請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63301完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳章甫(Chang-fu Wu) | |
| dc.contributor.author | Tzong-gang Wu | en |
| dc.contributor.author | 吳宗鋼 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:33:39Z | - |
| dc.date.available | 2018-03-04 | |
| dc.date.copyright | 2013-03-04 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-11-27 | |
| dc.identifier.citation | ARCADIS G&M Inc., 2007. Evaluation of Fugitive Emissions Using Ground-Based Optical Remote Sensing Technology.
ARCADIS U.S. Inc., 2007. Measurement of Total Site Mercury Emissions for a Chlor-alkali Plant Using Open-Path UV-DOAS. Babilotte, A., Lagier, T., Fiani, E., Taramini, V., 2010. Fugitive Methane Emissions from Landfills: Field Comparison of Five Methods on a French Landfill. Journal of Environmental Engineering 136, 777-784. Chambers, A.K., Strosher, M., Wootton, T., Moncrieff, J., McCready, P., 2008. Direct Measurement of Fugitive Emissions of Hydrocarbons from a Refinery. Journal of the Air & Waste Management Association 58, 1047-1056. Chen, C.-L., Fang, H.Y., Shu, C.-M., 2005. Source location and characterization of volatile organic compound emissions at a petrochemical plant in Kaohsiung, Taiwan. J. Air & Waste Manage. Assoc. 55, 1487 - 1497. Chen, C.-L., Shu, C.-M., Fang, H.-Y., 2006. Location and Characterization of VOC Emissions at a Petrochemical Plant in Taiwan. Environmental Forensics 7, 159-167. Council of Labor Affairs Executive Yuan Taiwan (TW CLA), 2010. 勞工作業環境空氣中有害物容許濃度標準(Occupational Safety and Health Standards). Cunningham, D., 1995. Estimation of VOC emissions. Journal of Cleaner Production 3, 225-228. Dhingra, R., Christensen, E.R., Liu, Y., Zhong, B., Wu, C.-F., Yost, M.G., Remais, J.V., 2011. Greenhouse Gas Emission Reductions from Domestic Anaerobic Digesters Linked with Sustainable Sanitation in Rural China. Environmental Science & Technology 45, 2345-2352. Eben D. Thoma, Cary Secrest, Eric S. Hall, Donna Lee Jones, Richard C. Shores, Mark Modrak, Ram Hashmonay, Norwood, P., 2009. Measurement of total site mercury emissions from a chlor-alkali plant using ultraviolet differential optical absorption spectroscopy and cell room roof-vent monitoring. Atmospheric Environment 43 753-757. Eben D. Thoma, Richard C. Shores, Edgar L. Thompson, D. Bruce Harris, Susan A. Thorneloe, Ravi M. Varma, Ram A. Hashmonay, Mark T. Modrak, David F. Natschke, Gamble, H.A., 2005. Open-Path Tunable Diode Laser Absorption Spectroscopy for Acquisition of Fugitive Emission Flux Data. Journal of the Air & Waste Management Association 55, 658–668. Goldsmith, C.D., Chanton, J., Abichou, T., Swan, N., Green, R., Hater, G., 2012. Methane emissions from 20 landfills across the United States using vertical radial plume mapping. Journal of the Air & Waste Management Association 62, 183-197. Hashmonay, R.A., Yost, M.G., 1999. Innovative Approach for Estimating Fugitive Gaseous Fluxes Using Computed Tomography and Remote Optical Sensing Techniques. Journal of the Air & Waste Management Association 49, 966-972. Hassim, M.H., Perez, A.L., Hurme, M., 2010. Estimation of chemical concentration due to fugitive emissions during chemical process design. Process Safety and Environmental Protection 88, 173-184. Lin, T.-Y., Sree, U., Tseng, S.-H., Chiu, K.H., Wu, C.-H., Lo, J.-G., 2004. Volatile organic compound concentrations in ambient air of Kaohsiung petroleum refinery in Taiwan. Atmospheric Environment 38, 4111-4122. Lori A. Todd, Mallika Ramanathan, Kathleen Mottus, Robert Katz, Ashley Dodson, Mihlan, G., 2001. Measuring chemical emissions using open-path Fourier transform infrared (OP-FTIR) spectroscopy and computer-assisted tomography. Atmospheric Environment 35, 1937-1947. Ram A. Hashmonay, Natschke, D., Wagoner, K., Harris, D., Thompson, E., Yost, M.G., 2001. Field evaluation of a method for estimating gaseous fluxes from area sources using open path Fourier transform infrared. ENVIRONMENTAL SCIENCE & TECHNOLOGY 35, 2309-2313 Ram A. Hashmonay, Ravi M. Varma, Mark T. Modrak, Robert H. Kagann, Robin R. Segall, Sullivan, P.D., 2008. Radial plume mapping - A US EPA test method for area and fugitive source emission monitoring using optical remote sensing Advanced Environmental Monitoring, 21-36. Ro, K., Johnson, M., Varma, R., Hashmonay, R., Hunt, P., 2009. Measurement of greenhouse gas emissions from agricultural sites using open-path optical remote sensing method. Journal of Environmental Science and Health, Part A 44, 1011-1018. Robinson, R., Gardiner, T., Innocenti, F., Woods, P., Coleman, M., 2011. Infrared differential absorption Lidar (DIAL) measurements of hydrocarbon emissions. Journal of Environmental Monitoring 13, 2213. Stephen D. Piccot, Sushma S. Masemore, Eric S. Ringler, Sridhar Srinivasan, David A. Kirchgessner, William F. Herget, 1994. Validation of a Method for Estimating Pollution Emission Rates From Area Sources Using Open-Path FTIR Spectros- copy and Dispersion Modeling Techniques. Thoma, E.D., Green, R.B., Hater, G.R., Goldsmith, C.D., Swan, N.D., Chase, M.J., Hashmonay, R.A., 2010. Development of EPA OTM 10 for Landfill Applications. Journal of Environmental Engineering 136, 769-776. U.S. Environmental Protection Agency, 1995. Emissions Factors & AP 42, Compilation of Air Pollutant Emission Factors. U.S. Environmental Protection Agency,. U.S. Environmental Protection Agency, 2006. Optical Remote Sensing for Emission Characterization from Non-Point Sources. U.S. Environmental Protection Agency Test Method (OTM-10). U.S. Environmental Protection Agency, October 5, 2006. TANKS Emissions Estimation Software, Version 4.09D. U.S. Occupational Safety & Health Administration, 2006a. Occupational Safety and Health Standards, Toxic and Hazardous Substances (TABLE Z-2). U.S. Occupational Safety & Health Administration, 2006b. Occupational Safety and Health Standards, Toxic and Hazardous Substances (TABLE Z-1 Limits for Air Contaminants). WebMET.com, 2002. 6.2.2 Vector Computations ( http://www.webmet.com/met_monitoring/622.html ), METEOROLOGICAL DATA PROCESSING. WebMET.com. Yu-Syuan Wu, 2009. Applying Vertical Radial Plume Mapping to Estimate Emission Rate in Petro Chemical Industry, Graduate Institute of Occupational Medicine and Industrial Hygiene. National Taiwan University, Taipei. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63301 | - |
| dc.description.abstract | 現行石化工業廠區的揮發性有機物(VOC)的排放量推估方法大部分是根據標準的排放係數(Emission factor, AP-42 method)所計算出。此方法由美國環保署公佈,其中的排放系數多由許多假設與過去的經驗及根據美國產業制定與建立。相對而言,垂直煙流分布(VRPM)方法運用光學遙測儀器,於下風處進行汙染物的濃度量測,同時結合風向與風速資料,計算推估上風處汙染源單位時間內的排放量。
在本研究中,挑選一石化廠區之儲槽區,透過架設開徑式紅外線傅立葉轉換儀與其所需之多面反射鏡,於下風處構成五道光徑之垂直煙流分布平面(VRPM plane),量測通過此平面之揮發性有機物煙流(plume)並計算排放通量。此VRPM平面,其長約為190公尺,高約為30公尺。整體量測期間為14天。利用不同方法所得之氣象資料、不同大小之垂直煙流分布平面之網格面積、以及校正方案推算目標汙染物之排放量。另於監測期間,施放兩天之追蹤氣體SF6以驗證此方法的準確度。追蹤氣體實際施放速率為 0.4178 g/s,所推估之排放速率介於0.30至0.77 g/s。本研究面臨之主要限制為:當風向不理想時,排放量推估需要校正,此校正受限於風向範圍的選取;監測期間僅約為二星期的時間,結果難以代表長期之排放量;雖上風處無槽區與產品製程區,但本研究缺少上風處量測資料故難以完全排除上風處污染源之影響程度。 | zh_TW |
| dc.description.abstract | Conventionally the emission rate of volatile organic compounds (VOCs) is estimated by applying standard emission factors which are based on the AP-42 method of the US EPA. On the contrary, the Vertical Radial Pluming Mapping (VRPM) technique is a method designed for modeling emissions flux by directly monitoring the VOCs plumes crossing a vertical plane at a downwind site.
In this thesis, a vertical plane is constructed with multiple retroreflectors and an optical remote sensing (ORS) instrument at a tank farm in a petroleum plant. The VRPM plane was approximately 190m (width) x 30m (height) at the downwind site. The total experimental period is 14 days. We aim to evaluate the effects on model performance from using different wind vector calculations, two grid sizes of the VRPM plane, and various scenarios of adjusting the emission rates. During the monitoring period, the tracer gas of SF6 was released for two days to verify the accuracy of the estimated emission rate. The true release rate of SF6 was 0.4178 g/s and the VRPM estimates ranged between 0.30至0.77 g/s. The major limitations in this thesis were as follows: (1) When the wind did not come from a proper direction, the estimate need to be adjusted. However, this adjustment was limited by the selection of applicable wind direction range; (2) The data collected over the 2-week monitoring period may not represent the long term conditions; and (3) No monitoring data were collected at the upwind site. Thus the impacts from upwind sources could not be ruled out completely. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:33:39Z (GMT). No. of bitstreams: 1 ntu-101-R99844012-1.pdf: 3926768 bytes, checksum: e090daafce958cbab2c77a621a5a0f2a (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Acknowledgement I
Chinese Abstract (中文摘要) III Abstract IV Contents V Figure Contents VII Table Contents X Chapter 1 Introduction 1 1.1 Background 1 1.2 Open-Path Fourier Transformed Infrared Spectrometer (OP-FTIR) 3 1.3 Vertical Radial Plume Mapping (VRPM) technique 4 1.4 Objective 7 Chapter 2 Methods and Materials 11 2.1 Data Collection and Analysis 11 2.1.1 Configuration of VRPM Plane 11 2.1.2 Concentration Measurements 12 2.1.3 Meteorological measurements 14 2.2 Tracer Gas Releasing Experiment 16 2.3 Reconstruction of Plume 16 2.4 Flux Calculation 18 2.5 Acceptable Data Criteria 19 2.5.1 Basic Criteria: 20 2.5.2 Sigma filter, Number of sigma (NOS) 22 2.6 Adjusted Emission Rate 24 2.7 Scenarios of VRPM Estimates 25 Chapter 3 Results and Discussion 40 3.1 Meteorological Data 40 3.2 Measured Concentration 41 3.3 VRPM Emission Estimates 43 3.3.1 Tracer Gas, SF6 43 3.3.2 Target Compounds 47 Chapter 4 Conclusion and Recommendation 88 4.1 Conclusion 88 4.2 Limitation and Recommendation 89 References 91 Appendix I: Description of concentration measurements 94 Appendix II: Wind rose diagrams of all compounds 96 Appendix III: Paired t-test results of different input wind speed vector and resolutions 102 Appendix IV: SF6 Estimates of different resolutions sensitivity analysis 108 Appendix V: Scatter plots in different scenarios 109 Appendix VI: Paired t-test results of different beam configurations 110 Appendix VII Two-sample t-test results of different scenarios 111 Appendix VIII Effect of Criterion: Plume lower boundary ('mz - σz' ) in vertical domain ≥ height of FTIR 117 Appendix IX: Paired t-test results of different beam configurations: CCF2D 118 Appendix X: Data results filtered by acceptance criteria 119 | |
| dc.language.iso | en | |
| dc.subject | 排放量 | zh_TW |
| dc.subject | 揮發性有機物 | zh_TW |
| dc.subject | 空氣汙染 | zh_TW |
| dc.subject | Emission rate | en |
| dc.subject | Air pollution | en |
| dc.subject | Volatile organic compound | en |
| dc.subject | VOC | en |
| dc.title | 運用垂直煙流分布技術推估石化廠之儲槽揮發性有機物逸散排放量 | zh_TW |
| dc.title | Applying the Vertical Radial Plume Mapping (VRPM) Technique for Estimating the Emission Rate of Volatile Organic Compounds (VOCs) in the Tank Farms | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉希平,吳焜裕 | |
| dc.subject.keyword | 排放量,空氣汙染,揮發性有機物, | zh_TW |
| dc.subject.keyword | Emission rate,Air pollution,Volatile organic compound,VOC, | en |
| dc.relation.page | 121 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-11-27 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境衛生研究所 | zh_TW |
| 顯示於系所單位: | 環境衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
