請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63243完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳中明(Chung-Ming Chen) | |
| dc.contributor.author | Jie-Zhi Cheng | en |
| dc.contributor.author | 鄭介誌 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:30:18Z | - |
| dc.date.available | 2014-02-01 | |
| dc.date.copyright | 2013-02-01 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-12-25 | |
| dc.identifier.citation | [1] A. H. E. M. Maas, Y. T. van der Schouw, W. P. T. M. Mali, and Y. van der Graaf, 'Prevalence and determinants of breast arterial calcium in women at high risk of cardiovascular disease,' American Journal of Cardiology, vol. 94, pp. 655-659, Sep 1 2004.
[2] J. M. Kemmeren, P. A. H. van Noord, D. Beijerinck, J. Fracheboud, J. D. Banga, and Y. van der Graaf, 'Arterial calcification found on breast cancer screening mammograms and cardiovascular mortality in women - The DOM Project,' American Journal of Epidemiology, vol. 147, pp. 333-341, Feb 15 1998. [3] M. A. Rotter, P. F. Schnatz, A. A. Currier, and D. M. O'Sullivan, 'Breast arterial calcifications (BACs) found on screening mammography and their association with cardiovascular disease,' Menopause, vol. 15, pp. 276-281, Mar-Apr 2008. [4] M. Kataoka, R. Warren, R. Luben, J. Camus, E. Denton, E. Sala, et al., 'How Predictive Is Breast Arterial Calcification of Cardiovascular Disease and Risk Factors When Found at Screening Mammography?,' American Journal of Roentgenology, vol. 187, pp. 73-80, 7/1 2006. [5] P. Crystal, E. Crystal, J. Leor, M. Friger, G. Katzinovitch, and S. Strano, 'Breast artery calcium on routine mammography as a potential marker for increased risk of cardiovascular disease,' American Journal of Cardiology, vol. 86, pp. 216-217, Jul 15 2000. [6] J. M. Kemmeren, D. Beijerinck, P. A. H. vanNoord, J. D. Banga, J. J. M. Deurenberg, F. A. Pameijer, et al., 'Breast arterial calcifications: Association with diabetes mellitus and cardiovascular mortality - Work in progress,' Radiology, vol. 201, pp. 75-78, Oct 1996. [7] P. F. Schnatz, K. A. Marakovits, and D. M. O'Sullivan, 'The Association of Breast Arterial Calcification and Coronary Heart Disease,' Obstetrics & Gynecology, vol. 117, pp. 233-241, 2011. [8] M. H. Zgheib, S. S. Buchbinder, N. Abi Rafeh, M. Elya, C. Raia, K. Ahern, et al., 'Breast Arterial Calcifications on Mammograms Do Not Predict Coronary Heart Disease at Coronary Angiography1,' Radiology, vol. 254, pp. 367-373, February 1 2010. [9] J. Reddy, J. P. Bilezikian, S. J. Smith, and L. Mosca, 'Reduced bone mineral density is associated with breast arterial calcification,' Journal of Clinical Endocrinology & Metabolism, vol. 93, pp. 208-211, Jan 2008. [10] V. Duhn, E. T. D'Orsi, S. Johnson, C. J. D'Orsi, A. L. Adams, and W. C. O'Neill, 'Breast Arterial Calcification: A Marker of Medial Vascular Calcification in Chronic Kidney Disease,' Clinical Journal of the American Society of Nephrology, vol. 6, pp. 377-382, February 1, 2011 2011. [11] M. Cetin, R. Cetin, N. Tamer, and S. Kelekci, 'Breast arterial calcifications associated with diabetes and hypertension,' Journal of Diabetes and Its Complications, vol. 18, pp. 363-366, Nov-Dec 2004. [12] H. Wada, F. Hirano, T. Kuroda, and M. Shiraki, 'Breast arterial calcification and hypertension associated with vertebral fracture,' Geriatrics & Gerontology International, p. in press, 2011. [13] H. Wada, M. Kitada, K. Sato, T. Sasajima, N. Miyokawa, and T. Kuroda, 'Prevalence of breast arterial calcification by mammography contributes to breast cancer,' Breast Cancer, pp. 1-4, 2011. [14] M. Schaap, R. Manniesing, I. Smal, T. van Walsum, A. van der Lugt, and W. Niessen, 'Bayesian Tracking of Tubular Structures and Its Application to Carotid Arteries in CTA,' in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2007, ed, 2007, pp. 562-570. [15] W. C. K. Wong and A. C. S. Chung, 'Probabilistic vessel axis tracing and its application to vessel segmentation with stream surfaces and minimum cost paths,' Medical Image Analysis, vol. 11, pp. 567-587, Dec 2007. [16] S. R. Aylward and E. Bullitt, 'Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction,' IEEE Transactions on Medical Imaging, vol. 21, pp. 61-75, Feb 2002. [17] M. Descoteaux, D. L. Collins, and K. Siddiqi, 'A geometric flow for segmenting vasculature in proton-density weighted MRI,' Medical Image Analysis, vol. 12, pp. 497-513, Aug 2008. [18] C. Florin, N. Paragios, and J. Williams, 'Globally optimal active contours, sequential Monte Carlo and on-line learning for vessel segmentation,' in Computer Vision - ECCV 2006, Pt 3, Proceedings, 2006, pp. 476-489. [19] C. Florin, N. Paragios, and J. Williams, 'Particle filters, a quasi-Monte-Carlo-solution for segmentation of coronaries,' presented at the Medical Image Computing and Computer-Assisted Intervention - MICCAI 2005, Pt 1, 2005. [20] O. Friman, M. Hindennach, C. Kuhnel, and H.-O. Peitgen, 'Multiple hypothesis template tracking of small 3D vessel structures,' Medical Image Analysis, vol. 14, pp. 160-171, 2010. [21] J. Staal, M. D. Abramoff, M. Niemeijer, M. A. Viergever, and B. van Ginneken, 'Ridge-based vessel segmentation in color images of the retina,' IEEE Transactions on Medical Imaging, vol. 23, pp. 501-509, Apr 2004. [22] P. Zou, P. Chan, and P. Rockett, 'A Model-Based Consecutive Scanline Tracking Method for Extracting Vascular Networks From 2-D Digital Subtraction Angiograms,' IEEE Transactions on Medical Imaging, vol. 28, pp. 241-249, Feb 2009. [23] M. Schaap, I. Smal, C. Metz, T. van Walsum, and W. Niessen, 'Bayesian tracking of elongated structures in 3D images,' in Information Processing Medical Imaging – IPMI 2007, Kerkrade, The Netherlands, 2007, pp. 74-85. [24] R. Manniesing, M. A. Viergever, and W. J. Niessen, 'Vessel Axis Tracking Using Topology Constrained Surface Evolution,' IEEE Transactions on Medical Imaging, vol. 26, pp. 309-316, 2007. [25] D. Lesage, E. D. Angelini, I. Bloch, and G. Funka-Lea, 'A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes,' Medical Image Analysis, vol. 13, pp. 819-845, 2009. [26] J. Ge, H. P. Chan, B. Sahiner, C. Zhou, M. A. Helvie, J. Wei, et al., 'Automated detection of breast vascular calcification on full-field digital mammograms,' presented at the Proceeding of SPIE Medical Imaging 2008, San Diego, CA, USA, 2008. [27] J. Ge, B. Sahiner, L. M. Hadjiiski, H. P. Chan, J. Wei, M. A. Helvie, et al., 'Computer aided detection of clusters of microcalcifications on full field digital mammograms,' Medical Physics, vol. 33, pp. 2975-2988, Aug 2006. [28] H. P. Chan, K. Doi, S. Galhotra, C. J. Vyborny, H. Macmahon, and P. M. Jokich, 'Image Feature Analysis and Computer-Aided Diagnosis in Digital Radiography .1. Automated Detection of Microcalcifications in Mammography,' Medical Physics, vol. 14, pp. 538-548, Jul-Aug 1987. [29] H. P. Chan, S. C. Lo, B. Sahiner, K. L. Lam, and M. A. Helvie, 'Computer-aided detection of mammographic microcalcifications: pattern recognition with an artificial neural network,' Med Phys, vol. 22, pp. 1555-67, Oct 1995. [30] A. Frangi, W. Niessen, K. Vincken, and M. Viergever, 'Multiscale Vessel Enhancement Filtering,' presented at the Medical Image Computing and Computer-Assisted Interventation — MICCAI’98, 1998. [31] M. Lazar and A. L. Alexander, 'Bootstrap white matter tractography (BOOT-TRAC),' Neuroimage, vol. 24, pp. 524-32, Jan 15 2005. [32] D. K. Jones, 'Tractography gone wild: Probabilistic fibre tracking using the wild bootstrap with diffusion tensor MRI,' IEEE Transactions on Medical Imaging, vol. 27, pp. 1268-1274, Sep 2008. [33] P. Hagmann, J. P. Thiran, L. Jonasson, P. Vandergheynst, S. Clarke, P. Maeder, et al., 'DTI mapping of human brain connectivity: statistical fibre tracking and virtual dissection,' NeuroImage, vol. 19, pp. 545-554, 2003. [34] Y. Shi, Z. Tu, A. L. Reiss, R. A. Dutton, A. D. Lee, A. M. Galaburda, et al., 'Joint Sulcal Detection on Cortical Surfaces With Graphical Models and Boosted Priors,' IEEE Transactions on Medical Imaging, vol. 28, pp. 361-373, Mar 2009. [35] O. Friman, A. Hennemuth, A. Harloff, J. Bock, M. Markl, and H.-O. Peitgen, 'Probabilistic 4D blood flow tracking and uncertainty estimation,' Medical Image Analysis, vol. 15, pp. 720-728, 2011. [36] O. Friman, A. Hennemuth, A. Harloff, J. Bock, M. Markl, and H.-O. Peitgen, 'Probabilistic 4D Blood Flow Mapping,' in Medical Image Computing and Computer-Assisted Intervention, Bejing, China, 2010, pp. 416-423. [37] J. Z. Cheng, E. B. Cole, E. D. Pisano, and D. Shen, 'Detection of Arterial Calcification in Mammograms by Random Walks,' in Information Processing in Medical Imaging – IPMI 2009, Wiliamsburgh, VA, USA, 2009, pp. 713–724. [38] L. Vincent and P. Soille, 'Watersheds in Digital Spaces - an Efficient Algorithm Based on Immersion Simulations,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, pp. 583-598, Jun 1991. [39] N. Otsu, 'A thresholding selection method from gray-level histogram,' IEEE Transactions on Systems, Man and Cybernetics, vol. 9, pp. 62-66, 1979. [40] X. Ren, C. C. Fowlkes, and J. Malik, 'Learning probabilistic models for contour completion in natural images,' International Journal of Computer Vision, vol. 77, pp. 47-63, May 2008. [41] L. R. Dice, 'Measures of the Amount of Ecologic Association Between Species,' Ecology, vol. 26, pp. 297-302, 1945/07/01 1945. [42] J. M. Bland and D. G. Altman, 'Comparing methods of measurement: why plotting difference against standard method is misleading,' The Lancet, vol. 346, pp. 1085-1087, 1995. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63243 | - |
| dc.description.abstract | 乳房血管鈣化,在近幾年來逐漸被探討是否有可能為女性心血管疾病與慢性腎臟病的有效生物標記;為了提供更有效的量化分析,我們在本文中提出了一乳房血管鈣化偵測的演算法。具體來說,我們使用了兩個主要的線索,也就是,鈣化與血管特徵值,並且套入了一容納不確定性的血管追蹤演算法。此一新的血管追蹤演算法產生了數個不同可能樣本血管個體來描述複雜的鈣化血管拓樸結構。之後我們發展了一套匯編與連結的處理方法,將這些測得的樣本血管個體整理以及連接。此一發展之方法套用到63組乳房攝影影像中;為了進行效能分析,我們產生了四組演算法生成的結果並將其與兩組手繪作比較。比較的測量值包含了三個計量測量值以及兩個臨床測量值。實驗結果證實了我們方法的有效性與穩定性,且有潛力成為方便的血管鈣化量化的工具來替代繁瑣的手繪過程。 | zh_TW |
| dc.description.abstract | As a potential biomarker for women's cardiovascular and chronic kidney diseases, breast arterial calcification (BAC) in mammography has become an emerging research topic in recent years. To provide more objective measurement for vascular structures with calcium depositions in mammography, a new computerized method is introduced in this paper to delineate the calcified vessels. Specifically, we leverage two underlying cues, namely calcification and vesselness, into a multiple seeded tracking with uncertainty scheme. This new vessel-tracking scheme generates plenty of sampling paths to describe the complicated topology of the vascular structures with calcium depositions. A compiling and linking process is further carried out to organize the sampling paths together to be the vessel segments that likely belong to the same vessel tract. The proposed method has been tested on 63 mammograms. For performance evaluation, four sets of our computer-estimated results are evaluated by the two sets of manual delineation results from two experts, by using three assessment metrics and two clinical metrics. The experiment results confirm the efficacy and stability of the proposed method, and also indicate that the proposed method can be potentially used as a convenient BAC measurement tool to replace the trivial and tedious manual delineation tasks. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:30:18Z (GMT). No. of bitstreams: 1 ntu-101-D98548010-1.pdf: 2638709 bytes, checksum: b8f4eb28db7af7cc98d9f2e8ce7d2a0e (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES viii Chapter 1 Introduction 1 1.1 Clinical Background 1 1.2 Problem Description 2 1.3 Related Works 6 Chapter 2 Methods 9 2.1 Calcification Cue Generation with Linear Structure Analysis 9 2.1.1 Detection of Calcification Candidates 10 2.1.2 Detection of Parallel Linear Structure Patterns 11 2.1.3 Consideration of Single Linear Structures 14 2.2 Generation of Vessel Probability Map 15 2.3 Vessel Tracking with Uncertainty 15 2.3.1 Uncertainty in the Setting of Tracking Factors 17 2.3.2 Our Vessel Tracking Algorithm 20 2.4 Compiling and Linking of Sampling Paths 25 2.4.1 Compiling the Sampling Paths into Super-paths 25 2.4.2 Discarding Ineligible Super-paths 26 2.4.3 Iterative Process for Linking up the Super-paths 27 Chapter 3 Experiments and Results 34 3.1 Parameterization Analysis 38 3.2 Overall Performance Analysis 41 Chapter 4 Discussion and Conclusion 50 REFERENCE 54 | |
| dc.language.iso | en | |
| dc.subject | 乳房攝影 | zh_TW |
| dc.subject | 乳房血管鈣化 | zh_TW |
| dc.subject | 血管追蹤 | zh_TW |
| dc.subject | 不確定性 | zh_TW |
| dc.subject | 曲線連結 | zh_TW |
| dc.subject | Vessel tracking | en |
| dc.subject | Breast arterial calcification | en |
| dc.subject | Curve linking | en |
| dc.subject | Mammography | en |
| dc.subject | Uncertainty | en |
| dc.title | 鈣化血管之偵測於乳房攝影 | zh_TW |
| dc.title | Computerized Detection and Delineation of Calcified Vessels in Digital Mammography | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 周宜宏(Yi-Hong Chou),刁翠美(Chui-Mei Tiu),張允中(Yeun-Chung Chang),賴尚宏(Shang-Hong Lai),孫永年(Yung-Nien Sun) | |
| dc.subject.keyword | 乳房血管鈣化,血管追蹤,不確定性,乳房攝影,曲線連結, | zh_TW |
| dc.subject.keyword | Breast arterial calcification,Vessel tracking,Uncertainty,Mammography,Curve linking, | en |
| dc.relation.page | 56 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-12-26 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
