Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63304
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃榮山(Long-Sun Huang)
dc.contributor.authorYu-Ting Liuen
dc.contributor.author劉聿庭zh_TW
dc.date.accessioned2021-06-16T16:33:50Z-
dc.date.available2013-01-16
dc.date.copyright2013-01-16
dc.date.issued2012
dc.date.submitted2012-11-26
dc.identifier.citation[1] '2011 Statics of Causes of Death,' ed. R.O.C. (TAIWAN): Department of Health, Executive Yuan, 2011.
[2] A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. J. Thun, 'Cancer statistics, 2009,' CA Cancer J Clin, vol. 59, pp. 225-49, Jul-Aug 2009.
[3] L. E. A. Kenneth Anderson, Mosby's Medical, Nursing, & Allied Health Dictionary, 4 th ed.: Mosby-Year Book, 1994.
[4] D. L. Kasper, E. Braunwald, A. S. Fauci, S. L. Hauser, D. L. Longo, J. L. Jameson, and K. J. Isselbacher, Harrison's principles of internal medicine, 16 th ed.: McGraw-Hill, 2005.
[5] D. A. Pollyea, H. E. Kohrt, and B. C. Medeiros, 'Acute myeloid leukaemia in the elderly: a review,' Br J Haematol, vol. 152, pp. 524-42, Mar 2011.
[6] C. Fausel, 'Targeted chronic myeloid leukemia therapy: seeking a cure,' American Journal of Health-System Pharmacy, vol. 64, pp. S9-S15, 2007.
[7] D. L. Porter, B. L. Levine, M. Kalos, A. Bagg, and C. H. June, 'Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia,' N Engl J Med, vol. 365, pp. 725-33, Aug 25 2011.
[8] M. Kalos, B. L. Levine, D. L. Porter, S. Katz, S. A. Grupp, A. Bagg, and C. H. June, 'T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia,' Science translational medicine, vol. 3, pp. 95ra73-95ra73, Aug 10 2011.
[9] M. B. Atkins, 'Cytokine-based therapy and biochemotherapy for advanced melanoma,' Clin Cancer Res, vol. 12, pp. 2353s-2358s, Apr 1 2006.
[10] G. C. de Gast, H. J. Klumpen, F. A. Vyth-Dreese, M. J. Kersten, N. C. Verra, J. Sein, D. Batchelor, W. J. Nooijen, and J. H. Schornagel, 'Phase I trial of combined immunotherapy with subcutaneous granulocyte macrophage colony-stimulating factor, low-dose interleukin 2, and interferon alpha in progressive metastatic melanoma and renal cell carcinoma,' Clin Cancer Res, vol. 6, pp. 1267-72, Apr 2000.
[11] S. S. Farag, S. L. George, E. J. Lee, M. Baer, R. K. Dodge, B. Becknell, T. Fehniger, L. R. Silverman, J. Crawford, and C. D. Bloomfield, 'Postremission Therapy with Low-dose Interleukin 2 with or without Intermediate Pulse Dose Interleukin 2 Therapy Is Well Tolerated in Elderly Patients with Acute Myeloid Leukemia,' Clinical cancer research, vol. 8, pp. 2812-2819, 2002.
[12] T. Olencki, S. Malhi, T. Mekhail, R. Dreicer, P. Elson, L. Wood, and R. M. Bukowski, 'Phase I trial of thalidomide and Interleukin-2 in patients with metastatic renal
cell carcinoma,' Invest New Drugs, vol. 24, pp. 321-6, Jul 2006.
[13] U. Koehl, J. Sorensen, R. Esser, S. Zimmermann, H. P. Gruttner, T. Tonn, C. Seidl, E. Seifried, T. Klingebiel, and D. Schwabe, 'IL-2 activated NK cell immunotherapy of three children after haploidentical stem cell transplantation,' Blood Cells Mol Dis, vol. 33, pp. 261-6, Nov-Dec 2004.
[14] A. Stift, J. Friedl, P. Dubsky, T. Bachleitner-Hofmann, G. Schueller, T. Zontsich, T. Benkoe, K. Radelbauer, C. Brostjan, R. Jakesz, and M. Gnant, 'Dendritic cell-based vaccination in solid cancer,' J Clin Oncol, vol. 21, pp. 135-42, Jan 1 2003.
[15] L. Ruggeri, A. Mancusi, K. Perruccio, E. Burchielli, M. F. Martelli, and A. Velardi, 'Natural killer cell alloreactivity for leukemia therapy,' J Immunother, vol. 28, pp. 175-82, May-Jun 2005.
[16] L. Ruggeri, M. Capanni, E. Urbani, K. Perruccio, W. D. Shlomchik, A. Tosti, S. Posati, D. Rogaia, F. Frassoni, F. Aversa, M. F. Martelli, and A. Velardi, 'Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants,' Science, vol. 295, pp. 2097-100, Mar 15 2002.
[17] M. F. Martelli, F. Aversa, E. Bachar-Lustig, A. Velardi, S. Reich-Zelicher, A. Tabilio, H. Gur, and Y. Reisner, 'Transplants across human leukocyte antigen barriers,' 2002, pp. 48-56.
[18] L. Ruggeri, A. Mancusi, M. Capanni, E. Urbani, A. Carotti, T. Aloisi, M. Stern, D. Pende, K. Perruccio, E. Burchielli, F. Topini, E. Bianchi, F. Aversa, M. F. Martelli, and A. Velardi, 'Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value,' Blood, vol. 110, pp. 433-40, Jul 1 2007.
[19] A. Manz, N. Graber, and H. M. Widmer, 'Miniaturized Total Chemical-Analysis Systems - a Novel Concept for Chemical Sensing,' Sensors and Actuators B-Chemical, vol. 1, pp. 244-248, Jan 1990.
[20] C. Mauri and A. Bosma, 'Immune regulatory function of B cells,' Annu Rev Immunol, vol. 30, pp. 221-41, 2012.
[21] I. Gutcher and B. Becher, 'APC-derived cytokines and T cell polarization in autoimmune inflammation,' J Clin Invest, vol. 117, pp. 1119-27, May 2007.
[22] 高宜廷, '自然殺手細胞在癌症免疫療法上之應用
' 生物資源保存及研究簡訊, vol. 18, pp. 7-10, 2005.
[23] R. Bhat and C. Watzl, 'Serial killing of tumor cells by human natural killer cells--enhancement by therapeutic antibodies,' PLoS One, vol. 2, p. e326, 2007.
[24] T. Waldmann and Y. Tagaya, 'THE MULTIFACETED REGULATION OF INTERLEUKIN-15 EXPRESSION AND THE ROLE OF THIS CYTOKINE IN NK CELL DIFFERENTIATION AND HOST RESPONSE TO INTRACELLULAR PATHOGENS 1,' Annual Review of Immunology, vol. 17, pp. 19-49, 1999.
[25] W. E. Carson, J. G. Giri, M. J. Lindemann, M. L. Linett, M. Ahdieh, R. Paxton, D. Anderson, J. Eisenmann, K. Grabstein, and M. A. Caligiuri, 'Interleukin (Il)-15 Is a Novel Cytokine That Activates Human Natural-Killer-Cells Via Components of the Il-2 Receptor,' Journal of Experimental Medicine, vol. 180, pp. 1395-1403, Oct 1 1994.
[26] M. E. Ross and M. A. Caligiuri, 'Cytokine-induced apoptosis of human natural killer cells identifies a novel mechanism to regulate the innate immune response,' Blood, vol. 89, pp. 910-8, Feb 1 1997.
[27] K. S. Wang, D. A. Frank, and J. Ritz, 'Interleukin-2 enhances the response of natural killer cells to interleukin-12 through up-regulation of the interleukin-12 receptor and STAT4,' Blood, vol. 95, pp. 3183-3190, May 15 2000.
[28] L. Rodella, R. Rezzani, G. Zauli, A. R. Mariani, R. Rizzoli, and M. Vitale, 'Apoptosis induced by NK cells is modulated by the NK-active cytokines IL-2 and IL-12,' International immunology, vol. 10, pp. 719-725, Jun 1998.
[29] S. F. Sherif and A. C. Michael, 'Human natural killer cell development and biology,' Blood reviews, vol. 20, pp. 123-137, 2006.
[30] J. E. Rubnitz, H. Inaba, R. C. Ribeiro, S. Pounds, B. Rooney, T. Bell, C.-H. Pui, and W. Leung, 'NKAML: A Pilot Study to Determine the Safety and Feasibility of Haploidentical Natural Killer Cell Transplantation in Childhood Acute Myeloid Leukemia,' J Clin Oncol, vol. 28, pp. 955-959, February 20, 2010 2010.
[31] G. Suck, 'Novel approaches using natural killer cells in cancer therapy,' Seminars in Cancer Biology, vol. 16, pp. 412-418, 2006.
[32] L. Ruggeri, A. Mancusi, K. Perruccio, E. Burchielli, M. F. Martelli, and A. Velardi, 'Natural Killer Cell Alloreactivity for Leukemia Therapy,' Journal of Immunotherapy, vol. 28, pp. 175-182, 2005.
[33] I.-T. Kao, C.-L. Yao, Z.-L. Kong, M.-L. Wu, T.-L. Chuang, and S.-M. Hwang, 'Generation of Natural Killer Cells from Serum-Free, Expanded Human Umbilical Cord Blood CD34+ Cells,' Stem Cells and Development, vol. 16, pp. 1043-1052, 2007.
[34] K. Takahashi, A. Hattori, I. Suzuki, T. Ichiki, and K. Yasuda, 'Non-destructive on-chip cell sorting system with real-time microscopic image processing,' Journal of Nanobiotechnology, vol. 2, p. 5, 2004.
[35] D. D. Carlo, L. Y. Wu, and L. P. Lee, 'Dynamic single cell culture array,' Lab on a Chip, vol. 6, pp. 1445-1449, 2006.
[36] M. Yang, C.-W. Li, and J. Yang, 'Cell Docking and On-Chip Monitoring of Cellular Reactions with a Controlled Concentration Gradient on a Microfluidic Device,' Analytical Chemistry, vol. 74, pp. 3991-4001, 2002.
[37] 福井三郎 and 杉野幸夫, 細胞培養: 藝軒圖書, 1989.
[38] G. M. Walker, H. C. Zeringue, and D. J. Beebe, 'Microenvironment design considerations for cellular scale studies,' Lab on a Chip, vol. 4, pp. 91-97, 2004.
[39] J. H. Gong, G. Maki, and H. G. Klingemann, 'Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells,' Leukemia, vol. 8, pp. 652-8, Apr 1994.
[40] C. B. Lozzio and B. B. Lozzio, 'Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome,' Blood, vol. 45, pp. 321-34, Mar 1975.
[41] G. Majno and I. Joris, 'Apoptosis, oncosis, and necrosis. An overview of cell death,' Am J Pathol, vol. 146, pp. 3-15, Jan 1995.
[42] A. Gewies, 'Introduction to apoptosis,' Apo Review, Cell death, 2003.
[43] Invitrogen, 'Molecular probes: the handbook, section 6.6 -Qdot nanocrystal,' in Chapter 6:Ultrasensitive detection technology, ed: invitrogen, 2006.
[44] I. Green, R. Christison, C. J. Voyce, K. R. Bundell, and M. A. Lindsay, 'Protein transduction domains: are they delivering?,' Trends in Pharmacological Sciences, vol. 24, pp. 213-215, 2003.
[45] M. Brown and C. Wittwer, 'Flow cytometry: principles and clinical applications in hematology,' Clin Chem, vol. 46, pp. 1221-9, Aug 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63304-
dc.description.abstract根據2008年國際癌症研究所(International Agency for Research on Cancer,IARC)的統計,美國血癌患者占所有癌症的9.9%,2010年台灣血癌死亡人數占所有癌症的4%。近年來已有不少運用自然殺手細胞成功治癒血癌的臨床案例,這種極具潛力的新興療法提供了治療血癌的新途徑。臨床研究結果顯示,自然殺手細胞毒殺活性與病患復發率有很大關聯性,如何篩選不同來源自然殺手細胞並在體外培養期間以細胞激素提升細胞活性與增殖數量,將是自然殺手細胞療法能否成功治癒血癌的關鍵。然而現有流式細胞儀毒殺率分析法需要很大數量的細胞(~10E6),故一般不會實際用於臨床治療上。
本研究成功地應用細胞晶片偵測細胞激素活化之人類自然殺手細胞(NK92)對血癌細胞(K562)毒殺能力,僅需約90到150顆(10E1~10E2)人類自然殺手細胞與血癌細胞以效應細胞對目標細胞比例(Effector to target cell ratio,E:T) 2:1混和,於晶片中持續供應含有不同介白素配方、濃度的細胞培養液來活化人類自然殺手細胞,並透過即時光學觀測系統長時間觀察細胞反應與介白素活化之人類自然殺手細胞對血癌細胞毒殺率。實驗結果顯示細胞於晶片中培養18小時期間存活率在91%以上。結合介白素-2與介白素-12(IL-2+L-12)活化人類自然殺手細胞對血癌細胞之毒殺率明顯高過於單獨使用介白素-2活化,且兩者之細胞毒殺率差異將在6小時後逐漸變大。隨著介白素-12濃度增加自然殺手細胞對血癌細胞毒殺率會隨之提升,最經濟的介白素-12濃度為10 ng/ml,其18小時後細胞毒殺率平均為78.4%,此外細胞晶片亦可用於分析不同效應細胞對目標細胞比例下人類自然殺手細胞對血癌細胞之毒殺率。本研究之細胞晶片毒殺率分析結果與流式細胞儀分析結果相近,並具有實驗之可重現性。
相較於流式細胞儀毒殺率分析法,本研究之細胞晶片毒殺率分析法,其實驗設備與晶片製造成本低,僅需少量細胞樣本與試劑在晶片上長時間培養活化細胞同時分析細胞毒殺率,大幅降低實驗成本與實驗樣本試劑消耗量,更增加了實驗操作之便利性,可應用於篩選不同來源自然殺手細胞活性進而即時觀察細胞在體外培養期間受不同配方、濃度細胞激素活化的狀況,並選用細胞毒殺活性較佳的自然殺手細胞來治療血癌。
zh_TW
dc.description.abstractAccording to the statistical report reviewed by the International Agency for Research on Cancer, leukemia was responsible for 9.9% of all the numbers of cancer patients in the United States in year 2008. In recent years, quite a few clinical cases of people with leukemia been cured by natural killer (NK) cell transplantation had been observed. This therapeutic approach has the potential to be a promising new treatment for leukemia. Scientific investigations indicate a positive correlation in between the cytotoxic activity of NK cells and the remission in leukemia. In consequences, the selection of appropriate NK cells from donors or patients then activated by cytokines in vitro will be the key for the cure of leukemia. However, a great amount of NK cells (~106 cells) will be required in order to conduct such cytotoxic assay in flow cytometry, which may be regarded as impractical for the general clinic usages.
This study has successfully demonstrated the application of the cell-based microdevice for the cytotoxic analysis of cytokines activated NK cells (NK92) against leukemic cells (K562). By using this biochip, it only requires around 90 to 150 (10E1~10E2) cells premixed at an E: T ratio of 2: 1 to conduct the cytotoxic assay. Also, the cytotoxic ability of NK cells can be activated by continuous supplying of culture medium with different concentrations or combinations of cytokines. Meanwhile, the long term cellular interaction and the cytotoxicity analysis of cytokines activated NK cells against K562 cells can be investigated via a real-time monitoring microscope system. The experimental results indicated that the viability of cells cultured on the biochip were more than 91%. The cytotoxicity of IL-2+IL-12 activated NK cells against K562 cells was significantly higher than the activation using IL-2 only. Furthermore the cytotoxicity difference increased with time after 6 hours. As the IL-12 concentration increased the cytotoxicity was enhanced accordingly. The most economical IL-12 concentration to activate NK cells was 10ng/ml, with the average cytotoxicity of 78.4%. Moreover, the cytotoxicity at different E: T ratios could be analyzed on the biochip. The cytotoxicity analyzed from the cell-based biochip was similar to the results in flow cytometry and the experimental data were reproducible.
In contrasting with the flow cytometry assay, our cell-based microdevice requires small amount of cells (10E1~10E2) with minor quantity of experimental reagents to investigate long term cytotoxic ability of cytokines activated natural killer cells against leukemic cells. Through the use of cell-based microdevice combined with real-time microscope system, the experimental instruments and production costs are lowered. In sum, the microdevice in this study not only reduces the cost of cytotoxic assay but also increases the convenience of experimental manipulation. It can be apply in the NK cell therapy of leukemia for the activity selection of NK cells from different donors activated by different concentrations or combinations of cytokines.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:33:50Z (GMT). No. of bitstreams: 1
ntu-101-R99543053-1.pdf: 3358761 bytes, checksum: f8dafe6d57241b17e2ebb2d9b236815a (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents謝誌 I
中文摘要 II
Abstract IV
目錄 VI
圖目錄 VIII
第一章 緒論 1
1-1 前言 1
1-2 研究動機 6
1-3 文獻回顧 9
1-3.1 自然殺手細胞療法 9
1-3.2 自然殺手細胞特性與毒殺機制 13
1-3.3 細胞操控技術 17
1-4 研究方法 21
1-5 論文架構 24
第二章 研究原理 25
2-1 細胞操控之流體力學原理 25
2-1.1 流體動力聚焦理論 25
2-1.2 細胞晶片之流場壓力頭損失 27
2-2 細胞生物技術 30
2-2.1 傳統細胞培養 30
2-2.2微尺度細胞培養 34
2-2.3人類自然殺手細胞株(NK92)與血癌細胞株(K562) 35
2-2.4細胞凋亡機制與細胞標定染色 36
2-2.5 細胞毒性分析 40
2-3流式細胞儀原理 41
第三章 研究方法 43
3-1實驗架構 43
3-2細胞晶片設計與製程 44
3-2.1細胞晶片設計 44
3-1.2細胞晶片製程 45
3-2.2細胞晶片封裝 47
3-3細胞培養與實驗樣本製備 49
3-4 實驗操作流程 52
3-4.1細胞捕捉與凋亡細胞染色 52
3-4.2 流式細胞儀分析 54
3-5實驗系統架設 55
第四章 結果與討論 57
4-1細胞晶片之細胞存活率測試 57
4-2細胞晶片與流式細胞儀之細胞毒殺率分析 59
4-3 IL-12活化NK92細胞對K562細胞毒殺能力分析 63
4-4 不同濃度IL-12活化NK92細胞毒殺能力分析 65
4-5 不同效應對目標細胞比例下之細胞毒殺率分析 67
第五章結論與未來展望 69
5-1 結論 69
5-2 未來展望 71
參考文獻 72
dc.language.isozh-TW
dc.subject細胞毒殺率zh_TW
dc.subject細胞激素zh_TW
dc.subject血癌細胞zh_TW
dc.subject自然殺手細胞zh_TW
dc.subject細胞晶片zh_TW
dc.subjectCytokineen
dc.subjectLeukemic cellen
dc.subjectNatural killer cellen
dc.subjectCytotoxicityen
dc.subjectCell-based microdeviceen
dc.title細胞激素提升人類自然殺手細胞毒殺能力在細胞晶片上之分析與研究zh_TW
dc.titleA Study on Cytotoxic Analysis of Cytokine-activated Human Natural Killer Cells by Cell-based Microdeviceen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee翁宗賢(Tzong-Shyan Wung),蔡博宇(Bo-Yu Tsai)
dc.subject.keyword細胞晶片,自然殺手細胞,血癌細胞,細胞激素,細胞毒殺率,zh_TW
dc.subject.keywordCell-based microdevice,Natural killer cell,Leukemic cell,Cytokine,Cytotoxicity,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2012-11-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved