請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63302完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林啟萬(Chii-Wann Lin) | |
| dc.contributor.author | Yang-Hung Liang | en |
| dc.contributor.author | 梁楊鴻 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:33:42Z | - |
| dc.date.available | 2013-01-16 | |
| dc.date.copyright | 2013-01-16 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-11-27 | |
| dc.identifier.citation | REFERENCES
[1]Ariev. Nieuw Amerongen, Antoon J. M. Ligtenberg, And Ennoc. I. Veerman .Implications for Diagnostics in the Biochemistry and Physiology of SalivaAnn. N.Y. Acad. Sci. 2007;1098: 1–6. [2]M. Navazesh and C. M. Christinash . Comparison of Whole Mouth Resting and Stimulated Salivary Measurement ProceduresJ Dent Res 1982: October 1158-1162. [3]Holschneider CH, Berek JS. Ovarian cancer: Epidemiology, biology, and prognostic factors. Semin Surg Oncol 2000;19:3-10. [4]Jill PC, William CK, Steven EK, David M, Jose CF, George AB, Steven MH, Mary H, David MN. The prevention of type 2 diabetes. Nat Clin Pract Endocrinol Metab 2008;4:382-393. [5]Sidransky D. Nucleic acid-based methods for the detection of cancer. Sciences 1997;278:1054-1059. [6]Anker P, Mulcahy H, Chen XQ, Stroun M. Detection of circulating tumor DNA in the blood (plasma/serum) of cancer patients. Cancer Metastasis Rev 1999;18:65-73 [7]Talal N. Sjőgren’s syndrom:historical overview and clinical spectrum of disease. Rheum Dis North Am 1992;18:507–15. [8]Punyadeera C, Dimeski G, Kostner K, Beyerlein P, Cooper-White J One-step homogeneous C-reactive protein assay for saliva. .J Immunol Methods. 2011 Jul 27.479-486 [9]Chatteron RT, Vogelsong KM, Lu YC, Ellman AB, Hudgens GA. Salivary alpha-amylase as a measure of endogenous adrenergic activity. Clin Physiol 1996;16:433–48. [10]Parry JV, Perry KR, Panday S, Mortimer PP Diagnosis of hepatitis A and B by testing saliva. J Med Virol 1989.28:255-260 [11]Thieme T, Piacentini S, Davidson S, Steingart K. Determination of measles, mumps, and rubella immunization status using oral fluid samples. J Am Med Assoc 1994 ; 272:219-221 [12]Cordeiro ML, Turpin CS, McAdams SA. A comparative study of saliva and OraSure oral fluid. Ann NY Acad Sci 1993 ; 694:330-331 [13]Gorodetzky, C. W., Kullberg, M. P. Validity of screening methods for drugs Of abuse in biological fluids. II. Heroin in plasma and saliva. Clinical Pharmacology And Therapeutics. 1974;15, 579-587 [14]Rasmussen, F. Salivary excretion of sulphonamides and barbiturates by Cows and goats. Acta Pharmacologica et Toxicologica.1964 ; 21, 11-19. [15]Gross SJ, Worthy TE, Nerder L, Zimmermann EG, Soares JR, Lomax P. Detection of recent cannabis use by saliva r9- THC radioimmunoassay. J Anal Toxicol 1985 ; 9:1-5. [16]Danhof M, Breimer DD. Therapeutic drug monitoring in saliva. Clin Pharmacokinet 1978; 3:39-57 [17]Hainaut P, Vahakangas K. p53 as a sensor of carcinogenic exposures: mechanisms of p53 protein induction and lessons from p53 gene mutations. Pathol Biol 1997; 45:833-844. [18]Chien DX, Schwartz PE. Saliva and serum CA 125 assays for detecting malignant ovarian tumors. Obstet Gynecol 1994; 75:701- 704. [19]Kurokawa H, Tsuru S, Okada M, Nakamura T, Kajiyama M. Evaluation of tumor markers in patients with squamous cell carcinoma in the oral cavity. Int J Oral Maxillofac Surg 1993;22:35- 8. [20]Streckfus, C.F.; Bigler, L.; Dellinger, T.D.; Dai, X.; Kingman, A.; Thigpen, J.T. The presence of c-erbB-2, and CA 15–3 in saliva and serum among women with breast carcinoma: a preliminary study. Clin. Cancer Res. 2000, 6(6), 2363–70. [21]Streckfus, C.F.; Bigler, L.; Tucci, M.; Thigpen, J.T.; The Presence of CA 15-3, c-erbB-2, EGFR, Cathepsin-D, and p53 in saliva among women with breast carcinoma. Cancer Invest. 2000, 18(2), 101–9. [22]Bigler, L.G.; Streckfus, C.F.; Burns, R.; Copeland, L.; Dai, X.; Kuhn, M.; Martin, P.; Kaelbling, M.; Bigler, S.A. The potential use of saliva to detect recurrence of disease in high-risk breast cancer patients. Oral Path Med. 2002, 31(7), 421–431. [23]Streckfus C, Bigler L. The use of soluble, salivary c-erbB-2 for the detection and post-operative follow-up of breast cancer in women : the results of a fiveyear translational research study. Adv Dent Res 2005;18:17–24. [24]Hinestrosa MC; Dickersin K, Klein P, Mayer M, Noss K, Slamon D, et al. Shaping the future of biomarker research in breast cancer to ensure clinical relevance. Cancer 2007;7:309–15. [25]Streckfus C, Bigler L, Dellinger T, Dai X, Kingman A, Thigpen JT. The presence of soluble c-erbB-2 in saliva and serum among women with breast carcinoma : A preliminary study. Clin Cancer Res 2000;6:2363–70. [26]Agha-Hosseini F, Mirzaii-Dizgah I, Rahimi A. Correlation of serum and salivary CA15-3 levels in patients with breast cancer. Med Oral Cir Bucal 2009;14: e521–e524. [27]Groschl M, Kohler H, Topf H, Rupprecht T, Rauh M. Evaluation of saliva collection devices for the analysis of steroids,peptides and therapeutic drugs. J Pharm Biomed Anal 2008;47:478–86. [28]Atkinson KR, Lo KR, Payne SR, Mitchell JS, Ingram JR. Rapid saliva processing techniques for near real-time analysis of salivary steroids and protein. J. Clin. Lab. Anal. 2008;22:395–402. [29]Juusola J, Ballantyne J. Messenger RNA profiling: a prototype method to supplant conventional methods for body fluid identification. Forensic Sci Int 2003;135(2):85–96. [30]Zubakov D, Kokshoorn M , Kloosterman A, Kayser M. Stable RNA markers for identification of blood and saliva stains revealed from whole genome expression analysis of time-wise degraded samples. International Journal of Legal Medicine. 2007; 22:1435-9 [31]Seugnet L, Boero J, Gottschalk L, Duntley S, Shaw P. Identification of a biomarker for sleep drive in flies and humans. Proc Natl Acad Sci 2006;103(52):19913–8. [32]Park NJ, Zhou X, Yua T, Brigitta M.N., Bernard B Zimmermana, Palaniswamya Y, Wonga D. Characterization of salivary RNA by cDNA library analysis. Arch Oral Biol 2007;52 (1):30–5. [33]Evans, J. J. Progesterone in saliva does not parallel unbound progesterone in plasma. Clinical Chemistry.1986 ; 32, 542-544. [34]Cai, W. M., Zhu, G. Z., Chen, G. Free phenytoin monitoring in serum and saliva of epileptic patients in China. Therapeutic Drug Monitoring. 1993; 15, 31-34. [35]Hart 't, B. J., Wilting, J. Sensitive gas chromatographic method for determining nitrazepam in serum and saliva. Journal of Chromatography Biomedical Applications.1998;424, 403-409 [36]Homola J. Present and future of surface plasmon resonance biosensors. J Anal Bioanal Chem 2003;377:528–39. [37]Fu E, Chinowsky T, Miller JW, Yanger P. SPR Imaging-base salivary diagnostics system for the detection of small molecule analytes. Ann NY Acad Sci 2007;1098:335–44. [38]Haughey SA, Campbell K, Yakes BJ, Prezioso SM, DeGrasse SL, Kawatsu K, Elliott CT. Comparison of biosensor platforms for surface plasmon resonance based detection of paralytic shellfish toxins. Talanta 2011;85:519–26. [39]Rajan SC, Gupta BD. Surface plasmon resonance base fiber-optic sensor for the detection of pesticide. Sensors Actuators B 2007;123:661–6. [40]Stevens RC, Soelberg SD, Near S, Furlong CE. Detection of cortisol in saliva with a flow-filtered, portable surface plasmon resonance biosensor system. Anal Chem 2008;80:6747–51. [41]Miyashita M, Shimada T, Miyagawa H, Akamatsu M. Surface plasmon resonance-based immunoassay for 17ß-estradiol and its application to the measurement of estrogen receptor-binding activity. Anal Bioanal Chem 2005;381:667–73. [42]Chang CC, Chiu NF, Lin DS, Chu-Su Y, Liang YH, Lin CW. High-sensitivity detection of carbohydrate antigen 15-3 using a gold/zinc oxide thin film surface plasmon resonance-based biosensor. Anal Chem 2010;82:1207–12. [43]Chou SF, Hsu WL, Hwang JM, Chen CY. Development of an immunosensor for human ferritin, a nonspecific tumor marker, based on surface plasmon resonance. Biosens. Bioelectron. 2004;19:999–1005. [44]Karlsson R. SPR for molecular interaction analysis: a review of emerging application areas. J Mol Recog 2004;17:151–61. [45]BIAtechnology Handbook,Version AB, Sweden.1998. [46]Henson BT, Wang DT. Collection, Storage, and Processing of saliva samples for downstream molecular application. Oral Biol Meth Mol Biol. 2010;666: 21–30. [47]Helton KL, Nelson KE, Fu E, Yanger P. Conditioning saliva for a use in microfluidic biosensor. Lab Chip 2008;8:1847–51. [48]Babacan S, Pivarnik P, Letcher S, Rand AG. Evalution of antibody immobilization for piezoelectric biosensor application. Biosens Bioelectron 2000;15:615–21. [49]Muñoz E, Vidarte L, Pastor C, Casado M, Vivanco F. A small domain of bacterial protein G inhibits C3 covalent binding to the Fc region of IgG immune complexes. Eur J Immunol 1998;28:2591–7. [50]BIAcore X100 Handbook BR-1008-10 AB. Sweden. 1998. [51]Liao H. Coupled whispering gallery modes in a multilayer-coated microsphere. Opt Lett 2003;28:1970. [52]Wang X, Kong X, Yu Y, Zhang H. A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism. J Phys Chem C 2007;111:3836–41. [53]Mosbacker HL, Strzhemechny YM, White BD, Smith PE, Look DC, Reynolds DC, et al. Role of near-surface states in Ohmic-Schottky conversiion of Au contact to ZnO. J Appl Phys Lett 2005;87:12102–3. [54]Stenberg E, Persson B, Roos H, Urbaniczky C. Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins J Colloid Interface Sci 1991;143:513. [55]Findlay JWA, Dillard RF. Appropriate calibration curve fitting in ligand binding assays. AAPS J. 2007; 9: E260–E267 [56]Schuck P. Reliable determination of binding affinity and kinetics using surface plasmon resonance biosensors. Curr Opin Biotechnol. 1997,8:498-502. [57]Yarmush ML, Patankar DB, Yarmush DM. An analysis of transport resistances in the operation of BIAcore™; implications for kinetic studies of biospecific interactions. Mol Immunol. 1996,33:1203-14. [58]John W. A. Findlay ,Robert F. Dillard. Appropriate calibration curve fitting in ligand binding assays. AAPS J. 2007; 9: E260–E267 [59]Annals of the New York Academy of Science 1993:694 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63302 | - |
| dc.description.abstract | 本論文主要研究目的為以兩種不同的表面電漿子共振法(surface plasmon resonance (SPR)) 來感測唾液中的腫瘤標記分子carbohydrate antigen 15-3 (CA15-3) 。血清中CA15-3的測量可以運用在許多不同類型的癌症,特別是在乳癌方面,常用來輔助診斷乳癌的判定,治療效果的評估,治療後的追蹤等等,一直是乳癌腫瘤標記中的黃金標準(golden standard) ,人體唾液中也被發現含有微量的CA15-3,和血清中濃度有正相關之關係,同時由於唾液能反應人體即時的狀態,可以推測其運用價值可能高於血清。量測唾液中的CA15-3有幾個優點:1. 取得容易.2. 可重覆測試3. 反應患者即時的狀態。但也有幾個困難度:1. 唾液取得若無嚴格限制取得條件,其生理性變異度將可能造成錯誤結果.2. 唾液中的CA15-3濃度比血清低10倍以上,偵測不易3. 市面上尚無唾液CA15-3標準品等相關商品,必需自行製造。4. 唾液的分析前處理研究尚未清楚。本研究針對上述困難點試圖提出可行之方法 ,希望對未來唾液偵測有所貢獻。研究中以透析置換方式成功製造唾液CA15-3標準品, 並使用實驗室開發的高靈敏金/氧化鋅奈米薄膜之表面電漿共振晶片系統,同時比較已商品化之Biacore公司出產之X-100型表面電漿共振系統,來評估唾液CA15-3的偵測結果。研究結果發現,以高靈敏金/氧化鋅奈米薄膜之表面電漿共振晶片系統偵測唾液CA15-3,其線性範圍在2.5–20 U/mL (乳癌病人判定值約為4 U/mL).,Biacore公司出產之X-100型表面電漿共振系統則40–300 U/mL.。依過去Streckfus實驗室研究資料顯示, 以本實驗室開發高靈敏金/氧化鋅奈米薄膜之表面電漿共振晶片系統來偵測唾液CA15-3, 其線性範圍已可涵蓋並分辨病人乳癌之分期。在動力學的資料方面,Biacore公司出產之X-100型表面電漿共振系統KD值為381 U/mL而金/氧化鋅奈米薄膜之表面電漿共振晶片系統則為17 U/mL; 這明顯差異可能來自於Biacore公司所使用的晶片含dextran膠所造成的立體屏障和阻力所造成。本研究發現以高靈敏金/氧化鋅奈米薄膜之表面電漿共振晶片系統可以成功地偵測低濃度之唾液CA15-3,不需進行額外濃縮程序。期盼未來這套系統能再精研, 可在居家或臨床快速獲取測試結果。同時本研究也提供唾液偵測的基礎資訊,希望對有興趣唾液偵測的研究人員有所裨益和啟發。 | zh_TW |
| dc.description.abstract | The main purpose in this dissertation is to measure the presence of the tumor marker carbohydrate antigen 15-3 (CA15-3) in human saliva using two different surface plasmon resonance (SPR) systems. To compare the sensitivity of an SPR biosensor based on thin-film Au/ZnO and the Biacore SPR system. CA15-3 is a tumor marker in human cancers, especially for the diagnosis of breast cancer recurrence and monitoring. It is used as a reference marker, or “diagnostic gold standard,” to which other breast cancer markers are compared. Low level of CA15-3 can be detected in saliva, and correlated with serum concentration closely. There are several advantages to detect CA15-3 in saliva such as: 1.Easy collection. 2. Repeatable without pain. 3. Reflect real time status of body status. There are also several difficulties still need to be overcome such as: 1.The variance of saliva detection in different collection methods. 2. The level of CA15-3 in saliva is up to 10-fold lower than that in serum. 3. To our knowledge, there are no commercially available salivary CA15-3 standards or controls to evaluate the performance of this detection method. In this study, we have to prepare varying concentrations of salivary CA15-3 samples at physiologically relevant concentrations.
4. It is unclear about processing variance for saliva CA15-3 detection. In this study, we prepared CA15-3 samples in saliva by matrix replacement method and analyzed intensity responses to the samples at various concentrations of CA15-3.in saliva by the Biacore SPR system and Au/ZnO thin film SPR system. The linear detection range with the SPR system based on thin-film Au/ZnO was 2.5–20 U/mL (the cut-off point in cancer patients is around 4 U/mL). The linear range with the Biacore SPR system was 40–300 U/mL. Previous reports from the Streckfus Lab have shown that the saliva CA15-3 concentration for healthy controls is about 3.19 ± 0.52 U/mL; for benign breast tumors, about 7.23 ± 1.58 U/mL; and for malignant breast cancer tumors, about 10.90 ± 3.44 U/mL. The Au/ZnO thin film SPR sensor system used in this study showed a linear response to CA15-3 across this entire concentration range. The KD values for the Biacore and our Au/ZnO chip were calculated to be 381 and 17 U/mL, respectively. Obviously, the KD of the Biacore system was much higher than that of our Au/ZnO SPR chip. This difference is mainly due to the limitations of the dextran matrix to present the probe in a homogeneous conformation with its target. CM5 matrix has intrinsic limitations in terms of steric hindrance, heterogeneities in the density and conformation of probes inside the gel, and kinetic resistance due to improper molecular orientation and mass transfer that cause an apparent decrease in the reaction-rate constant. Thus, this newly developed thin film SPR system is expected to be quite useful in the clinical diagnosis of cancer progression. These results show that thin-film Au/ZnO-based SPR systems have higher sensitivity and can be used for measuring the levels of CA15-3 in human saliva without concentrating the samples . | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:33:42Z (GMT). No. of bitstreams: 1 ntu-101-D94548002-1.pdf: 2265103 bytes, checksum: e6b895aad6a638cdd0b6ef409638eb98 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 目錄
口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iv LIST OF FIGURES…………………………………………………………………...viiii LIST OFTABLES……………………………………………………………………….xi Chapter 1 Introduction 1 1.1 Saliva……………………………………………………………………………….. 2 1.2 The Control of Saliva Secretion……………………………………………………3 1.3 Collection of saliva………………………………………………………………….4 1.4 Collection methods of saliva……………………………………………………….5 1.5 Stability of Saliva…………………………………………………………………...6 1.6 Diagnostic Applications of Saliva………………………………………………….7 1.7 Carbohydrate antigen 15.3 (CA15-3)…………………………………………….13 1.8.Detection methods in saliva……………………………………………………....15 Chapter 2 Experimental section………………………………………………….21 2.1 Materials…………………………………………………………………………...22 2.2 Human saliva CA15-3 preparation………………………………………………23 2.3 Saliva CA15-3 processing before SPR analysis………………………………….27 2.4 Instrumentation…………………………………………………………………...30 2.5 Immobilization conditions on a CM5 sensor chip………………………………33 2.6 Fabrication of Au/ZnO chip substrates………………………………………….42 2.7 Surface functionalization of the Au/ZnO film…………………………………..43 2.8 SPR data analysis…………………………………………………………………46 Chapter 3. Results and discussion…………………………………………………...48 3.1 Human saliva CA15-3 preparation………………………………………………49 3.2 Detection of saliva CA15-3 by the Biacore SPR system………………………...56 3.3 Detection of saliva CA15-3 by Au/ZnO thin film SPR………………………….61 Chapter4.Conclusion………………………………………………………………….68 Chapter 5 Outlook…………………………………………………………………….71 ABBREVIATIONS……………………………………………………………………73 REFERENCES………………………………………………………………………..74 Appendix……………………………………………………………………………….82 Publications list(2005-2012)…………………………………………………………..84 | |
| dc.language.iso | en | |
| dc.subject | 唾液偵測 | zh_TW |
| dc.subject | 表面電漿共振法 | zh_TW |
| dc.subject | 腫瘤標記分子CA15-3 | zh_TW |
| dc.subject | 高靈敏金/氧化鋅奈米薄膜表面電漿共振系統 | zh_TW |
| dc.subject | Biacore X-100型表面電漿共振系統 | zh_TW |
| dc.subject | saliva carbohydrate antigen 15-3 | en |
| dc.subject | surface plasmon resonance | en |
| dc.subject | gold/zinc oxide | en |
| dc.subject | Biacore SPR | en |
| dc.title | 以表面電漿子共振法偵測唾液中腫瘤標記 | zh_TW |
| dc.title | Detection of Tumor Marker in Human Saliva by
Surface Plasmon Resonance Methods | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王安邦,林裕峰,林松洲,黃義侑 | |
| dc.subject.keyword | 表面電漿共振法,唾液偵測,腫瘤標記分子CA15-3,高靈敏金/氧化鋅奈米薄膜表面電漿共振系統,Biacore X-100型表面電漿共振系統, | zh_TW |
| dc.subject.keyword | saliva carbohydrate antigen 15-3,surface plasmon resonance,gold/zinc oxide,Biacore SPR, | en |
| dc.relation.page | 86 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-11-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
