請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63241
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 施文彬 | |
dc.contributor.author | Tsung-Hua Tsai | en |
dc.contributor.author | 蔡宗樺 | zh_TW |
dc.date.accessioned | 2021-06-16T16:30:10Z | - |
dc.date.available | 2022-12-25 | |
dc.date.copyright | 2013-01-16 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-12-25 | |
dc.identifier.citation | [1] Kotz, R., and Carlen, M., “Principles and applications of electrochemical capacitors,” Electrochimica Acta, vol. 45(15-16), pp. 2483-2498, 2000.
[2] Ch. Emmenegger, Ph. Mauron, P. Sudan, P. Wenger, V. Hermann, R. Gallay, and A. Zuttel, “Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials,” Journal of Power Sources, vol. 124, pp. 321-329, 2003. [3] J. R. Miller and A. F. Burke, “Electrochemical capacitors: challenges and opportunities for real-world applications,” The Electrochemical Society Interface, vol. 17, pp. 53-57, 2008. [4] J. R. Miller, and P. Simon, “Fundamentals of electrochemical capacitor design and operation,” The Electrochemical Society Interface. vol. 17, pp. 31-32, 2008. [5] B. E. Conway, “Electrochemical supercapacitors: scientific fundamentals and technological applications,” Kluwer Academic Publishers, 1999. [6] A. Burke, “Ultracapacitors: why, how, and where is the technology,” Journal of Power Sources, vol. 9, pp. 37-50, 2000. [7] F. Pico, C. Pecharroman, A. Anson, M. T. Martinez, and J. M. Rojo, “Understanding carbon-carbon composites as electrodes of supercapacitors- A study by AC and DC measurements,” Journal of the Electrochemical Society, vol.154, pp. A579-A586, 2007. [8] J. Li, X Wang, Y. Wang, Q. Huang, C. Dai, S. Gamboa, and P. J. Sebastian, “Structure and electrochemical properties of carbon aerogels synthesized at ambient temperatures as supercapacitors,” Journal of Non-Crystalline Solids, vol. 354, pp. 19-24, 2008. [9] B. Fang, Y. Z. Wei, K. Maruyama, and M. Kumagai, “High capacity supercapacitors based on modified activated carbon aerogel,” Journal of Applied Electrochemistry, vol.35, pp. 229-233, 2005. [10] L. Zhang, H. Liu, M. Wang, and W. Liu, “Carbon aerogels for electric double-layer capacitors,” Rare Metals, vol. 25, pp.51-57, 2006. [11] C. Kim, “Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors,” Journal of Power Sources, vol. 142, pp. 382-388, 2005. [12] J. R. Zhang, D. C. Jiang, B. Chen, J. J. Zhu, L. P. Jiang, and H. Q. Fang, “Preparation and electrochemistry of hydrous ruthenium oxide/active carbon electrode materials for supercapacitor,” Journal of the Electrochemical Society, vol. 148, pp. A1362-A1367, 2001. [13] A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, and J. P. Ferraris, “Conducting polymers as active materials in electrochemical capacitors,” Journal of Power Sources, vol. 47, pp. 89-107, 1994. [14] A. Malinauskas, J. Malinauskiene, and A. Ramanavicius, “Conducting polymer-based nanostructurized materials: electrochemical aspects,” Nanotechnology, vol. 16, pp. R51-R62, 2005. [15] M. D. Ingram, H. Staesche, and K. S. Ryder, “‘Activated’ polypyrrole electrodes for high-power supercapacitor applications,” Solid State Ionics, vol. 169, pp. 51-57, 2004. [16] M. D. Ingram, H. Staesche, and K.S. Ryder, “‘Ladder-doped’ polypyrrole: a possible electrode material for inclusion in electrochemical supercapacitors?,” Journal of Power Sources, vol. 129, pp. 107-112, 2004. [17] K. A. Noh, D. W. Kim, C. S. Jin, K. H. Shin, J. H. Kim, and J. M. Ko, “Synthesis and pseudo-capacitance of chemically-prepared polypyrrole powder,” Journal of Power Sources, vol. 124, pp. 593-595, 2003. [18] J. H. Park, J. M. Ko, D. W. Kim, and O. O. Park, “Preparation and electrochemical properties of polypyrrole/graphite fiber composite electrode for supercapacitor application,” Journal of Power Sources, vol. 105, pp. 20-25, 2002. [19] K. H. An, K. K. Jeon, J. K. Heo, S. C. Lim, D. J. Bae, and Y. H. Lee, “High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole,” The Electrochemical Society, vol. 149, pp. A1058-A1062, 2002. [20] H. T. Ham, Y. S. Choi, N. Jeong, and I. J. Chung, “Singlewall carbon nanotubes covered with polypyrrole nanoparticles by the miniemulsion polymerization,” Polymer, vol. 46, pp. 6308-6315, 2005. [21] M. Hughes, M. S. P. Shaffer, A. C. Renouf, C. Singh, G. Z. Chen, D. J. Fray, and A. H. Windle, “Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole,” Advanced Materials, vol. 14, pp. 382-385, 2002. [22] M. Hughes, G. Z. Chen, M. S. P. Shaffer, D. J. Fray, and A. H. Windle, “Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole,” Chemistry of Materials, vol. 14, pp. 1610-1613, 2002. [23] K. Jurewicz, S. Delpeux, V. Bertagna, F. Beguin, and E. Frackowiak, “Supercapacitors from nanotubes/polypyrrole composites,” Chemical Physics Letters, vol. 347, pp. 36-40, 2001. [24] Q. F. Xiao and X. Zhou, “The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor,” Electrochim. Acta, vol. 48, pp. 575-580, 2003. [25] C. S. Du, J. Yeh, and N. Pan, “High power density supercapacitors using locally aligned carbon nanotube electrodes,” Nanotechnology, vol. 16, pp. 350-353, 2005. [26] V. Khomenko, E. Frackowiak, and F. Beguin, “Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations,” Electrochim. Acta, vol. 50, pp. 2499-2506, 2005. [27] S. A. Shabalovskaya, “Physicochemical and biological aspects of Nitinol as a biomaterial,” International Materials Reviews, vol. 46, pp. 233-250, 2001. [28] C. Mavroidis, “Development of advanced actuators using shape memory alloys and electrorheological field,” Res Nondestr Eval, vol. 14, pp. 1-32, 2002. [29] Y. Bar-Cohen, “Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges,” SPIE Press, 2001. [30] M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson, and J. Smith, “Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles- a review,” Smart Material and Structure, vol. 7, pp. R15-R30, 1998. [31] Q. W. Zhang, X. Zhou, and H. S. Yang, “Capacitance properties of composite electrodes prepared by electrochemical polymerization of pyrrole on carbon foam in aqueous solution,” Journal of Power Sources, vol. 125, pp. 141-147, 2004. [32] H. C. Kang and K. E. Geckeler, “Enhanced electrical conductivity of polypyrrole prepared by chemical oxidative polymerization: effect of the preparation technique and polymer additive,” Polymer, vol. 41, pp. 6931-6934, 2000. [33] A. Laforgue, P. Simon, C. Sarrazin, and J. F. Fauvarque, “Polythiophene-based supercapacitors,” Journal of Power Sources, vol. 80, pp. 142-148, 1999. [34] J. Y. Lee, D. Y. Kim, and C. V. Kim, “Synthesis of soluble polypyrrole of the doped state in organic solvents,” Synthetic Metals, vol. 74, pp. 103-106, 1995. [35] K. H. An, K. K. Jeon, J. K. Heo, S. C. Lim, D. J. Bae, and Y. H. Lee, “High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole,” Journal of the Electrochemical Society, vol.149, pp. A1058-A1062, 2002. [36] E. Smela, “Conjugated polymer actuators for biomedical applications,” Advanced Materials, vol. 15, pp. 481-494, 2003. [37] B. Muthulakshmi, D. Kalpana, S. Pitchumani, and N. G. Renganathan, “Electrochemical deposition of polypyrrole for symmetric supercapacitors,” Journal of Power Sources, vol. 58, pp. 1533-1537, 2006. [38] L. Z. Fan and J. Maier, “High-performance polypyrrole electrode materials for redox supercapacitors,” Electrochemistry Communications, vol. 8, pp. 937-940, 2006. [39] E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, and F. B’eguin, “Supercapacitors based on conducting polymers/nanotubes composites,” Journal of Power Sources, vol. 153, pp. 413-418, 2006. [40] K. A. Noh, D. W. Kim, C.S. Jin, K. H. Shin, J. H. Kim, and J. M. Ko, “Synthesis and pseudo-capacitance of chemically-prepared polypyrrole powder,” Journal of Power Sources, vol. 124, pp. 593-595, 2003. [41] H. Mi, X. Zhang, X. Ye, and S. Yang, “Preparation and enhanced capacitance of core–shell polypyrrole/polyaniline composite electrode for supercapacitors,” Journal of Power Sources, vol. 176, pp. 403-409, 2008. [42] M. Nakayama, J. Yano, K. Nakaoka, and K. Ogura, “Electrodeposition of composite films consisting of polypyrrole and mesoporous silica,” Synthetic Metals, vol. 128, pp. 57-62, 2002. [43] V. Tsakova and A. Milchev, “Electrochemical formation and stability of polyaniline films,” Electrochimica Acta, vol. 36, pp. 1579-1583, 1991. [44] T. Kobayashi, H. Yoneyama, H. Tamura, “Polyaniline film-coated electrodes as electrochromic display devices,” Journal of Electroanalytical Chemistry, vol. 161, pp. 419-423, 1984. [45] J. Zhang, L. B. Kong, H. Li,Y. C. Luo, and L. Kang, “Synthesis of polypyrrole film by pulse galvanostatic method and its application as supercapacitor electrode materials,” Journal of Materials Science, vol. 45, pp. 1947-1954, 2010 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63241 | - |
dc.description.abstract | In the field of supercapacitors, the degradation of capacitance caused from the volume change during redox was being mentioned for a long time. But there were few people studied it.
In this thesis, we used anodic aluminum oxide (AAO) as the substrate, taking advantage of the high specific surface area and synthesized polypyrrole (PPy) on it to make a supercapacitor electrode. The method which used to synthesize PPy was called indirect method. Atomic force microscope (AFM) scanning and cyclic voltammetry (CV) test were operated simultaneously to analyze the porosity change of the PPy film. The porosity of the PPy film was determined by an imaging program. Due to the hole structure of the AAO, the stress occurred within redox did not cause obvious damage on the film so the electrodes showed very good cyclic stability. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T16:30:10Z (GMT). No. of bitstreams: 1 ntu-101-R98522526-1.pdf: 3320971 bytes, checksum: 83b74f76f29cc12971e9c744d2fef537 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | ABSTRACT i
CONTENTS ii LIST OF FIGURES iii LIST OF TABLES vi Chapter 1 Introduction 1 1.1 Background – Introduction of Supercapacitors 1 1.2 Introduction of PPy 3 1.3 Literatures of Degradation Tests 5 1.4 Objectives 8 Chapter 2 Experimental 9 2.1 Synthesis of PPY - Indirect Polymerizing Method 9 2.2 Polypyrrole Film with Different Thickness 12 2.3 Preparation of Electrodes for CV Test 15 2.4 Cyclic Voltammetry Test 16 2.5 CV & AFM Combo Test 19 2.6 Experimental Steps of Combo Test 19 2.6.1 Frequency sweep 19 2.6.2 AFM Scanning 20 2.6.3 Porosity Analyzing 29 Chapter 3 Conclusions and Future Work 39 REFERENCES 40 | |
dc.language.iso | en | |
dc.title | 利用原子力顯微鏡探討聚吡咯-陽極氧化鋁薄膜超電容之電容衰退特性 | zh_TW |
dc.title | Study on degradation of pollypyrrole / anodic aluminum oxide supercapacitor utilizing atomic force microscopre | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 施博仁,楊龍杰 | |
dc.subject.keyword | 聚吡,咯,陽極氧化鋁薄膜,超電容,非接觸聚合,原子力顯微鏡,衰退, | zh_TW |
dc.subject.keyword | polypyrrole,anodic aluminum oxide,supercapacitor,indirect method,atomic force microscope,degradation, | en |
dc.relation.page | 45 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-12-26 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 3.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。