isozh-TW
dc.titleHSD3B基因啟動子在H295R與JEG-3細胞中活性之探討zh_TW
dc.titleCharacterization of HSD3B promoter in H295R and JEG-3 cellsen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張淑芬,李立安,湯志永
dc.subject.keyword轉錄活性,zh_TW
dc.subject.keywordHSD3B,en
dc.relation.page48
dc.rights.note有償授權
dc.date.accepted2012-11-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
1.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved