請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63268完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇秀媛(Hsiu-Yuan Su) | |
| dc.contributor.author | Shu-Man Shih | en |
| dc.contributor.author | 石舒嫚 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:31:43Z | - |
| dc.date.available | 2014-01-16 | |
| dc.date.copyright | 2013-01-16 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-12-10 | |
| dc.identifier.citation | 1. Beiden, S. V., Campbell, G., Meier, K.L., and Wagner, R. F. On the problem of ROC analysis without truth: The EM algorithm and the information matrix. Proceedings of SPIE 2000; 3981: 126-134.
2. Blackwelder, W. C. Proving the null hypothesis in clinical trials. Controlled Clinical Trials 1982; 3: 345-353. 3. Chan, I. S. F. Proving non-inferiority or equivalence of two treatments with dichotomous endpoints exact methods. Statistical Methods in Medical Research 2003; 12: 37-56. 4. DeLong, E. R., DeLong, D. M., and Clarke-Pearson, D. L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988; 44: 837-845. 5. Dendukuri, N. and Joseph, L. Bayesian approaches to modelling the conditional dependence between multiple diagnostic tests. Biometrics 2001; 57: 158-167. 6. Dodd, L. E. and Pepe, M. S. Partial AUC estimation and regression. Biometrics 2003; 59: 614-623. 7. Dunnett, C. W. and Gent, M. Significance testing to establish equivalence between treatments, with special reference to data in the form of 2X2 tables. Biometrics 1977; 33: 593-602. 8. Enoe C, Georgiadis, M. P., Johnson, W.O. Estimation of sensitivity and specificity of diagnostic tests and disease prevalence when the true disease state is unknown. Preventive Veterinary Medicine} 2000; 45: 61-81. 9. Farrington, C. P. and Manning, G. Test statistics and sample size formulae for comparative binomial trials with null hypothesis of non-zero risk difference of non-unity relative risk. Statistics in Medicine 1990; 9: 1447-1454. 10. Georgiadis, M. P., Johnson, W. O., Gardner, I. A., and Singh, R. Correlation-adjusted estimation of sensitivity and specificity of two diagnostic tests. Applied Statistics} 2003; 52: 63-76. 11. Hanley, J. A. Receiver operating characteristic (ROC) methodology: The state of the art. Crit. Rev. Diagn. Imaging. 1989; 29: 307-335. 12. Hanley, J. A., and McNeil, B. J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982; 143: 29-36. 13. Hsieh, H. N., Su, H. Y., and Zhou, X. H. Interval estimation for the difference in paired areas under the ROC curves in the absence of a gold standard test. Statistics in Medicine 2009; 28: 3108-3123. 14. Henkelman, R. M., Kay, I., and Bronskill, M.J. Receiver operator characteristic (ROC) analysis without truth. Medical Decision Making 1990; 10: 24-29. 15. Hui, S. L., and Zhou, X. H. Evaluation of diagnostic tests without gold standards. Statistical Methods in Medical Research 1998; 7: 354-370. 16. Jiang, Y. L., Metz, C. E., and Nishikawa, R. M. A receiver operating: characteristic partial area index for highly sensitive diagnostic tests. Radiology 1996; 201: 745-750. 17. Lewis, J. A. Statistical principles for clinical trials (ICH E9) an introductory note an international guideline. Statistics in Medicine 1999; 18: 1903-1942. 18. Li, C. R., Liao, C.T., Liu, J.P. A non-inferiority test for diagnostic accuracy based on the paired partial areas under ROC curves. Statistics in Medicine 2008; 27: 1762-1776. 19. Li, C. R., Liao, C.T., Liu, J.P. On the exact interval estimation for the difference in paired areas under the ROC curves. Statistics in Medicine 2008; 27: 224-242. 20. Liu, J. P., Ma, M. C., Wu, C. Y., Tai, J. Y. Tests of equivalence and non-inferiority for diagnostic accuracy based on the paired areas under ROC curves. Statistics in Medicine 2006; 25: 1219-1238. 21. Lu, Y. and Bean, J. A. On the sample size for one-sided equivalence of sensitivities based upon McNemar's test. Statistics in Medicine 1995; 14: 1831-1839. 22. Ma, M. C., Chen, B. C. and Liu, J. P. On the Equivalence and Non-inferiority for the Areas of Two ROC Curves, 2003. 23. Metz, C. E. Basic principles of ROC analysis. Seminars in Nuclear Medicine 1978; 8: 283-298. 24. Metz, C. E. ROC methodology in radiologic imaging. Invest. Radiol. 1986; 21: 720-733. 25. Metz, C. E. Some practical issues of experimental design and data analysis in radiologic ROC studies. Invest. Radiol. 1989; 24}: 234-245. 26. McClish, D. K. Analyzing a portion of the ROC curve. Medical Decision Making 1989; 9: 190-195. 27. McNeil, B. J. and Adelstein, S. J. Determining the value of diagnostic and screening tests, J. Nucl. Med. 1976; 17 439-448. 28. Nam, J-m. Establishing equivalence of two treatments and sample size requirement in matched-pair design. Biometrics 1997; 17: 1422-1430. 29. Obuchowski, N. A. Receiver operating characteristic curves and their use in radiology, Radiology 2003; 299: 3-8. 30. Obuchowski, N. A. and McClish, D. K. Sample size determination for diagnostic accuracy studies involving binomial ROC curve indices. Stat. Med. 1997; 16: 1529-1542. 31. Pepe, M. S. The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford University Press: New York, 2003. 32. Sen, P. K. On some convergence properties of U-statistics. Calcutta Statistical Association Bulletin 1960; 10: 1-18. 33. Sox, Jr., H. C., Blatt, M. A., Higgins, M. C, and Marton, K. I. Medical decision making, Butterworths-Heinemann, Boston, 1989. 34. Thompson, M. L. and Zucchini, W. On the statistical analysis of ROC curves. Statistics in Medicine 1989; 8: 1277-1290. 35. Tu, D. A comparative study of some statistical procedure in establishing therapeutic equivalence of nonsystemic drugs with binary endpoints. Drug Information Journal 1997; 31: 1921-1300. 36. Wieand, S., Gail, M. H., James, B. R., and James, K. L. A family of nonparametrics statistics for comparing diagnostic markers with paired or unpaired data. Biometrika 1989; 76: 585-592. 37. Zhou, X. H., Castelluccio, P., and Zhou, C. Nonparametric estimation of ROC curves in the absence of a gold standard. 2005; 61: 600-609. 38. Zhou, X. H., Obuchowski, N. A., and McClish, D. K. Statistical Methods in Diagnostic Medicine. Wiley: New York, 2002. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63268 | - |
| dc.description.abstract | 在診斷試驗中,比較新診斷工具與舊(標準)診斷工具的準確性是一項重要的課題。當新的診斷工具其準確性不比舊的診斷工具差,
同時使用上更為安全、相關費用較為經濟亦或是較少侵入性等。這類型的臨床試驗稱之為非劣性試驗 (non-inferiority test)。 接受者操作特徵曲線(receiver operating characteristic curve)簡稱ROC曲線,是用來評估診斷工具準確性的統計方法。ROC 曲線下面積(AUROC)則是用來評估診斷性的方法之一。當考慮兩個診斷工具時,在相同的AUROC之下,可能有部分的區域是具有臨床相關性,但容易被忽略。 而ROC曲線下部分面積(PAUROC)則是更能全面性的評估其精確性,並克服AUROC面臨的難題。 當黃金標準試驗(gold standard test; GS)存在時,一般常以ROC曲線下部分面積(PAUROC)作為評估兩個診斷工具準確性的指標。 然而在某些情況下,黃金標準試驗容易因執行費用太昂貴或是不易取得而不存在(no-gold standard test; NGS)。 本篇論文討論在常態性假設之下,利用EM演算法及拔靴法(bootstrap method),提出以最大概似法為基礎(maximum likelihood based method; ML-based method)的統計程序, 討論當黃金標準不存在(NGS),針對成對部分ROC曲線(PAUROC)下面積的非劣性檢定。 經由模擬研究可驗證,當黃金標準試驗不存在時, ML-based方法足以將Emipirical size控制在0.05左右,同時針對新診斷方法的非劣性檢定也提供的充分的檢定力。 最後利用提出之方法針對胰臟癌(Pancreatic cancer)的實際診斷資料進行分析。 | zh_TW |
| dc.description.abstract | The non-inferiority test is an approach to assess the accuracy of a new diagnostic test if it reduces the cost.
Receiver operating characteristic (ROC) curves can be used to assess the accuracy of tests measured on ordinal or continuous scales. The area under ROC curve (AUROC) is widely applied in many kinds of field and is used as a tool to decide the accuracy of diagnositic tests. However, it may not differentiate the various shapes of the ROC curves with different diagnostic significances. The partial area under ROC curve (PAUROC) is an attractive alternative that can provide additional and complimentary information for some diagnostic procedures which require the false-positive rate (FPR) to be within a range of clinical interest. A gold standard (GS) test on the true disease status is required to estimate the PAUROC. However, a GS test may be too expensive or infeasible. In many medical researches, the true disease status of the subjects may remain unknown. Under the normality assumption on test results from each disease group of subjects, we propose the maximum likelihood-based (ML-based) method to construct a non-inferiority test for diagnostic accuracy based on the difference in paired PAUROCs in the absence of a GS test (NGS). Simulation results shows that the proposed method for non-inferiority under the NGS case controls the size at the nominal level, and the performance in empirical power is similar to GS case. The proposed method is illustrated with an example. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:31:43Z (GMT). No. of bitstreams: 1 ntu-101-R99621210-1.pdf: 535266 bytes, checksum: fd46f9f4b9cd89b58f766ff7f4578106 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 The ROC curve.........................................3 1.2 The Area under the ROC curve (AUROC)..................5 1.3 Partial area under the ROC curve (PAUROC).............8 1.4 Test for Non-inferiority.............................10 2 Literature review 12 3 Proposed method 16 3.1 The EM algorithm.....................................17 3.2 Bootstrap method.....................................19 4 Simulation study 21 5 Example 31 6 Discussion 34 A The estimators in M-step 41 B Bootstrap method 44 | |
| dc.language.iso | en | |
| dc.subject | 疾病狀況缺失 | zh_TW |
| dc.subject | 部分ROC曲線下面積 | zh_TW |
| dc.subject | EM演算法 | zh_TW |
| dc.subject | 最大概似估計 | zh_TW |
| dc.subject | 黃金診斷標準 | zh_TW |
| dc.subject | 拔靴法 | zh_TW |
| dc.subject | missing disease status | en |
| dc.subject | EM algorithm | en |
| dc.subject | bootstrap method | en |
| dc.subject | gold standard test | en |
| dc.subject | maximum likelihood estimation | en |
| dc.subject | partial area under the ROC curve | en |
| dc.title | 成對部分ROC曲線下面積差之非劣性檢定 | zh_TW |
| dc.title | A non-inferiority test for diagnostic accuracy in the absent of a gold standard test based on the paired partial areas under ROC curves | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 彭雲明,劉力瑜,歐尚靈 | |
| dc.subject.keyword | 部分ROC曲線下面積,EM演算法,拔靴法,黃金診斷標準,最大概似估計,疾病狀況缺失, | zh_TW |
| dc.subject.keyword | partial area under the ROC curve,EM algorithm,bootstrap method,gold standard test,maximum likelihood estimation,missing disease status, | en |
| dc.relation.page | 46 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-12-11 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 522.72 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
