Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63271
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱奕鵬(Yih-Peng Chiou)
dc.contributor.authorJin-Jhih Luen
dc.contributor.author陸金志zh_TW
dc.date.accessioned2021-06-16T16:31:53Z-
dc.date.available2022-06-09
dc.date.copyright2020-06-09
dc.date.issued2020
dc.date.submitted2020-05-03
dc.identifier.citation[1] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Techn., vol. 47, pp. 2075–2084, 1999.
[2] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter, vol. 10, pp. 4785–4809, 1998.
[3] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, pp. 4184–4187, 2000.
[4] N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics, vol. 3, pp. 157–162, 2009.
[5] R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B, vol. 83, p. 035105, 2011.
[6] F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett., vol. 12, p. 1702–1706, 2012.
[7] T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photonics, vol. 4, pp. 312–315, 2010.
[8] N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science, vol. 340, pp. 1304–1307, 2013.
[9] H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90◦ polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett., vol. 104, p. 034102, 2014.
[10] A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. v. Hulst1, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science, vol. 329, pp. 930–933, 2010.
[11] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science, vol. 334, pp. 333–337, 2011.
[12] S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett., vol.12, pp.6223–6229, 2012.
[13] S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater., vol. 11, pp. 426– 431, 2012.
[14] L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett., vol. 12, p. 5750–5755, 2012.
[15] S.-C. Jiang, X. Xiong, Y.-S. Hu, S.-W. Jiang, Y.-H. Hu, D.-H. Xu, R.-W. Peng, and M. Wang, “High-efficiency generation of circularly polarized light via symmetry-induced anomalous reflection,” Phys. Rev. B, vol. 91, p. 125421, 2015.
[16] M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens'surfaces,” Adv. Opt. Mater., vol. 3, p. 813–820, 2015.
[17] V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express, vol. 18, pp. 16973– 16988, 2010.
[18] C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics, vol. 4, pp. 379–440, 2012.
[19] S. Colburn, A. Zhan, and A. Majumdar, “Tunable metasurfaces via subwavelength phase shifters with uniform amplitude,” Sci. Rep., vol. 7, p. 40174, 2017.
[20] Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett., vol. 16, pp. 5319–5325, 2016.
[21] M. Zhang, W. Zhang, A. Q. Liu, F. C. Li, and C. F. Lan, “Tunable polarization conversion and rotation based on a reconfigurable metasurface,” Sci. Rep., vol. 7, p. 12068, 2017.
[22] M. R. Tavakol, B. Rahmani, and A. Khavasi, “Tunable polarization converter based on one-dimensional graphene metasurfaces,” J. Opt. Soc. Am. B, vol. 35, p. 2574– 2581, 2018.
[23] A. Alhashimi, CStatistical Calibration Algorithms for Lidars. Luleå: Luleå tekniska universitet, 2016.
[24] O. C. Zienkiewicz and Y. K. Cheung, “Finite elements in the solution of field problems,” The Engineer, vol. 220, pp. 507–510, 1965.
[25] M. Albani and P. Bernardi, “A numerical method based on the discretization of Maxwell equations in integral form,” IEEE Trans. Microw. Theory Techn., vol. 22, pp. 446–450, 1974.
[26] R. Harrington, “The method of moments in electromagnetics,” J. Electromagn. Waves Appl., vol. 1, pp. 181–200, 1987.
[27] ANSYS. https://www.ansys.com.
[28] COMSOL. https://www.comsol.com.
[29] Agilent. https://www.agilent.com.
[30] K. Yee, “NumericalsolutionofinitialboundaryvalueproblemsinvolvingMaxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag., vol. 14, pp. 302–307, 1966.
[31] T. Weiland, “A discretization model for the solution of Maxwell’s equations for six-component fields,” Electron. Commun. (AEU), vol. 31, pp. 116–120, 1977.
[32] Lumerical. https://www.lumerical.com.
[33] Remcom. https://www.remcom.com.
[34] C. S. T. (CST). https://www.cst.com.
[35] G. MUR, “Absorbingboundaryconditionsforthefinite-differenceapproximationof the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat., vol. 23, pp. 377–382, 1981.
[36] K. Umashankar and A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,” IEEE Trans. Electromagn. Compat., vol. 24, pp. 397–405, 1982.
[37] J. A. Roden and S. D. Gedney, “Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media,” Microw. Opt. Technol. Lett., vol. 27, pp. 334–339, 2000.
[38] M. Okoniewski, M. Mrozowski, and M. A. Stuchly, “Simple treatment of multi- term dispersion in FDTD,” IEEE Microwave Guided Wave Lett., vol.7, pp.121–123, 1997.
[39] A. Taflove and S. C. Hagness, Computational Electrodynamics The Finite-Difference Time-Domain Method. Norwood: Artech House, 3rd ed., 2005.
[40] R. Courant, K. Friedrichs, and H. Lewy, “Über die partiellen differenzengleichungen der mathematischen physik,” Math. Ann., vol. 100, pp. 32–74, 1928.
[41] T. Tan and M. Potter, “1-D multipoint auxiliary source propagator for the total-field/scattered-field FDTD formulation,” IEEE Antennas Wirel. Propag. Lett., vol.6, pp. 144–148, 2007.
[42] T. Tan and M. Potter, “FDTD discrete planewave (FDTD-DPW) formulation for a perfectly matched source in TFSF simulations,” IEEE Trans. Antennas Propaga., vol. 58, pp. 2641–2648, 2010.
[43] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys., vol. 114, pp. 185–200, 1994.
[44] S. D. Gedney, “An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media,” Electromagnetics, vol. 16, pp. 399–415, 1996.
[45] S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propaga., vol. 44, pp. 1630– 1639, 1992.
[46] R. Luebbers and F. Hunsberger, “FDTD for Nth-order dispersive media,” IEEE Trans. Antennas Propaga., vol. 40, pp. 1297–1301, 1992.
[47] F. Teixeira and W. Chew, “On causality and dynamic stability of perfectly matched layers for FDTD simulations,” IEEETrans.Microw.TheoryTechn.,vol.47,pp.775– 785, 1999.
[48] P. Drude, “Zur elektronentheorie der metalle,” Annalen der Physik, vol. 306, pp. 566–613, 1900.
[49] H. A. Lorentz, The Theory of Electrons. Leipzig: Teubner, 1909.
[50] T. KashiwaandI. Fukai, “A treatment by the FDTD method of the dispersive characteristics associated with electronic polarization,” Microw. Opt. Technol. Lett., vol. 3, pp. 203–205, 1990.
[51] R. M. Joseph, S. C. Hagness, and A. Taflove, “Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses,” Opt. Lett., vol. 16, pp. 1412–1414, 1991.
[52] L. Dou and A. R. Sebak, “3D FDTD method for arbitrary anisotropic materials,” Microw. Opt. Technol. Lett., vol. 48, pp. 2083–2090, 2006.
[53] C. Oh and J. E. M, “Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation,” Opt. Express, vol. 14, pp. 11870– 11884, 2006.
[54] OpenMP. https://www.openmp.org.
[55] M. Forum. https://www.mpi-forum.org.
[56] G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys., vol. 330, pp. 377–445, 1908.
[57] E. D. Palik, Handbook of Optical Constants of Solids. Orlando, FL: AcademicPress, 1985.
[58] B. N. J. Persson and A. Liebsch, “Optical properties of two-dimensional systems of randomly distributed particles,” Phys. Rev. B, vol. 28, pp. 4247–4254, 1983.
[59] C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter,” Opt. Express, vol. 12, pp. 2625–2630, 2004.
[60] S. A. Schelkunoff, “Some equivalence theorems of electromagnetics and their application to radiation problems,” Bell Syst. Tech. J., vol. 15, pp. 92–112, 1936.
[61] C. A. Balanis, Advanced Engineering Electromagnetics. New York: Wiley, 1989.
[62] X. Li, A. Taflove, and V. Backman, “Modified FDTD near-to-far-field transformation for improved backscattering calculation of strongly forward-scattering objects,” IEEE Antennas Wirel. Propag. Lett., vol. 4, pp. 35–38, 2005.
[63] J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun., vol. 3, p. 1171, 2012.
[64] C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultra-broadband mirror using low index cladded subwavelength grating,” IEEE Photon. Technol. Lett., vol. 16, pp. 518–520, 2004.
[65] C. Xu, W. Huang, M. Stern, and S. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc.-Optoelectron., vol. 141, pp. 281–286, 1994.
[66] I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano, vol. 7, pp. 7824–7832, 2013.
[67] A. Komar, R. Paniagua-Domínguez, A. Miroshnichenko, Y. F. Yu, Y. S. Kivshar, A. I. Kuznetsov, and D. Neshev, “Dynamic beam switching by liquid crystal tunable dielectric metasurfaces,” ACS Photonics, vol. 5, pp. 1742–1748, 2018.
[68] J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys., vol. 97, p. 073501, 2005.
[69] P. P. Banerjee, Nonlinear Optics: Theory, Numerical Modeling, and Applications, ch. 10. CRC Press, 1 ed., 2003.
[70] F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, “Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 um,” Opt. Lett., vol. 34, pp. 839–841, 2009.
[71] I. R. Hooper and J. R. Sambles, “Dispersion of surface plasmon polaritons on short-pitch metal gratings,” Phys. Rev. B, vol. 65, p. 165432, 2002.
[72] M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14- µm infrared wavelength range,” IEEE Photon. J., vol. 3, pp. 1171–1180, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63271-
dc.description.abstract動態可調的超穎表面近年來逐漸受到重視,由於其可調製任意位置相位之特性,可應用於自駕車、相機及遙測等領域。我們藉由次波長三明治型光柵理論,提出一個電控可調的液晶超穎表面以控制光束方向和偏振特性。此理論有效率地預測一個可引發共振疊加的結構以達到2π 的相位改變。我們亦以自建之平行化三維時域有限差分法電磁模擬器搭配各向異性材料演算法驗證該理論。我們設計之超穎表面是以內含液晶的矽柱為最小單元組成之陣列,隨著施加偏壓以改變約0.2的液晶分子折射率變化範圍,此設計針對1550 奈米波長的近紅外線達到1.96π 相位調製範圍及超過99% 的反射率。藉著控制反射波的相位,我們個別演示了光束偏轉器及偏振轉換器之應用。該可調式光束偏轉器的最大的偏轉角度為40.23 度。該偏振轉換器能將線偏光轉換成與之互相垂直之線偏光、左右旋極化光,甚至是橢偏光,並具有接近全反射的效率及超過30 dB 的優異消光比。zh_TW
dc.description.abstractDynamic metasurfaces with arbitrary phase manipulation are favorable for numerous applications in the fields of self-driving cars, cameras, and sensing. We propose an electrically tunable liquid crystal (LC) metasurfaces for beam steering and polarization manipulation by exploiting the modal method of subwavelength sandwich gratings. This method efficiently predicts a resonance overlapping structure for 2π phase tuning. The in-house parallelized three-dimensional finite-difference time-domain (FDTD) electromagnetic numerical solver for anisotropic materials is established to verify the correctness of modal method. The delicate metasurface consisting of embedded LC silicon pillar resonator array achieves 1.96π phase tuning and ultrahigh reflectance over 99% with a small LC refractive index change of approximately 0.2 for a single wavelength 1550 nm. By controlling the phase of reflected wave, the metasurface realizes a tunable beam deflector or a polarization converter. The proposed beam deflector has a maximum deflected angle of 40.23◦. The proposed polarization converter can transform linear to crossed linear, circular, or elliptical polarization with near total reflection and excellent polarization extinction ratios over 30 dB.en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:31:53Z (GMT). No. of bitstreams: 1
ntu-109-R06941005-1.pdf: 14484434 bytes, checksum: 692a24cad46a889172a1859eb85f6f96 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Introduction to Computational Electromagnetics . . . . . . . . . . . . . . 4
1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 The FiniteDifference
TimeDomain
Method 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The Courant Stability Limit . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 The TotalField
/ ScatteredField
Technique . . . . . . . . . . . . . . . . 11
2.4 Convolutional Perfectly Matched Layer . . . . . . . . . . . . . . . . . . 13
2.5 Periodic Boundary Condition (PBC) . . . . . . . . . . . . . . . . . . . . 16
2.6 Implementation of Dispersive Material Models . . . . . . . . . . . . . . 17
2.6.1 The Drude Model . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6.2 The DrudeLorentz
Model . . . . . . . . . . . . . . . . . . . . . 19
2.6.3 The Auxiliary Differential Equation (ADE) Method . . . . . . . . 20
2.7 The FDTD Algorithm for Anisotropic Material . . . . . . . . . . . . . . 23
2.8 Mathematical Description of Liquid Crystals Rotation in Space . . . . . . 28
2.9 Parallelized FDTD Method . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.10 Validation of FDTD Simulated Results with Analytical Solutions . . . . . 32
2.10.1 Phasor Calculation for 2D
Circular Cylinders . . . . . . . . . . . 32
2.10.2 Phasor Calculation for 3D
Silver Sphere . . . . . . . . . . . . . 33
2.10.3 Calculation of Total Scattering CrossSection
. . . . . . . . . . . 37
2.10.4 Reflectance Calculation for Periodic Structure . . . . . . . . . . . 39
2.10.5 Phase Calculation for Anisotropic material . . . . . . . . . . . . 40
2.11 Periodic NeartoFarField
Transformation . . . . . . . . . . . . . . . . . 43
3 Mechanism of HighContrast
Grating in Subwavelength Region 45
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Theoretical Analysis of Binary Subwavelength Grating . . . . . . . . . . 46
3.2.1 TMPolarized
SurfaceNormal
Incidence . . . . . . . . . . . . . 48
3.2.2 Comparison of TM Analytic and FDTD Simulation . . . . . . . . 55
3.2.3 TEPolarized
SurfaceNormal
Incidence . . . . . . . . . . . . . . 58
3.2.4 Comparison of TE Analytic and FDTD Simulation . . . . . . . . 61
3.2.5 Calculation of Periodic Waveguide ω − β Relation by Finite Difference
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Theoretical Analysis of Sandwich Subwavelength Grating . . . . . . . . 64
3.4 Mode Mechanism of HighContrast
Grating in Dual Mode Region . . . . 69
3.4.1 Types of Periodic Waveguide Array Modes . . . . . . . . . . . . 70
3.4.2 High Transmittance and Reflectance Mechanism . . . . . . . . . 75
3.5 Mechanisms of HighContrast
Grating and Huygens’ Metasurface . . . . 77
4 PhaseTunable
Liquid Crystal Metasurfaces 81
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Static Metasurfaces for Controlling Light Propagation . . . . . . . . . . . 82
4.2.1 Transmitted Beam Deflection Subwavelength Grating . . . . . . 82
4.2.2 Reflected Beam Deflection Subwavelength Grating . . . . . . . . 85
4.3 Tunable Liquid Crystal Metasurfaces for Beam Steering . . . . . . . . . 88
4.3.1 Steering of ±1st Diffracted Beams . . . . . . . . . . . . . . . . . 90
4.3.2 Steering of a Single Diffracted Beam . . . . . . . . . . . . . . . 93
4.4 HighQ
SandwichShaped
Resonator for Full Phase Coverage . . . . . . 96
4.4.1 HighQ
Resonant Beam Deflector . . . . . . . . . . . . . . . . . 97
4.4.2 HighQ
Resonant Polarization Converter . . . . . . . . . . . . . 102
5 Conclusion 109
Bibliography 111
dc.language.isoen
dc.subject液晶zh_TW
dc.subject超穎表面zh_TW
dc.subject偏振轉換zh_TW
dc.subject光束偏轉zh_TW
dc.subject時域有限差分法zh_TW
dc.subject2π 相位調製範圍zh_TW
dc.subject2π phase coverageen
dc.subjectliquid crystalen
dc.subjectmetasurfacesen
dc.subjectFinitedifference timedomain (FDTD) methoden
dc.subjectpolarization conversionen
dc.subjectbeam steeringen
dc.title基於液晶的高效率相位可調之超穎表面zh_TW
dc.titleHigh-Efficiency Phase-Tunable Metasurfaces Based on Liquid Crystalsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張世慧(Shih-Hui Chang),蕭惠心(Hui-Hsin Hsiao)
dc.subject.keyword時域有限差分法,超穎表面,2π 相位調製範圍,液晶,光束偏轉,偏振轉換,zh_TW
dc.subject.keywordFinitedifference timedomain (FDTD) method,metasurfaces,2π phase coverage,liquid crystal,beam steering,polarization conversion,en
dc.relation.page119
dc.identifier.doi10.6342/NTU202000724
dc.rights.note有償授權
dc.date.accepted2020-05-04
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
14.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved