請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63311完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳章甫(Chang-Fu Wu) | |
| dc.contributor.author | Hung-I Lin | en |
| dc.contributor.author | 林虹儀 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:34:13Z | - |
| dc.date.available | 2018-03-04 | |
| dc.date.copyright | 2013-03-04 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-11-21 | |
| dc.identifier.citation | Beelen R, Hoek G, Pebesma E, Vienneau D, et al. 2009. Mapping of background air pollution at a fine spatial scale across the European Union. The Science of the total environment 407(6): 1852-1867.
Bencs L, Ravindra K, de Hoog J, Spolnik Z, et al. 2010. Appraisal of measurement methods, chemical composition and sources of fine atmospheric particles over six different areas of Northern Belgium. Environmental Pollution 158(11): 3421-3430. Brauer M. 2002. Air Pollution from Traffic and the Development of Respiratory Infections and Asthmatic and Allergic Symptoms in Children. American Journal of Respiratory and Critical Care Medicine 166(8): 1092-1098. Brauer M, Hoek G, Vliet Pv, Meliefste K, et al. 2003. Estimating long-term average particulate air pollution concentrations: application of traffic indicators and geographic information systems. EPIDEMIOLOGY 14: 228-239. Briggs DJ, Collins S, Elliott P, Fischer P, et al. 1997. Mapping urban air pollution using GIS: a regression-based approach. International Journal of Geographical Information Science 11(7): 699-718. Chan CY, Xu XD, Li YS, Wong KH, et al. 2005. Characteristics of vertical profiles and sources of PM2.5, PM10 and carbonaceous species in Beijing. Atmospheric Environment 39(28): 5113-5124. Clougherty JE, Houseman EA, Levy JI. 2009. Examining intra-urban variation in fine particle mass constituents using GIS and constrained factor analysis. Atmospheric Environment 43(34): 5545-5555. Clougherty JE, Wright RJ, Baxter LK, Levy JI. 2008. Land use regression modeling of intra-urban residential variability in multiple traffic-related air pollutants. Environmental health : a global access science source 7: 17. Corbett JJ, Chapman D. 2006. An Environmental Decision Framework Applied to Marine Engine Control Technologies. Journal of Air Waste Mangagement Association 56: 841. Dockery DW, III CAP. 2006. Health effects of fine particulate air pollution: lines that connect. Journal of Air Waste Mangagement Association 56: 709-742. Dockery DW, III CAP, Xu X, Spengler JD, et al. 1993. An association between air pollution and mortality in six U.S. cities. The New Englang Journal of Medicine 329: 1753-1759. Eeftens M, Tsai M-Y, Ampe C, Anwander B, et al. 2012. Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2 – Results of the ESCAPE project. Atmospheric Environment 62: 303-317. Englert N. 2004. Fine particles and human health--a review of epidemiological studies. Toxicology letters 149(1-3): 235-242. Environmental and Industrial Measurements Division RTI International. 2009. Standard Operating Procedure for the X-Ray Fluorescence Analysis of Particulate Matter Deposits on Teflon Filters. European Study of Cohort for Air Pollution Effects. 2010. ESCAPE exposure manual v9. Gao Y, Nelson ED, Field MP, Q.Ding, et al. 2002. Characterization of atmospheric trace elements on PM2.5 particulate matter over the New York–New Jersey harbor estuary. Atmospheric Environment 36: 1077-1086. Gilbert NL, Goldber MS, Beckerma B, Broo JR, et al. 2005. Assessing spatial variability of ambient nitrogen dioxide in Montreal, Canada, with a land-use regression model. Air & Waste Management Association 55: 1059-1063. Heinrich J, Gehring U, Cyrys J, Brauer M, et al. 2005. Exposure to traffic related air pollutants: self reported traffic intensity versus GIS modelled exposure. Occupational and environmental medicine 62(8): 517-523. Heinrich J, Slama R. 2007. Fine particles, a major threat to children. International Journal of Hygiene and Environmental Health 210(5): 617-622. Henderson SB, Beckerman B, Jerrett M, Brauer M. 2007. Application of Land Use Regression to Estimate Long-Term Concentrations of Traffic-Related Nitrogen Oxides and Fine Particulate Matter. Environmental Science & Technology 41: 2422-2428. Hochadel M, Heinrich J, Gehring U, Morgenstern V, et al. 2006. Predicting long-term average concentrations of traffic-related air pollutants using GIS-based information. Atmospheric Environment 40(3): 542-553. Hoek G, Beelen R, de Hoogh K, Vienneau D, et al. 2008. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmospheric Environment 42(33): 7561-7578. Hoek G, Beelen R, Kos G, Dijkema M, et al. 2011. Land Use Regression Model for Ultrafine Particles in Amsterdam. Environmental Science & Technology 45: 622-628. Hoek G, Meliefste K, Cyrys J, Lewn'e M, et al. 2002. Spatial variability of fine particle concentrations in three European areas. Atmospheric Environment 36: 4077-4088. Hricko AM. 2006. Ships, trucks, and trains effects of goods movement on environmental health. Environmental Health Perspectives 114. Jedrychowski W, Maugeri U, Jedrychowska-Bianchi I, Flak E. 2005. Effect of indoor air quality in the postnatal period on lung function in pre-adolescent children: a retrospective cohort study in Poland. Public Health 119(6): 535-541. Johnson M, Isakov V, Touma JS, Mukerjee S, et al. 2010. Evaluation of land-use regression models used to predict air quality concentrations in an urban area. Atmospheric Environment 44(30): 3660-3668. Kalaiarasan M, Balasubramanian R, Cheong KWD, Tham KW. 2009. Traffic-generated airborne particles in naturally ventilated multi-storey residential buildings of Singapore: Vertical distribution and potential health risks. Building and Environment 44(7): 1493-1500. Kashima S, Yorifuji T, Tsud T, Doi H. 2009. Application of land use regression to regulatory air quality data in Japan. The Science of the total environment 407(8): 3055-3062. Kashima S, Yorifuji T, Tsuda T, Doi H. 2009. Application of land use regression to regulatory air quality data in Japan. The Science of the total environment 407(8): 3055-3062. Kim E, Hopke PK, Pinto JP, Wilson WE. 2005. Spatial Variability of Fine Particle Mass, Components, and Source Contributions during the Regional Air Pollution Study in St. Louis. Environmental Science & Technology 39: 4172-4179. Krudysz MA, Froines JR, Fine PM, Sioutas C. 2008. Intra-community spatial variation of size-fractionated PM mass, OC, EC, and trace elements in the Long Beach, CA area. Atmospheric Environment 42(21): 5374-5389. Lopez ML, Ceppi S, Palancar GG, Olcese LE, et al. 2011. Elemental concentration and source identification of PM10 and PM2.5 by SR-XRF in Cordoba City, Argentina. Atmospheric Environment 45(31): 5450-5457. Laden F, Neas LM, Dockery DW, Schwartz J. 2000. Association of Fine Particulate Matter from Different Sources with Daily Mortality in Six U.S. Cities. Environmental Health Perspectives 108: 941-947. Lin Y-P, Cheng B-Y, Chu H-J, Chang T-K, et al. 2011. Assessing how heavy metal pollution and human activity are related by using logistic regression and kriging methods. Geoderma 163(3-4): 275-282. Martuzevicius D, Grinshpun SA, Reponen T, Gorny RL, et al. 2004. Spatial and temporal variations of PM2.5 concentration and composition throughout an urban area with high freeway density—the Greater Cincinnati study. Atmospheric Environment 38(8): 1091-1105. Mazzei F, D'Alessandro A, Lucarelli F, Nava S, et al. 2008. Characterization of particulate matter sources in an urban environment. Science of The Total Environment 401(1-3): 81-89. Merbitz H, Fritz S, Schneider C. 2012. Mobile measurements and regression modeling of the spatial particulate matter variability in an urban area. The Science of the total environment 438C: 389-403. Moore DK, Jerrett M, Mack WJ, Kunzli N. 2007. A land use regression model for predicting ambient fine particulate matter across Los Angeles, CA. Journal of environmental monitoring : JEM 9(3): 246-252. Morgenstern V, Zutavern A, Cyrys J, Brockow I, et al. 2007. Respiratory health and individual estimated exposure to traffic-related air pollutants in a cohort of young children. Occupational and environmental medicine 64(1): 8-16. National Research Council. 2000. Modeling Mobile-Source Emissions: Washington DC: National Academy Press. Oravisjarvi K, Timonen KL, Wiikinkoski T, Ruuskanen AR, et al. 2003. Source contributions to PM2.5 particles in the urban air of a town situated close to a steel works. Atmospheric Environment 37(8): 1013-1022. Quang TN, He C, Morawska L, Knibbs LD, et al. 2012. Vertical particle concentration profiles around urban office buildings. Atmospheric Chemistry and Physics 12(11): 5017-5030. Ross Z, English PB, Scalf R, Gunier R, et al. 2006. Nitrogen dioxide prediction in Southern California using land use regression modeling: potential for environmental health analyses. Journal of exposure science & environmental epidemiology 16(2): 106-114. Ross Z, Jerrett M, Ito K, Tempalski B, et al. 2007. A land use regression for predicting fine particulate matter concentrations in the New York City region. Atmospheric Environment 41(11): 2255-2269. Samek L. 2009. Chemical characterization of selected metals by X-ray fluorescence method in particulate matter collected in the area of Krakow, Poland. Microchemical Journal 92(2): 140-144. Sasaki K, Sakamoto K. 2005. Vertical differences in the composition of PM10 and PM2.5 in the urban atmosphere of Osaka, Japan. Atmospheric Environment 39(38): 7240-7250. Shridhar V, Khillare PS, Agarwal T, Ray S. 2010. Metallic species in ambient particulate matter at rural and urban location of Delhi. Journal of Hazardous Materials 175(1-3): 600-607. So KL, Guo H, Li YS. 2007. Long-term variation of PM2.5 levels and composition at rural, urban, and roadside sites in Hong Kong: Increasing impact of regional air pollution. Atmospheric Environment 41(40): 9427-9434. Tripathi RM, Vinod Kumar A, Manikandan ST, Bhalke S, et al. 2004. Vertical distribution of atmospheric trace metals and their sources at Mumbai, India. Atmospheric Environment 38(1): 135-146. U.S. Environmental Protection Agency. 1999. Method IO-3.3 Determination of Metals in Ambient Particulate Matter Using X-Ray Fluorescence (XRF) Spectroscopy. Vienneau D, de Hoogh K, Briggs D. 2009. A GIS-based method for modelling air pollution exposures across Europe. The Science of the total environment 408(2): 255-266. Wu C-F, Kuo I-C, Su T-C, Li Y-R, et al. 2010. Effects of Personal Exposure to Particulate Matter and Ozone on Arterial Stiffness and Heart Rate Variability in Healthy Adults. American Journal of Epidemiology 171(12): 1299-1309. Wu C-F, Liu L-JS, Cullen A, Westberg H, et al. 2011. Spatial–temporal and cancer risk assessment of selected hazardous air pollutants in Seattle. Environment International 37(1): 11-17. Wu Y, Hao J, Fu L, Wang Z, et al. 2002. Vertical and horizontal profiles of airborne particulatematter near major roads in Macao, China. Atmospheric Environment 36: 4907-4918. Xu L, Chen X, Chen J, Zhang F, et al. 2012. Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China. Atmospheric Research 104-105: 264-272. Ye B, Ji X, Yang H, Yao X, et al. 2003. Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period. Atmospheric Environment 37: 499-510. Yu CH, Fan Z-H, Meng Q, Zhu X, et al. 2011. Spatial/Temporal Variations of Elemental Carbon, Organic Carbon, and Trace Elements in PM10 and the Impact of Land-Use Patterns on Community Air Pollution in Paterson, NJ. Journal of the Air & Waste Management Association 61(6): 673-688. 李正明. 2011. 未來的船用燃料— LNG. 瓦斯季刊 95: 72-80. 陳永昇, 莊士賢. 2009. 探討如何減少本國港埠與船舶之空氣汙染以因應氣候變遷. 港灣報導 84(1-12). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63311 | - |
| dc.description.abstract | 前言:空氣汙染物中的懸浮微粒與人類不良健康效應有關,而懸浮微粒的大小、形狀、化學組成都會影響其毒性表現,許多有毒的化學物質較多存在於細懸浮微粒(PM2.5)或粒徑更小的微粒當中,而細懸浮微粒由於粒徑較小可進入到人體肺泡交換氣體區,對人體造成更大的傷害,因此不容忽視。本研究利用土地利用回歸模式評估大高雄都會區細懸浮微粒及其元素組成濃度空間分布情形。
方法:本研究於2010年在高雄都會區,依地理環境與交通狀況選擇採樣點,採樣地區包含岡山區、橋頭區、楠梓區、左營區、仁武區、三民區、鹽埕區、苓雅區、鳳山區、大寮區、前鎮區、小港區、林園區。水平方向選取20個家戶(交通、都市背景採樣點各10個)、垂直方向10個家戶(中、高樓層各5個)進行細懸浮微粒監測。另外為校正季節差異,於採樣區域中設置一個連續監測點,於採樣期間架設採樣器進行每兩周一次長期監測。各家戶點採樣方法為使用Harvard PM2.5 Impactors、37-mm鐵氟龍濾紙結合幫浦進行為期兩季每次採集14天的戶外濃度量測,濾紙秤重後以能量散射X光螢光分析儀(energy dispersive X-ray fluorescence, ED-XRF)分析樣本元素組成。所得結果再以土地利用、道路長度、人口數、樓層高度作為預測變項,結合PM2.5以及元素年平均濃度,建立土地利用回歸模式。 結果:兩季平均經連續監測點濃度校正後汙染物濃度分為PM2.5:43.23±12.96 μg/m3,鋁:84.28±24.76 ng/m3、矽:279.58±36.85 ng/m3、硫:3236.46±852.40 ng/m3、鉀:328.93±91.56 ng/m3、鈣:110.07±22.38 ng/m3、鈦:14.19±2.41 ng/m3、錳:23.79±5.59 ng/m3、鐵:270.73±75.94 ng/m3、鎳:9.10±2.02 ng/m3、銅:10.28±3.27 ng/m3、鋅:174.94±68.38 ng/m3、鉛:55.31±24.58 ng/m3。水平空間採樣結果,交通採樣點PM2.5 連續採樣點濃度校正後年平均濃度為49.95±12.96μg/m3,顯著高於都市背景採樣點之35.76±8.34μg/m3,元素濃度則無此差異性。垂直空間分布結果,各樓層PM2.5連續採樣點濃度校正後年平均濃度隨著高度上升而濃度下降,濃度值分布為低樓層56.35±13.64μg/m3>中樓層30.07±7.16μg/m3及高樓層27.92±10.06μg/m3,元素組成部分並無空間垂直分布之差異。另一方面,使用逐步回歸分析結合土地利用資料與採樣結果建立PM2.5及其元素土地利用回歸模式,所得R2值範圍從0.234至0.799,而大部分元素土地利用回歸模式可解釋濃度空間變異程度優於PM2.5 土地利用回歸模式(Adjusted R2=0.397),這顯示本研究使用之土地利用資料對於大部分的元素有較高解釋空間濃度變異的能力,然而鉀及鋅土地利用回歸模式可解釋濃度空間變異程度較差(鉀:0.234、鋅:0.259),這顯示並非所有元素都可建立該汙染物之土地利用回歸模式。 結論:本研究在高雄都會地區建立細懸浮微粒及其元素組成之土地利用回歸模式,透過4至7個土地利用變項,即可有效預估50%以上汙染物(鋁、矽、硫、鈦、錳、鎳)濃度空間分布變異。未來可將此土地利用回歸模式應用於高雄都會區其他未採樣之地區,進行汙染物濃度的估計。 | zh_TW |
| dc.description.abstract | BACKGROUND: This study was designed to develop land use regression models to estimate ambient concentrations of PM2.5 and elements in Kaohsiung Metropolis and evaluate their spatial variation.
METHODS: Based on population density, micro-environmental characteristics, and building storey heights, we selected 30 locations to monitor PM2.5 and elements across Kaohsiung Metropolis (thirteen districts: Gangshan, Ciaotou, Nanzi, Zuoying, Renwu, Sanmin, Yancheng, Lingya, Fengshan, Daliao, Qianzhen, Xiaogang, and Linyuan), including 10 traffic and 10 urban background sites. One additional continuous monitoring site was selected for annual adjustment. Each sample was collected by the Harvard PM2.5 Impactors with a 37-mm 2-μm pore size Teflon filter and a sampling pump over a two-week period. To obtain data for different seasons, two sampling periods per site was conducted. The PM2.5 filter samples were further analyzed by energy dispersive X-ray fluorescence (ED-XRF) after weighing to acquire concentration of thirteen elements. LUR models were constructed by integrating land use information, traffic related data, population, and elevation as predicted variables with adjusted annual average concentrations in stepwise procedure for PM2.5 and 13 elements. RESULTS: The adjusted annual average concentrations were 43.23±12.96 μg/m3 for PM2.5, 84.28±24.76 ng/m3 for Al, 279.58±36.85 ng/m3 for Si, 3236.46±852.40 ng/m3 for S, 328.93±91.56 ng/m3 for K, 110.07±22.38 ng/m3 for Ca, 14.19±2.41 ng/m3 for Ti, 23.79±5.59 ng/m3 for Mn, 270.73±75.94 ng/m3 for Fe, 9.10±2.02 ng/m3 for Ni, 10.28±3.27 ng/m3 for Cu, 174.94±68.38 ng/m3 for Zn, and 55.31±24.58 ng/m3 for Pb. Horizontal variation showed different trends of PM2.5 and its elementals. The adjusted annual average PM2.5 concentration was significant higher at the traffic sites (49.95±12.96μg/m3) as compared to that at the urban background sites (35.76±8.34μg/m3). The vertical profile of pollutants showed that PM2.5 concentration decreased with the height, but not the elemental concentrations. The adjusted R2 values of the model were 0.397 for PM2.5, 0.655 for Al, 0.702 for Si, 0.533 for S, 0.234 for K, 0.40 for Ca, 0.619 for Ti, 0.558 for Mn, 0.490 for Fe, 0.799 for Ni, 0.483 for Cu, 0.259 for Zn, and 0.378 for Pb. Better predictability of elements, except for K and Zn, was generally found than that of PM2.5. CONCLUSION: We were able to develop land use regression models by combining household outdoor sampling data with geographic variables to evaluate concentration variations of PM2.5 and its elemental components in Kaohsiung metro. These PM2.5 and elements LUR models could be apply to other un-sampled locations in the study area to estimated ambient concentrations. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:34:13Z (GMT). No. of bitstreams: 1 ntu-101-R99844004-1.pdf: 4034259 bytes, checksum: 3dfeb42ac5898104eefd7b49a1def50a (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 摘要 I
Abstract III List of Tables VIII List of Figures X Chapter 1 Introduction 1 1.1 Background 1 1.2 Health effects 2 1.3 Chemical component 3 1.4 Land use regression 4 1.5 Objective 4 Chapter 2 Materials and Methods 9 2.1 Study Design 9 2.1.1 Sampling site selection 9 2.1.2 Sampling strategy 10 2.2 PM2.5 measurement 11 2.3 Constituent Measurements 11 2.4 Spatial and temporal analysis 12 2.5 LUR model building 14 2.5.1 Annual average concentration calculation 14 2.5.2 Independent variables 14 2.6 Model building 16 2.7 Model validation 17 Chapter 3 Results 26 3.1 ED-XRF QA/QC 26 3.1.1 Calibration 26 3.1.2 Accuracy 26 3.1.3 Precision 26 3.1.4 Resolution 27 3.1.5 Stability 27 3.1.6 Method detection limit 27 3.2 Summary statistics 27 3.3 Continuous site PM2.5 concentration 28 3.4 Concentration variability 28 3.4.1 Horizontal variability 28 3.4.2 Temporal variability 29 3.4.3 Vertical variability 30 3.5 LUR regression modeling 30 3.5.1 Independent variables 30 3.5.2 Model building 31 3.5.3 PM2.5 LUR model 32 3.5.4 Element LUR models 33 3.5.5 Model evaluation 34 Chapter 4 Discussion 61 4.1 Concentration variation 61 4.1.1 Horizontal distribution 61 4.1.2 Temporal variation 65 4.1.3 Vertical profile distribution 66 4.2 Land use regression model 68 4.2.1 PM2.5 68 4.2.2 Elements 71 4.2.3 Emission inventory 73 Chapter 5 Conclusion 81 References 83 Appendix 91 Appendix A Secondary target and energy usage 91 Appendix B Description of geographic variables layer and type 93 Appendix C The LUR models for model development by using all sampling sites and elevation added purposely 95 Appendix D Descriptive statistics of point emission pollutants with different buffer sizes 98 Appendix E The LUR models for model building by coupling with point emission data 99 | |
| dc.language.iso | en | |
| dc.subject | 土地利用回歸模式 | zh_TW |
| dc.subject | 地理資訊系統 | zh_TW |
| dc.subject | 垂直分布 | zh_TW |
| dc.subject | 細懸浮微粒 | zh_TW |
| dc.subject | 元素 | zh_TW |
| dc.subject | Geographic information systems (GIS) | en |
| dc.subject | Vertical distribution | en |
| dc.subject | Fine particles (PM2.5) | en |
| dc.subject | Land use regression | en |
| dc.subject | Elements | en |
| dc.title | 運用土地利用回歸模式評估高雄都會區細懸浮微粒及其元素濃度變異情形 | zh_TW |
| dc.title | Applying Land Use Regression Models to Evaluate Concentration Variations of PM2.5 and Elemental Composition in Kaohsiung Metropolis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 詹長權(Chang-Chuan Chan),蔡詩偉(Shih-Wei Tsai) | |
| dc.subject.keyword | 土地利用回歸模式,地理資訊系統,垂直分布,細懸浮微粒,元素, | zh_TW |
| dc.subject.keyword | Land use regression,Geographic information systems (GIS),Vertical distribution,Fine particles (PM2.5),Elements, | en |
| dc.relation.page | 101 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-11-22 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境衛生研究所 | zh_TW |
| 顯示於系所單位: | 環境衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
