請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63279完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張斐章(Fi-John Chang) | |
| dc.contributor.author | Chang-Han Chung | en |
| dc.contributor.author | 鍾昌翰 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:32:21Z | - |
| dc.date.available | 2013-01-16 | |
| dc.date.copyright | 2013-01-16 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-12-05 | |
| dc.identifier.citation | 李信孝,2003,溪溝之魚類棲地水理分析-以大溝溪為例,國立台北科技大學碩士論文。
吳富春、王琪芳,2000,流況及底質粒徑之改變對河川物裡棲地之影響,第十一屆水利工程研討會,1-4。 林宜弘,1995,機器視覺應用在魚苗計數之可行性研究,農業機械學刊,第4卷,第2期,37-45。 呂映昇、孫建平,2010,魚類於生命週期的不同階段棲地使用與物理棲地因子之量化關係,農業工程學報,第56卷,第1期,40-51。 卓志文,2006,運用有效率的垂直時間方向濾波移動偵測之動態適應解交錯器,國立成功大學碩士論文。 汪靜明,1991,河川魚類棲地生態調查之基本原則與技術,林務局森林溪流淡水魚保育訓練班論文集,119-137。 周建明、鄭士仁,2011,應用小波轉換及消噪於線性擾動響應模式之研究,農工學報,第57卷,第1期,1-15。 郭怡雯,2001,利用模糊類神經網路加強彩色影像車輛偵測,國立交通大學碩士論文。 胡通哲、陳鴻烈、林新發、林志訓,2004,粗坑溪生態環境調查與魚道規劃,中華水土保持學報,第35卷,第3期,197-210頁。 邵廣昭、何林泰、林介屏,1993,魚類群聚生態調查監測與分析方法,生物科學,第36卷,第2期,41-56。 黃宏斌、吳榮瑜,2008,遮蔽效應對混合粒徑輸砂量之影響探討,農工學報,第2期,71-80。 陳世杰、周凡迪、張志豪,2012,一種選擇移動偵測初始值的方法與裝置,電腦與通訊,146,80-87。 陳嘉欣、紹允銓、王驥魁、吳富春,2008,河床質粒徑分佈之數位影像光篩分析,農工學報,第4期,16-32。 張仁明、林達德,1999,類神經網路與貝氏分類法應用於影像分割之比較研究,農機學刊,第8卷,第3期,61-74。 張文亮、蕭友晉、虞淨卉,2010,影像辨識計算金瓜寮魚類數目之研究,農工學報,第56卷,第1期,52-60。 張斐章、孫建平,1997,類神經網路及應用於降雨-逕流過程之研究,農工學報,第4卷,第1期,9-28。 張斐章、張麗秋,2010,類神經網路導論:原理與應用,滄海書局。 張凱堯、張斐章,2009,反傳遞模糊類神經網路於抽水站操作之應用,農工學報,第53卷,第1期,82-91。 葉明峰,2002,河川魚類適合度曲線調查技術,河川生態基準流量評估技術研討會,1-15。 葉明峰、張世倉、林斯正,2003,台灣櫻花鉤吻鮭域外放流棲地之評估,特有生物研究,第5卷,第2期,15-32。 葉素惠,1997,清流復活事業ズプペ都市河川ソ生物生息環境ソ回復,東京農工大學,碩士論文 傅志偉,2004,河床質調查的方法、位置與頻率-以頭前溪為例,國立交通大學土木工程研究所碩士論文。 經濟部水利署第一河川局,2007,影像處理在蘭陽溪河床質調查之可行性研究。 劉建榮、許少華、潘俊弘,2011,卵礫石河床型態演變對物理性棲地影響之實例研究,中華水土保持學報,第42卷,第1期,48-56頁。 鄭其政,2006,影像監控系統交通參數擷取技術之研究,國立台灣大學碩士論文。 鍾昌翰、張斐章,2009,影像處理應用於河床粒徑分佈之研究,台灣水利,第57卷,第2期,12-23。 鍾政良,2006,河床質調查位置與數量合理性探討,國立臺灣交通大學碩士論文。 羅義碩,2005,以生態觀測建立河川魚類棲地適合度曲線,國立中央大學碩士論文 謬紹綱,2003,數位影像處理,普林斯頓國際有限公司。 蕭友晉,2006,以混合高斯理論影像計數浮萍與魚類族群之研究,國立台灣大學碩士論文。 Adams, J., 1979, Gravel size analysis from photographs. American Society of Civil Engineers, J. Hydr. Eng. Div-ASCE, 104, 1247-1255. Antonini, M., Barlaud, M., Mathieu, P. and Daubechies, I., 1992, Image coding using wavelet transform. IEEE Trans. Image Process., 1(2), 205-220. Baker, C. S., Straley, J. M. and Perry, A., 1992, Population characteristics of individually identified humpback whales in southeastern Alaska: Summer and fall 1986. Fish. Bull., 90, 429-437. Bayazit, M. and Ahsoy, H., 2001, Using wavelets for data generation, J. Appl. Stat., 28(2), 157-166. Bunte, K. and Abt, S. R., 2001, Sampling surface and subsurface particle-size distribution in wadable gravel and cobble bed streams for analyses in sediment transport, hydraulics, and streambed monitoring, Gen. Tech. Rep. RMRS-GTR-74. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Buscombe, D., 2008, Estimation of grain-size distributions and associated parameters from digital of sediment, Sediment. Geol., 210, 1-10. Buscombe, D. and Masselink, G., 2009, Grain size information from the statistical properties of digital images of sediment, Sedimentology, 56, 421-438, doi:10.1111/j.1365-3091.2008.00977.x. Butler, J. B., Lane, S. N. and Chanfler, J. H., 2001, Automated extraction of grain-size data from gravel surfaces using digital image processing, J. Hydraul. Res., 39, 519-529. Chang, L. C. and Chang, F. J., 2001, Intelligent control for modelling of real-time reservoir operation, Hydrol. Process., 15(9), 1621-1634. Chang, F. J. and Chang, Y. T., 2006, Adaptive neuro-fuzzy inference system for prediction of water level in reservoir, Adv. Water Res., 29, 1-10. Chang, F. J., Chang, K. Y. and Chang, L. C., 2008, Counterpropagation fuzzy-neural network for city flood control system, J. Hydrol., 358(1-2), 24-34. Chang F. J. and Chung, C. H., 2012, Estimation of riverbed grain-size distribution using image-processing technique, J. Hydrol., 440-441, 102-112. Chang, F. J. and Chen. Y. C., 2003, Esturary water-stage forecasting by using radial basis function neural network, J. Hydrol., 270, 158-165. Chang, F. J., Tsai, M. J., Tsai, W. P. and Herricks, E. E., 2008, Assessing the ecological hydrology of natural flow conditions in Taiwan. J. Hydrol., 354(1-4): 75-89. Carbonneau, P. E, 2005, The threshold effect of image resolution on image-based automated grain size mapping in fluvial envoroments, Earth Surf. Process. Landf., 30, 1687-1693. Chaves, P. and Kojiri, T., 2007, Deriving reservoir operational strategies considering water quantity and quality objectives by stochastic fuzzy neural networks, Adv. Water Res., 30(5), 1329-1341. Chatain, B., Debas, L. and Bourdillon, A., 1996. A photographic larval fish counting technique : comparision with other methods, statistical appraisal of the procedure and practical use, Aquaculture, 141, 83-96. Chiang, Y. M., Chang, L.C., Tsai, M.J., Wang, Y. F. and Chang F. J., 2011, Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks, Hydrol. Earth Syst. Sci., 15, 185-196. Chung, C. H., Chiang Y. M. and Chang, F. J., 2012, A spatial neural fuzzy network for estimating pan evaporation ungauged sites, Hydrol. Earth Syst. Sci., 16, 255-266. Church, M. A., Mclean, D. G. and Wolcott, J. F., 1987, River bed gravels : sampling and analysis. In Thorne, C.R., Bathurst, J.C. and Hey, R.D. (eds) Sediment transport in gravel bed rivers, Wiley, Chichester. 43-79. Coifman, B., Beymer, D., McLauchlan, P. and Malik, J., 1998, A real-time computer vision system for vehicle tracking and traffic surveillance, Transport. Res. C-Emer, 6(4): 271-288. Coulibaly, P., Anctil, F., Rasmussen, P. and Bobee, B, 2000, A recurrent neural networks approach using indices of low-frequency climatic variability of forecast regional annual runoff, Hydrol. Process, 14, 2755-2777. Diepenbroek, M., Bartholoma, A. and Ibbeken, H., 1992, How round is round: A new approach to the topic ‘‘roundness’’ by Fourier grain shape analysis, Sedimentology, 39, 411-422. Fathy, M. and Siyal, M. Y., 1995, An image detection technique based on morphological edge detection and background differencing for real-time traffic analysis, Pattern recognit. Lett., 16, 1321-1330. Fueten, F. and Mason, J, 2007, An artificial neural net assisted approach to editing edges in petrographic images collected with the rotating polarizer stage, Comput. Geosci., 3, 1179-1188. Goldman, D., Yang, M. and Bourbakis, N., 2002, A neural network based segmentation tool for color image, In: Proceeding of International Conference on Tools with Artificial Intelligence, Washington, DC, 200-211. Gonzalez, R. C. and Woods, R. E., 2002, Digital image processing, Prentice Hall, Inc.Upper Saddle River, New Jersey. Graham, D. J., Reid, I. and Rice, S. P., 2005a, Automated sizing of coarse-grained sediments: Image-processing procedures, Math. Geol., 37(1), 1-28. Graham, D. J., Rice, S. P. and Reid, I., 2005b, A transferable method for the automated grain sizing of river gravels. Water Resour. Res., 41(7), W07020, doi. 10.1029/2004WR003868. Graham, D. J., Rollet, A. J., Piegay, H., and Rice S. P, 2010, Maximizing the accuracy of image-based surface sediment sampling techniques, Water Resour. Res., 46, W02508, doi. 10.1029/2008WROO6940. Haris, K., Efstratiadis, S. N. and Katsaggelos, A. K., 1998, Hybrid image segmentation using watershed and fast region merging, IEEE Trans. Image Process., 7(12), 1684-1699. Hasan, Y. M. Y., and Karam, L. J., 2000, Morphological text extraction from images, IEEE Trans. Image Process., 9, 11, 1978-1983. Hecht-Nielsen, R, 1987, Counterpropagation network, Applied Optics, 26, 4979-4984. Hopfield, J. J., 1982, Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sci., 79, 2554-2558. Hsu, J. P. and Fuh, C. S., 1996, Image segmentation to inspect 3-D object sizes, Opt. Eng., 35(1), 262-271. Ibbeken, H. and Schleyer, R., 1986, Photo-sieving: A method for grainsize analysis of coarse-grained, unconsolidated bedding surfaces, Earth Surf. Process. Landf., 11, 59-77. Ibbeken, H., Warnke, D. A. and Diepenbroek, M., 1998, Granulometric study of the Hanaupah Fan, Death Valley, California, Earth Surf. Process. Landf., 23, 481-492. Kanhere, N. K., Pundlik, S. J. and Birchfield, S. T., 2005. Vehicle segmentation and tracking from a low-angle off-axis camera, Proceedings of IEEE Conference on Computer Vision and Pattern Recogition, San Diego Karr, J. R., 1981, Assessment of biotic integrity using fish communities, Fisheries(Bethesda), 6, 21-27. Katona, S. K., Baxter, B., Brazier, O., Kraus, S., Perkins, J. and Whitehead, H., 1979, Identificationof humpback whales by fluke photographs, Behavior of Marine Animals, Plenum press, New York, 3, 33-44. Katona, S., 1989, Getting to know you: New way of looking at marine mammals, Oceanus, 32, 37-44. Kellerhals, R. and Bray, D. I., 1971, Sampling Procedures for Coarse Fluvial Sediments, Proc. Am. Soc. Civ. Engrs, J. Hydraul. Res. Div., 97(HY8), 1165 -1180. Kumar, T., Singh, K. V. and Malik, S., 2011, Artificial neural network in face detection, Int. J. Comput. Appl., 14, 5-7. Labat, D., Ababou, R. and Mangin, A., 2000, Rainfall-runoff relations for karstic springs, Part Π:continuous wavelet and discrete orthogonal multiresolution analyses, J. Hydrol., 238, 149-178. Laronne, J. B. and Shlomi,Y., 2007, Depositional character and preservation potential of coarse-grained sediments deposited by flood events in hyper-arid braided channels in the Rift Valley,Arava,Israel, Sediment. Geol., 195,21-37. Lee, J., Haralick, R. and Shapiro, L., Morphologic edge detection, IEEE J. robotics Autom., 3(2), 142-156. Lewis, A. S. and Knowles, G., 2002, Image compression using the 2-D wavelet transform. IEEE Trans. Image Process., 1(2), 244-250. Mallat, S. and Hwang, W. L., 1992, Singularity detection and processing with wavelets, IEEE T. Inform. Theory, 38(2), 617-643. McCulloch, W. S. and Pitts, W., 1943, A logical calculus of the idea immanent in nervous activity, B. Math. Biophys., 5, 115-133. McEwan, I. K., Sheen, T. M., Cunningham, G. J. and Allen, A. R., 2000, Estimating the size composition of sediment surfaces through image analysis, P. I. Civil ENG-WATER., 142, 189-195. Meyer, F. and Beucher, S., 1990, Morphological Segmentation, J. Vis. Commun. Image R., 1(1), 21-46. Morris, G. L. and Fan, J., 1998, Reservoir sedimentation handbook: Design and management of dams, reservoirs, and watershed for suitable use. McGraw-Hill, New York. Muhammed, H., 2003, Unsupervised fuzzy clustering and image segmentation using weighted neural networks, Proceedings of 12th International Conference for Image Analysis and Processing (ICIAP 2003), Mantova, Italy, 308-313. Newbury, P. F., Culverhouse, P. F. and Pilgrim, D. A., 1995, Automatic fish population counting by artificial neural network, Aquaculture, 133, 45-55. Nie, J. and Linkens, D. A., 1994, Fast self-learning multivariable fuzzy controllers constructed from a modified CPN network. Int. J. Control, 60(3), 369-393. Partal, T. and Cigizoglu, H. K., 2008, Estimation and forecasting of daily suspended sediment data using wavelet-neural networks, J. Hydrol., 358, 317-331. Pinthong, P., Gupta, A. D., Babel, M. S. and Weesakul, S., 2009, Improved Reservoir Operation Using Hybrid Genetic Algorithm and Neurofuzzy Computing, Water Resour. Manage., 23(4), 697-720. Rice, S. and Church, M., 1998, Grain size along two gravel-bed rivers: Statisical variation, spatial pattern and sedimentary links, Earth Surf. Process. Landf., 23, 345-363. Rice, S. P. and Haschenburger, J. K., 2004, A hybrid method for size characterization of coarse subsurface fluvial sediments, Earth Surf. Process. Landf., 29(3), 373-389. Rioul, O. and Vetterli, M., 2002, Wavelets and signal processing. IEEE Signal Proc. Mag., 8(4), 14-38. Rumelhart, D. E., Hinton, G. E. and Williams, R. J., 1986, Learning represnetations by back-propagating errors, Nature, 323, 533-536. Rumelhart D. E. and McCelleland, J. L., 1986, Parallel ditributed processing explorations in the microstructure of cognition, 1, Cambridge, MA, MIT Press. Sime, L. C. and Ferguson, R. I., 2003, Information on grain sizes in gravel-bed rivers by automated image analysis. J. Sediment. Res., 73(4), 630-636. Soille, P., 2003, Morphological image analysis: Principles and applications, 2nd edn.: Springer-Verlag, Berlin, 407 pp. Stien, L.H., Bratland, S., Austevoll, I., Oppedal, F. and Kristiansen, T.S., 2007. A video analysis procedure for assessing vertical fish distribution in aquaculture tanks. Aquacult. Eng., 37(2), 115-124. Strachan, N. J. C. and Nesvadba, P., 1990, Fish species recognition by shape analysis of images. Pattern Recogn., 23, 539-544. Strom, K. B., Kuhns, R. D. and Lucas, H. J., 2010, Comparsion of automated image-based grain sizing to standard pebble-count methods. J. Hydraul. Eng-ASCE, 136, 461-473. Suen, J. P. and Herricks, E. E., 2006. Investigating the causes of fish community change in the Dahan River (Taiwan) using an autecology matrix, Hydrobiologia, 568: 317-330. Verdu, J. M., Batalla, R. J. and Martı’nez-Casasnovas, J. A., 2005, Highresolution grain-size characterization of gravel bars using image analysis and geo-statistics, Geomorphology, 72, 73-93, doi. 10.1016/j.geomorph.2005.04.015. Thanos, P. and Kyle, S., 2004, Grain Size Analysis of Beach Sediment in Rich Passage Washington, A Report prepared of Pacific International Engineering. Vincent, L. and Soille, P., 1991, Watersheds in digital spaces: An efficient algorithm based on immersion simulations, IEEE T. Pattern Anal., 13(6), 583-598. Wohl, E.E., Anthony, D. J., Madsen, S. W. and Thompson, D. M., 1996, A comparison of surface sampling methods for coarse fluvial sediments, Water Resour. Res., 32, 3219-3226. Wolman, M. G., 1954, A Method of Sampling Coarse River-Bed Material, American Geophysical Union, Transactions, 35, 951-956. Zion, B., Shklyar, A. and Karplus, I., 2000, In-vivo fish sorting by computer vision, Aquacult. Eng., 22, 165-179. Zhao, Y., Pinilla, C., Valmori, D., Martin, R. and Simon, R., 2003, Application of support vector machines for T-cell epitopes prediction, Bioinformatics, 19(15), 1978-1984. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63279 | - |
| dc.description.abstract | 本文目的為應用影像處理技術於河川生態環境之調查。設法將 (1) 河床質調查和 (2) 溪魚監測問題自動化,鑒於傳統調查方法往往費時費力,如河床質調查最常採用的體積法需要60-120分鐘於野外進行採樣與初步篩分析,接著超過30分鐘於研究室進行複篩才可完成一個樣本;電魚法為溪魚生態調查最常採用的方法,缺點為個人努力量或是選取採樣點的不同,會造成不同的調查結果,且調查結束後常會伴隨魚類死亡,兩種傳統調查方法的共同點皆是費時費力和侵擾原有的生態環境,如河床表面破壞與溪魚死傷,近年來數位攝影設備與軟體分析進步神速,造就數位影像處理(Digital image processing)迅速發展成一門進步的數位技術,無論在量測、辨識與移動偵測方面,其優越的表現似有極大潛力發展自動化河床質量測與溪魚監測系統;自然河床的變異如礫石大小、顏色,甚至於細小泥砂所帶來的雜訊,與現場拍照時光源控制不易等許多因素,為目前研究所遇到的瓶頸,故研究鎖定河床質相關文獻中常被應用的AGS(Automated grain sizing)法,簡化需要調整的參數,結合反傳遞模糊類神經網路(Counterpropagation fuzzy neural network, CFNN),提出一套可依輸入影像,輸出適宜參數的R-AGS (Refined automated grain sizing)模式,研究以蘭陽溪流域總計130張照片為研究材料,先利用人工影像分析法,量測石頭最大短軸,並搜尋理想二元門檻值協助反傳遞模糊類神經網路學習,以目前文獻中兩種自動推估方法做比較,其顯著的改善率(約減少20%的均方根差誤差)與80%的篩分析準確率,可供後續研究與工程應用之參考。另一方面,目前並無太多文獻著墨於自動化溪魚監測之研究,故本研究利用水底攝影機,以背景相減法為基礎,提出一套自動化方法推估魚群數目,方法共分為3個部分: (1) 影像前處理提高影像判識品質、(2) 背景模型提供乾淨背景和 (3) 前景偵測找出會游動的魚;本案例以新北市金瓜寮溪為實驗場址,依照野外拍攝的經驗,提供儀器裝設的建議,由於夜間水域對於調查者的威脅遠超過白天,故本研究更進一步地嘗試儀器的夜視功能,探討夜間調查的可行性,實驗共進行兩天,錄製27筆,每筆約5分鐘的動態影像樣本進行分析,與人工判識相比的結果顯示,約80%的準確率證明自動化方法可提供長期且穩定的觀測資料、夜視功能具有夜間調查的實用性、溪魚較為喜好緩流流域型態和經由自動推估所繪出的溪魚足跡圖,可協助生態領域專家了解溪魚游動的行為;總結兩個案例的表現,本研究的自動化模式可協助水文、水利工程與生態領域專家後續研究之用。 | zh_TW |
| dc.description.abstract | The major purpose of this dissertation is to investigate river of ecological environment by using digital image processing techniques. To achieve this goal, two different cases which are (1) river material and (2) fish monitor have shown their accuracy and applicability. Traditional methods for measuring grain size distribution and investigating fish number are time-consuming and lab-intensive. Our experiences indicated volume-by-number would take approximeately an hour in field to collect a representative sample and an hour to conduct a grain-sieving process in laboratory. A lot of fishes would be damaged when shocking or fishing them. Those methods would influen the results and harm the river ecosystem. Recent advances in image processing techniques facilitate automated grain indenitication and fish monitor through digitial images. This study introduces a refined automated grain sizing method (R-AGS) incorporating a neural fuzzy network for automatically estimating the grain size distribution, specifically designed for digital images. A total of 130 images captured from Lanyang River bed, Taiwan, are used to assess R-AGS performance. Two prevalent image processing methods are implemented for comparative purpose. The results indicate that the proposed R-AGS significantly outperforms the other two comparative methods (i.e. reduced 20% of the root-mean square error). The second case is to count automatically the number of fish in pristine rivers. In this case, author presents a background termed as subtraction-based method in order to count the fish automatically. The experiment is performed in Jin-Gua-Liao River situated in the North of Taiwan and the underwater camera records the fish on the river during daytime and also during the night. To date there are little references on monitoring river fish. Author details the monitoring method of river fish and provide recommendations to implement this method. Our results show that: (1) our approach is approximate 80% accurate, (2) the studied river fish habitat is mainly in the glide environment, (3) the monitoring of fish at night is available, (4) the developed methodology provides not only long-term statistics but also delivers useful information on the fish behavior which is to assist hydrologists and ecological researcher in preserving the ecosystem. Summary, the results clearly indicate that our approach can be reliably used for automated grain-size measurement and fish number count with high accuracy and much less labor-intensive. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:32:21Z (GMT). No. of bitstreams: 1 ntu-101-D97622005-1.pdf: 6087605 bytes, checksum: e7dceb15a1758fb9a79d90131795b734 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌 謝 ii 中文摘要 iii Abstract v 目 錄 vii 表目錄 x 圖目錄 xi 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文架構 3 第二章 文獻回顧 5 2.1 影像處理應用於河床質調查 5 2.1.1 河床質調查 5 2.1.2 類神經網路 (Artificial neural network) 11 2.1.3 分水嶺演算法 (Watershed transform algorithm) 14 2.2 影像處理應用於魚類調查 15 2.2.1 魚類調查方法 15 2.2.2 移動偵測 (Motion detection) 18 第三章 影像處理概述 20 3.1 影像處理基礎知識 21 3.2 灰階轉換(Gray level transform) 23 3.3 灰階直方圖 (Gray level histogram) 23 3.4 臨界值法 (Thresholding) 24 3.5 形態運算(Morphological operation) 25 3.6 區塊標記 (Connected components labeling) 28 第四章 靜態影像分析: 河床質調查 29 4.1 光篩分析核心理論 29 4.1.1 空間轉換(Spatial transformation) 29 4.1.2離散小波轉換 (Discrete wavelet transform, DWT) 30 4.1.3 反傳遞模糊類神經網路(Counterpropagation Fuzzy Neural Network, CFNN) 32 4.1.4 區域填充(Region filling) 39 4.1.5 分水嶺演算法(Watershed transform algorithm) 40 4.1.6 Hotelling 轉換法 42 4.2 應用 44 4.2.1研究材料 44 4.2.2人工影像分析 46 4.2.3 模式建立 49 4.2.4比較模式與評比指標 52 4.3 結果與討論 54 4.4 小結 64 第五章 動態影像分析: 溪魚監測 65 5.1 自動溪魚監測核心理論 65 5.1.1 畫面前處理 65 5.1.2 背景模型 66 5.1.3 前景偵測 68 5.1.4 自動化模式 72 5.2 應用 74 5.2.1 研究區域與野外工作 74 5.2.2 人工判識與評估指標 78 5.3 結果與討論 81 5.4 小結 90 第六章 結論與建議 91 參考文獻 93 附錄A: 實驗器材 103 附錄B: 拍攝影像與記錄表範本 104 附錄C: 作者簡歷 110 | |
| dc.language.iso | zh-TW | |
| dc.subject | 影像處理 | zh_TW |
| dc.subject | 河床質調查 | zh_TW |
| dc.subject | 溪魚監測 | zh_TW |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | 反傳遞類神經網路 | zh_TW |
| dc.subject | 分水嶺演算法 | zh_TW |
| dc.subject | River material | en |
| dc.subject | Artificial neural network | en |
| dc.subject | Fish monitor | en |
| dc.subject | Watershed transform algorithm | en |
| dc.subject | Image processing | en |
| dc.subject | Counterpropagation fuzzy neural network | en |
| dc.title | 影像處理技術應用於河床粒徑分析及魚類數量調查 | zh_TW |
| dc.title | Image Processing Techniques Applied to Grain-Size Distribution and Fish Quantity Monitoring in Rivers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 傅楸善(Chiou-Shann Fuh),卡艾瑋(Hervé Capart),黃文政(Wen-Cheng Huang),張麗秋(Li-Chiu Chang) | |
| dc.subject.keyword | 河床質調查,溪魚監測,類神經網路,影像處理,反傳遞類神經網路,分水嶺演算法, | zh_TW |
| dc.subject.keyword | Artificial neural network,Fish monitor,River material,Image processing,Counterpropagation fuzzy neural network,Watershed transform algorithm, | en |
| dc.relation.page | 111 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-12-05 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 5.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
