Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63286
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林晃巖
dc.contributor.authorChia-Hsin Linen
dc.contributor.author林家興zh_TW
dc.date.accessioned2021-06-16T16:32:47Z-
dc.date.available2014-11-26
dc.date.copyright2012-12-11
dc.date.issued2012
dc.date.submitted2012-12-03
dc.identifier.citation參考文獻
[1] M. S. B. E. H. stupp, Projection Displays: John Wiley & Sons Ltd, 2008
[2] 李. 劉旭, 現代投影顯示技術: 杭州: 浙江大學出版社, 2009.
[3] L. Wang, T. Tschudi, T. Halldórsson, and P. R. Pétursson, 'Speckle reduction in laser projection systems by diffractive optical elements,' Applied optics, vol. 37, pp. 1770-1775, 1998.
[4] L. Wang, T. Tschudi, M. Boeddinghaus, A. Elbert, T. Halldórsson, and P. Pétursson, 'Speckle reduction in laser projections with ultrasonic waves,' Optical Engineering, vol. 39, p. 1659, 2000.
[5] Z. Liao, T. Xing, G. Cheng, and W. Lin, 'Speckle reduction in laser projection display by modulating illumination light,' 2007, p. 662229.
[6] E. Buckley, '70.2: Invited Paper: Holographic Laser Projection Technology,' 2008, pp. 1074-1079.
[7] E. Buckley, D. Stindt, and R. Isele, '14.4: Novel human-machine interface (HMI) design enabled by holographic laser projection,' 2009, pp. 172-177.
[8] T. K. K. S. Hiroaki Satoh, Yuhei Kuratomi, Baku Katagiri, and Y. S. a. T. Uchida, 'On the Effect of Small Moving Diffusers to the Speckle Reduction in Laser Projection Displays,' IDW, 2009.
[9] H. S. K. S. Tohru Kawakami, Yuhei Kuratomi, and Y. S. Baku Katagiri, and Tatsuo Uchida, 'On the Optical Configurations of Speckle Killers for Laser Projection Displays,' IDW, 2009.
[10] M. Sun and Z. Lu, 'Speckle suppression with a rotating light pipe,' Optical Engineering, vol. 49, p. 024202, 2010.
[11] D. Dudley, W. Duncan, and J. Slaughter, 'Emerging digital micromirror device (DMD) applications,' 2003, p. 1.
[12] 'http://www.hometheatermag.com/frontprojectors/704dlp/.'
[13] 'http://www.ti.com.tw/articles/detail.asp?sno=18.'
[14] P. M. Alt, 'Single crystal silicon for high resolution displays,' 1997.
[15] 'http://blog.svconline.com/briefingroom/2008/05/20/canon-announces-development-of-own-lcos-reflective-lcd-panel/.'
[16] J. I. Trisnadi, 'Speckle contrast reduction in laser projection displays,' 2002, pp. 131-137.
[17] J. F. Goldenberg, Q. Huang, and J. A. Shimizu, 'Rear projection screens for light-valve projection systems,' 1997, p. 49.
[18] V. Yurlov, A. Lapchuk, S. Yun, J. Song, and H. Yang, 'Speckle suppression in scanning laser display,' Appl. Opt., vol. 47, pp. 179-187, 2008.
[19] V. Yurlov, A. Lapchuk, S. Yun, J. Song, I. Yeo, H. Yang, and S. An, 'Speckle suppression in scanning laser displays: aberration and defocusing of the projection system,' Appl. Opt., vol. 48, pp. 80-90, 2009.
[20] D. M. Bloom, 'The grating light valve: revolutionizing display technology,' 1997, pp. 165-171.
[21] 'http://www.siliconlight.com/htmlpgs/homeset/homeframeset.html.'
[22] W. Huang, P-171: Speckle Simulation in Laser Scanning Display System vol. 40: SID Symposium Digest of Technical Papers, 2009.
[23] P. Green Jr, 'Radar measurements of target scattering properties,' Radar astronomy, pp. 1-78, 1968.
[24] E. N. Leith, 'Quasi-holographic techniques in the microwave region,' Proceedings of the IEEE, vol. 59, pp. 1305-1318, 1971.
[25] E. G. Williams, Fourier acoustics: sound radiation and nearfield acoustical holography: Academic Press, 1999.
[26] Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, and K. Katayama, '531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar (2021) Free-Standing GaN Substrates,' Applied physics express, vol. 2, p. 82101, 2009.
[27] H. Ohta, S. P. DenBaars, and S. Nakamura, 'Future of group-III nitride semiconductor green laser diodes [Invited],' JOSA B, vol. 27, pp. B45-B49, 2010.
[28] B. Oliver, 'Sparkling spots and random diffraction,' Proceedings of the IEEE, vol. 51, pp. 220-221, 1963.
[29] J. W. Goodman, 'Some fundamental properties of speckle,' J. Opt. Soc. Am., vol. 66, pp. 1145-1150, 1976.
[30] J. W. Goodman, Speckle phenomena in optics: theory and applications: Roberts & Company, 2007.
[31] E. N. Leith and J. Upatnieks, 'Wavefront reconstruction with diffused illumination and three-dimensional objects,' Josa, vol. 54, pp. 1295-1301, 1964.
[32] P. S. Considine, 'Effects of coherence on imaging systems,' Josa, vol. 56, pp. 1001-1007, 1966.
[33] S. Lowenthal and D. Joyeux, 'Speckle removal by a slowly moving diffuser associated with a motionless diffuser,' Josa, vol. 61, pp. 847-851, 1971.
[34] N. George and A. Jain, 'Speckle reduction using multiple tones of illumination,' Applied optics, vol. 12, pp. 1202-1212, 1973.
[35] K. Kasazumi, Y. Kitaoka, K. Mizuuchi, and K. Yamamoto, 'A practical laser projector with new illumination optics for reduction of speckle noise,' Japanese journal of applied physics, vol. 43, p. 5904, 2004.
[36] M. N. Akram, V. Kartashov, and Z. Tong, 'Speckle reduction in line-scan laser projectors using binary phase codes,' Optics letters, vol. 35, pp. 444-446, 2010.
[37] S. An, A. Lapchuk, V. Yurlov, J. Song, H. W. Park, J. Jang, W. Shin, S. Kargapoltsev, and S. K. Yun, 'Speckle suppression in laser display using several partially coherent beams,' Opt. Express, vol. 17, pp. 92-103, 2009.
[38] J. I. Trisnadi, 'Hadamard speckle contrast reduction,' Optics letters, vol. 29, pp. 11-13, 2004.
[39] I. Peled, M. Zenou, B. Greenberg, and Z. Kotler, 'MEMS based speckle reduction obtain by angle diversity for fast imaging,' 2009, pp. 1-2.
[40] W. F. Hsu, Y. W. Chen, and Y. H. Su, 'Implementation of phase-shift patterns using a holographic projection system with phase-only diffractive optical elements,' Applied optics, vol. 50, pp. 3646-3652, 2011.
[41] W. F. Hsu and C. F. Yeh, 'Speckle Suppression in Holographic Projection Displays by Temporal Integration of Diffractive Optical Elements,' presented at Digital Holography and Three-Dimensional Imaging, 2011.
[42] W. F. Hsu and C. F. Yeh, 'Speckle suppression in holographic projection displays using temporal integration of speckle images from diffractive optical elements,' Applied optics, vol. 50, pp. H50-H55, 2011.
[43] W. F. Hsu and I. Chu, 'Speckle suppression by integrated sum of fully developed negatively correlated patterns in coherent imaging,' Progress In Electromagnetics Research, vol. 34, pp. 1-13, 2011.
[44] Hoang-Yan Lin, Yan-Shuo Chang, Wei-Feng Hsu, 'Speckle Contrast Analysis at Different Locations in the Image Produced by a Laser Projection System,' presented at the Society for Information Display International Symposium, Seminar, and Exhibition, 2012.
[45] Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, 'Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,' JOSA A, vol. 27, pp. 1812-1817, 2010.
[46] J. Goodman, 'Statistic Optics,' ed: New York: Wiley, 1985.
[47] S. Sinzinger and J. Jahns, Front Matter, in Microoptics, 2nd Edition ed.: Wiley Online Library, 2005.
[48] J. W. Goodman, Statistical properties of laser speckle patterns: Topics in Applied Physics, 1975.
[49] J. W. Goodman, Introduction to Fourier optics vol. 2: McGraw-hill New York, 1968.
[50] J. Turunen and F. Wyrowski, 'Diffractive optics for industrial and commercial applications,' Diffractive Optics for Industrial and Commercial Applications, by Jari Turunen (Editor), Frank Wyrowski (Editor), pp. 440. ISBN 3-527-40100-8. Wiley-VCH, March 1998., vol. 1, 1998.
[51] F. Wyrowski and O. Bryngdahl, 'Iterative Fourier-transform algorithm applied to computer holography,' J. Opt. Soc. Am. A, vol. 5, pp. 1058-1065, 1988.
[52] F. Wyrowski, 'Iterative quantization of digital amplitude holograms,' Appl. Opt., vol. 28, pp. 3864-3870, 1989.
[53] A. Au, C. S. Wu, S. T. Wu, and U. Efron, 'Ternary phase and amplitude modulations using a twisted nematic liquid crystal spatial light modulator,' Applied optics, vol. 34, pp. 281-284, 1995.
[54] B. E. A. Saleh, M. C. Teich, and B. R. Masters, 'Fundamentals of Photonics,' Journal of Biomedical Optics, vol. 13, p. 049901, 2008.
[55] P. Yeh and C. Gu, Optics of liquid crystal displays vol. 67: John Wiley & Sons Inc, 2009.
[56] 'http://www.holoeye.com/.'
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63286-
dc.description.abstract中文摘要
  近年來,隨著雷射開始被應用在顯示光源上,「光斑」此一嚴重影響影像品質之現象已逐漸被探討與重視。當高度同調性的輻射源,如雷射光及超聲波,被表面粗糙度為波長數量級的表面所散射或反射時,一個高對比度、細緻的光斑圖案將被觀察者或偵測器所觀測接收。由於光斑現象在影像處理應用上的種種不利因素,多年來世界上許多研究團隊已致力於降低此種強度噪音現象。在國立台灣大學顯示光學實驗室之研究中,我們已針對光斑問題提出了一個雷射光學投影系統的新穎模組,此模組乃基於一種純相位繞射光學元件 (DOE) 設計,藉由調制液晶空間光調變器 (SLM) ,可同時達成雷射光束整形與降低光斑對比。
  在本論文中,我們對於光斑現象提出了一個全新的看法,即我們將其光場干涉之本質視為其與光場相位分佈範圍有相關性,並以此概念探討影像品質與透過此觀點更進一步降低光斑現象之可能性。我們對投影顯示科技及光斑現象在雷射投影系統上之影響作全面性的歷史回顧,我們闡述光斑現象之基本性質及其統計之數學表示。我們以統計學方法來推導光斑對比值與相位分佈範圍的函數關係,並在理論證明上發現隨著影像相位分佈範圍降低會得到較低的光斑對比值。根據理論推演的結果,我們設計出兩種依據遞迴傅立葉演算法 (IFTA) 來達到低光斑對比值之實驗架構方法:第一種架構為利用特殊設計的IFTA直接在繞射面上同時產生雷射光束整形與光場相位分佈範圍限制之方法;而另一種架構則是先利用IFTA產生均勻的方形光場分佈,再透過一個純相位元件來達到光場相位分佈範圍限制。我們設計數值模擬實驗模型來分析上述兩種根據IFTA所設計之實驗架構的影像品質。我們試圖以實際的光學系統來驗證數值實驗的結果。因此,我們選擇上述第一種方法以實驗室現有之系統實踐,並比較實際結果與模擬趨勢的差異。我們探討將模擬實驗結果實現到實際光學系統之可行性。
zh_TW
dc.description.abstractABSTRACT
In the recent years, lasers have been widely used as illumination sources, and a phenomenon called“speckle”that degrades image quality has been observed. When highly coherent radiation, such as laser or ultrasonic wave, is scattered or reflected from a rough surface, compared with wavelength, a high-contrast, fine-scale speckle pattern will be seen by an observer looking at the scattering light from rough surfaces. Because of the disadvantage of speckle in imaging applications, researchers have been engaged in minimizing the speckle noise. In the Display Optics Lab. of National Taiwan university, we have demonstrated a novel laser projection system based on the phase-only diffractive optical element (DOE), spatial light modulator (SLM), to implement beam shaping and suppress speckle noise.
In this thesis, we present a neoteric view of speckle phenomenon that treats its optical field interference nature as its phase distribution range dependence of the field, and use this concept to discuss image qualities and possibility to further reduce the speckle effects. In the beginning, we provide an overall review of the projection display technology and laser system with speckle effects. Then, we introduce basic concepts and statistical presentation of speckle phenomena. Moreover, we deduce the speckle contrast value as a function of phase distribution range in Statistical Optics methods, and find out images with lower phase distribution range will have lower speckle contrast value. According to deductive results, we design two kinds of iterative Fourier transform algorithm (IFTA) based methods to achieve lower speckle contrast value. One is using modified IFTAs to implement laser beam shaping and optical field phase distribution range limitation on the diffractive plane. The other is using IFTA to implement an uniform rectangular field and passing by a phase-only element to achieve field phase distribution range limitation. Then, we set up simulation models to analyze image qualities for the two IFTA based methods. In the end, we attempt to use real optical system to implement the simulation results. Therefore, we choose the first method mentioned above to practice in our present systems, and compare the results to the simulation ones. Moreover, we discuss the possibility of applying simulations to the real optical systems.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:32:47Z (GMT). No. of bitstreams: 1
ntu-101-R99941003-1.pdf: 10664433 bytes, checksum: 0894ca0ebe792a09de24430d2ed944d2 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
內容
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 x
第 1 章 緒論 1
1-1 投影顯示系統概述 1
1-2 雷射投影系統 5
1-2-1 全畫幅式雷射投影系統 5
1-2-2 直線掃描式雷射投影系統 8
1-2-3 光柵掃描式雷射投影系統 9
1-3 光斑現象對雷射系統的影響 10
1-4 研究動機 11
1-5 本文架構 12
第 2 章 光斑現象的基本性質 13
2-1 光斑的起源 13
2-2 隨機複數相量 (Phasor) 和之數學表示 14
2-2-1 數學表示 14
2-2-2 基本統計特性 16
2-3 光斑的統計特性 20
2-4 降低光斑的理論與方法種類概述 24
2-4-1 理論概述與數學表示 24
2-4-2 消斑方法種類概述 26
第 3 章 消斑實驗原理 29
3-1 光斑與相位分佈範圍的關係 29
3-1-1 理論概述與數學表示 29
3-1-2 理想的光場強度分佈 38
3-2 遞迴傅立葉演算法 (iterative Fourier transform algorithm, IFTA) 光束整形之理論概述 46
3-3 液晶空間光調變器的原理 48
3-3-1 穿透式液晶空間光調變器 51
3-3-2 反射式液晶空間光調變器 51
3-3-3 本研究所使用之液晶空間光調變器 (LC-R2500) 52
第 4 章 實驗結果與討論 54
4-1 數值模擬實驗 54
4-1-1 IFTA在繞射面產生相位限制之方法 54
4-1-2 IFTA搭配純相位元件產生相位限制之方法 55
4-1-3 以IFTA在繞射面產生相位限制抑制光斑 56
4-1-4 以IFTA搭配純相位元件產生相位限制抑制光斑 63
4-2 光學系統實驗 70
4-2-1 電荷耦合元件 (CCD) 對光斑量測結果的探討 70
4-2-2 實驗架構描述 73
4-2-3 繞射光學元件設計 76
4-2-4 相位限制在單張繞射光學元件 82
第 5 章 結論 89
參考文獻 91
dc.language.isozh-TW
dc.title在繞射投影模組中作光斑現象與相位分佈範圍關係之研究zh_TW
dc.titleThe Study of Speckle Phenomenon with respect to Phase Distribution Range in the Diffractive Projection Moduleen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee徐巍峰,林正峰
dc.subject.keyword雷射光斑降低,光斑抑制,雷射投影系統,投影顯示系統,zh_TW
dc.subject.keywordlaser speckle reduction,speckle suppression,laser projection system,projection display system,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2012-12-04
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
10.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved