Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63167Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 謝松蒼 | |
| dc.contributor.author | Jung-Hsien Hsieh | en |
| dc.contributor.author | 謝榮賢 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:26:01Z | - |
| dc.date.available | 2013-03-04 | |
| dc.date.copyright | 2013-03-04 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-01-21 | |
| dc.identifier.citation | 1. Jones RHB. Repair of the trigeminal nerve: a review. Aust Dental J. 2010;55:112-119.
2. Mehta RP. Surgical treatment of facial paralysis. Clin Exp Otorhinolaryngol. 2009;2:1-5. 3. Rovak JM, Tung TH, Mackinnon SE. The surgical management of facial nerve injury. Semin Plast Surg. 2004;18:23-30. 4. Chuang DC. Adult brachial plexus reconstruction with the level of injury: review and personal experience. Plast Reconstr Surg. 2009;124:e359-e369. 5. Guntinas-Lichius O, Straesser A, Streppel M. Quality of life after facial nerve repair. Laryngoscope. 2007;117:421-426. 6. Iseli TA, Harris G, Dean NR, Iseli CE, Rosenthal EL. Outcomes of static and dynamic facial nerve repair in head and neck cancer. Laryngoscope. 2010;120:478-483. 7. Allodi I, Udina E, Navarro X. Specificity of peripheral nerve regeneration: Interactions at the axon level. Prog Neurobiol. 2012;DOI: 10.1016/j.pneurobio.2012.05.005. 8. Zochodne DW. The challenges and beauty of peripheral nerve regrowth. J Peripher Nerv Syst. 2012;17:1-18. 9. Verdu E, Navarro X. Comparison of immunohistochemical and functional reinnervation of skin and muscle after peripheral nerve injury. Exp Neurol. 1997;146:187-198. 10. Hsieh YL, Lin WM, Lue JH, Chang MF, Hsieh ST. Effects of 4-methylcatechol on skin reinnervation: promotion of cutaneous nerve regeneration after crushing injury. J Neuropathol Exp Neurol. 2009;68:1269-1281. 11. Griffin JW, Pan B, Polley MA, Hoffman PN, Farah MH. Measuring nerve regeneration in the mouse. Exp Neurol. 2010;223:60-71. 12. McLachlan EM, Keast JR, Bauer M. SP- and CGRP-immunoreactive axons differ in their ability to reinnervate the skin of the rat tail. Neurosci Lett. 1994;176:147-151. 13. Rajan B, Polydefkis M, Hauer P, Griffin JW, McArthur JC. Epidermal reinnervation after intracutaneous axotomy in man. J Comp Neurol. 2003;457:24-36. 14. Kennedy WR, Navarro X, Kamei H. Reinnervation of sweat glands in the mouse: axonal regeneration versus collateral sprouting. Muscle Nerve. 1988;11:603-609. 15. Navarro X, Kennedy WR. Sweat gland reinnervation by sudomotor regeneration after different types of lesions and graft repairs. Exp Neurol. 1989;104:229-234. 16. Koltzenburg M, Habler HJ, Janig W. Functional reinnervation of sweat glands in the adult cat paw by inappropriate postganglionic axons. J Auton Nerv Syst. 1996;60:193-199. 17. Udina E, Cobianchi S, Allodi I, Navarro X. Effects of activity-dependent strategies on regeneration and plasticity after peripheral nerve injuries. Ann Anat. 2011;193:347-353. 18. Bennett MR, McLachlan EM, Taylor RS. The formation of synapses in reinnervated mammalian striated muscle. J Physiol. 1973;233:481-500. 19. Navarro X, Verdu E, Buti M. Comparison of regenerative and reinnervating capabilities of different functional types of nerve fibers. Exp Neurol. 1994;129:217-224. 20. Gorodetskaya N, Grossmann L, Constantin C, Janig W. Functional properties of cutaneous A- and C-fibers 1-15 months after a nerve lesion. J Neurophysiol. 2009;102:3129-3141. 21. Costa LM, Simoes MJ, Mauricio AC, Varejao AS. Methods and protocols in peripheral nerve regeneration experimental research: part IV- kinematic gait analysis to quantify peripheral nerve regeneration in the rat. Int Rev Neurobiol. 2009;127-139. 22. Navarro X, Vivo M, Valero-Cabre A. Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol. 2007;82:163-201. 23. Wood MD, Kemp SWP, Weber C, Borschel GH, Gordon T. Outcome measures of peripheral nerve regeneration. Ann Anat. 2011;193:321-333. 24. Negredo P, Castro J, Lago N, Navarro X, Avendano C. Differential growth of axons from sensory and motor neurons through a regenerative electrode: A stereological, retrograde tracer, and functional study in the rat. Neuroscience. 2004;128:605-615. 25. Andrey I. Potentials and limitations of peripheral nerve injury models in rodents with particular reference to the femoral nerve. Ann Anat. 2011;193:276-285. 26. Vilches JJ, Ceballos D, Verdu E, Navarro X. Changes in mouse sudomotor function and sweat gland innervation with ageing. Auton Neurosci. 2002;95:80-87. 27. Gibbons CH, Illigens BMW, Wang N, Freeman R. Quantification of sweat gland innervation: A clinical-pathologic correlation. Neurology. 2009;72:1479-1486. 28. Luo KR, Chao CC, Chen YT, Huang CM, Yang NC, Kan HW, Wang SH, Yang WS, Hsieh ST. Quantitation of sudomotor innervation on skin biopsies in diabetic neuropathy. J Neuropathol Exp Neurol. 2011;70:930-938. 29. Sulaiman OAR, Gordon T. Role of chronic Schwann cell denervation in poor functional recovery after nerve injuries and experimental strategies to combat it. Neurosurgery. 2009;65 (4 suppl):A105-A114. 30. Gordon T, Chan KM, Sulaiman OAR, Udina E, Amirjani N, Brushart TM. Accelerating axon growth to overcome limitations in functional recovery after peripheral nerve injury. Neurosurgery. 2009;65 (4 suppl):A132-A144. 31. Grothe C, Haastert K, Jungnickel J. Physiological function and putative therapeutic impact of the FGF-2 system in peripheral nerve regeneration--lessons from in vivo studies in mice and rats. Brain Res Rev. 2006;51:293-299. 32. Stephens HE, Belliveau AC, Gupta JS, Mirkovic S, Kablar B. The role of neurotrophins in the maintenance of the spinal cord motor neurons and the dorsal root ganglia proprioceptive sensory neurons. Int J Dev Neurosci. 2005;23:613-620. 33. Gould TW, Enomoto H. Neurotrophic modulation of motor neuron development. Neuroscientist. 2009;15:105-116. 34. Gordon T. The role of neurotrophic factors in nerve regeneration. Neurosurg Focus. 2009;26:E3. 35. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983;16:109-110. 36. Lin YY, Tseng TJ, Hsieh YL, Luo KR, Lin WM, Chiang H, Hsieh ST. Depletion of peptidergic innervation in the gastric mucosa of streptozotocin-induced diabetic rats. Exp Neurol. 2008;213:388-396. 37. Pan CL, Tseng TJ, Lin YH, Chiang MC, Lin WM, Hsieh ST. Cutaneous innervation in Guillain-Barre syndrome: pathology and clinical correlations. Brain. 2003;126:386-397. 38. Griffin JW, Thompson WJ. Biology and pathology of nonmyelinating Schwann cells. Glia. 2008;56:1518-1531. 39. Hoke A, Redett R, Hameed H, Jari R, Zhou C, Li ZB, Griffin JW, Brushart TM. Schwann cells express motor and sensory phenotypes that regulate axon regeneration. J Neurosci. 2006;26:9646-9655. 40. Gardiner NJ. Integrins and the extracellular matrix: key mediators of development and regeneration of the sensory nervous system. Dev Neurobiol. 2011;71:1054-1072. 41. Michaelevski I, Segal-Ruder Y, Rozenbaum M, Medzihradszky KF, Shalem O, Coppola G, Horn-Saban S, Ben-Yaakov K, Dagan SY, Rishal I, Geschwind DH, Pilpel Y, Burlingame AL, Fainzilber M. Signaling to transcription networks in the neuronal retrograde injury response. Sci Signal. 2010;3:ra53. 42. Po MD, Calarco JA, Zhen M. Releasing the inner inhibition for axon regeneration. Neuron. 2012;73:207-209. 43. El Bejjani R, Hammarlund M. Notch signaling inhibits axon regeneration. Neuron. 2012;73:268-278. 44. Chen L, Wang Z, Ghosh-Roy A, Hubert T, Yan D, O'Rourke S, Bowerman B, Wu Z, Jin Y, Chisholm AD. Axon regeneration pathways identified by systematic genetic screening in C. elegans. Neuron. 2011;71:1043-1057. 45. Gordon T, Sulaiman O, Boyd JG. Experimental strategies to promote functional recovery after peripheral nerve injuries. J Peripher Nerv Syst. 2003;8:236-250. 46. Teng KK, Felice S, Kim T, Hempstead BL. Understanding proneurotrophin actions: recent advances and challenges. Dev Neurobiol. 2010;70:350-359. 47. Schecterson LC, Bothwell M. Neurotrophin receptors: old friends with new partners. Dev Neurobiol. 2010;70:332-338. 48. Ernsberger U. Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res. 2009;336:349-384. 49. Montano JA, Perez-Pinera P, Garcia-Suarez O, Cobo J, Vega J. Development and neuronal dependence of cutaneous sensory nerve formations: lessons from neurotrophins. Microsc Res Tech. 2010;73:513-529. 50. Gloster A, Diamond J. Sympathetic nerves in adult rats regenerate normally and restore pilomotor function during an anti-NGF treatment that prevents their collateral sprouting. J Comp Neurol. 1992;326:363-374. 51. Mearow KM, Kril Y, Diamond J. Increased NGF mRNA expression in denervated rat skin. NeuroReport. 1993;4:351-354. 52. Mearow KM, Kril Y, Gloster A, Diamond J. Expression of NGF receptor and GAP-43 mRNA in DRG neurons during collateral sprouting and regeneration of dorsal cutaneous nerves. J Neurobiol. 1994;25:127-142. 53. Sahenk Z, Nagaraja HN, McCracken BS, King WM, Freimer ML, Cedarbaum JM, Mendell JR. NT-3 promotes nerve regeneration and sensory improvement in CMT1A mouse models and in patients. Neurology. 2005;65:681-689. 54. Michalski B, Bain JR, Fahnestock M. Long-term changes in neurotrophic factor expression in distal nerve stump following denervation and reinnervation with motor or sensory nerve. J Neurochem. 2008;105:1244-1252. 55. Geddes AJ, Angka HE, Davies KA, Kablar B. Subpopulations of motor and sensory neurons respond differently to brain-derived neurotrophic factor depending on the presence of the skeletal muscle. Dev Dyn. 2006;235:2175-2184. 56. Eberhardt KA, Irintchev A, Al-Majed AA, Simova O, Brushart TM, Gordon T, Schachner M. BDNF/TrkB signaling regulates HNK-1 carbohydrate expression in regenerating motor nerves and promotes functional recovery after peripheral nerve repair. Exp Neurol. 2006;198:500-510. 57. Patodia S, Raivich G. Downstream effector molecules in successful peripheral nerve regeneration. Cell Tissue Res. 2012;DOI: 10.1007/s00441-012-1416-6. 58. Bosse F. Extrinsic cellular and molecular mediators of peripheral axonal regeneration. Cell Tissue Res. 2012;DOI: 10.1007/s00441-012-1389-5. 59. Benowitz LI, Popovich PG. Inflammation and axon regeneration. Curr Opin Neurol. 2011;24:577-583. 60. Hsieh YL, Chiang H, Tseng TJ, Hsieh ST. Enhancement of cutaneous nerve regeneration by 4-methylcatechol in resiniferatoxin-induced neuropathy. J Neuropathol Exp Neurol. 2008;67:93-104. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63167 | - |
| dc.description.abstract | 在外傷或腫瘤切除後的神經缺損,常需利用神經移植手術來重建神經的功能。而在神經移植後,末梢組織神經再生決定了最後功能的恢復。之前研究神經功能的恢復程度主要是根據切片形態學來做評估,很少研究是根據末梢神經再生來探討功能恢復程度。我們利用小鼠神經移植手術模式來研究各種末梢組織的神經再生及神經滋養因子表現。手術方式是將小鼠右側的坐骨神經切一段下來,然後再利用顯微手術,將神經原位縫回去。我們利用神經再生指數來做各種末梢組織神經再生的比較,神經再生指數的定義是手術側的神經定量數據除以對照側的神經定量數據。另外我們利用逆轉錄-聚合酶反應(RT-PCR)來定量小鼠足墊皮膚及足底肌肉各種神經滋養因子信使RNA表現的量。在手術後3個月,足底肌肉的神經再生比皮膚的神經再生好(P<0.0001),也比汗腺自律神經好(P<0.0001)。汗腺自律神經再生也比皮膚的神經再生好(P=0.014)。逆轉錄-聚合酶反應(RT-PCR)定量神經滋養因子信使RNA顯示足底肌肉的腦源性神經滋養因子(brain-derived neurotrophic factor, BDNF)、神經膠質細胞來源神經滋養因子(glial cell line-derived neurotrophic factor , GDNF)、神經滋養因子3(neurotrophin 3, NT3) 信使RNA 在手術側較高。相對的在小鼠足墊皮膚各種神經滋養因子信使RNA的量在手術側及對照側都相類似。在神經移植後,相對於皮膚而言,足底肌肉達到最好的神經再生。這可能是因為BDNF、GDNF、NT3在肌肉有較大量的表現。 | zh_TW |
| dc.description.abstract | Reinnervation of target tissues determines functional outcomes after nerve grafting, which is important in traumatic injury due to accidents or consequences due to surgical removal of tumors. Previous studies documented the influences of nerve repair mainly based on nerve morphometry but rarely compared the final outcomes according to target reinnervation patterns by nerve fibers of different categories. To study the differences in target reinnervation and expression patterns of trophic factors in target tissues, we used a mouse model of sciatic nerve graft. We analyzed the innervation indexes of different target tissues after transection-reimplantation on the sciatic nerve, which were defined as a parameter on the operated side normalized to that on the control side. A reverse-transcription polymerase chain reaction (RT-PCR) was performed in the footpad skin and plantar muscle to study mRA expression of various neurotrophins. The results of target reinnervation quantification showed that muscle reinnervation appeared to be the best compared to the skin reinnervation (p < 0.0001) and sweat gland reinnervation (p < 0.0001) at postoperative month 3. The sudomotor reinnervation was relatively higher than the cutaneous reinnervation (p = 0.014). The abundance of trophin transcripts for brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and neurotrophin 3 (NT3) was higher in plantar muscles on the operated side than that on the control side. In contrast, transcripts of BDNF, GDNF, nerve growth factor, and NT3 were all similar in the footpad skin between the operated and control sides. The study results suggested that compared to the skin, muscles achieved the best reinnervation after nerve grafting which was related to higher expressions of BDNF, GDNF, and NT3 in muscles than the skin. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:26:01Z (GMT). No. of bitstreams: 1 ntu-102-D93446003-1.pdf: 1680861 bytes, checksum: 407a4d1070870b115c82b66a99a0ecd0 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Contents
中文摘要 1 Abstract- 2 Chapter 1. Introduction 4 Chapter 2. Material and methods 5 Animal surgery 5 Nerve morphometry 6 Immunohistochemistry (IHC) of footpads and quantification of skin innervation 6 Quantification of sweat gland innervation 7 Quantitative assessment of muscular innervation 8 Neurophysiology of motor and sensory nerves after nerve grafting 8 Innervation index 8 Expression of neurotrophins in the skin and muscle 9 Study design and statistical analysis 9 Chapter 3. Results 10 Morphometry of tibial and sural nerves 10 Reinnervation of the skin, sweat glands, and muscles after nerve Grafting 10 Neurophysiology of motor and sensory nerves after nerve Grafting 11 Innervation index 11 Expression of trophins in the skin and muscle 12 Chapter 4. Discussion 12 Differences in muscle, cutaneous, and sudomotor innervation 12 Differential expressions of trophins: relation to different patterns of target reinnervation 13 Comprehensive assessments of target reinnervation among different categories of nerves 14 References 16 Table Contents Table 1 21 Figure Contents Figure 1. Degeneration and regeneration of tibial and sural nerves after sciatic nerve transection and grafting 22 Figure 2. Morphometry of tibial and sural nerves after sciatic nerve transection and grafting 24 Figure 3. Skin innervation after the nerve grafting of the sciatic nerve at postoperative month 3 25 Figure 4. Sweat gland innervation after sciatic nerve grafting at postoperative month 3 26 Figure 5. Muscle innervation after sciatic nerve grafting at postoperative month 3 27 Figure 6. Patterns of nerve conduction studies after nerve grafting of the sciatic nerve at postoperative month 3 28 Figure 7. Comparison of innervation indexes among different types of nerve fibers 30 Figure 8. Neurotrophin expressions of the plantar muscle and footpad skin after sciatic nerve grafting at postoperative month 3 31 | |
| dc.language.iso | en | |
| dc.subject | 汗腺神經支配 | zh_TW |
| dc.subject | 神經再生 | zh_TW |
| dc.subject | 肌肉神經支配 | zh_TW |
| dc.subject | 神經滋養因子 | zh_TW |
| dc.subject | 皮膚神經支配 | zh_TW |
| dc.subject | Skin innervation | en |
| dc.subject | Sweat gland innervation | en |
| dc.subject | Muscle innervation | en |
| dc.subject | Neurotrophin | en |
| dc.subject | Nerve regeneration | en |
| dc.title | 神經移植後之研究末梢組織神經再生及神經滋養因子表現 | zh_TW |
| dc.title | Nerve grafting after injury reinnervation of targets and trophic factor expression | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 簡雄飛,江皓郁,曾柘榮,謝侑霖 | |
| dc.subject.keyword | 皮膚神經支配,汗腺神經支配,肌肉神經支配,神經滋養因子,神經再生, | zh_TW |
| dc.subject.keyword | Skin innervation,Sweat gland innervation,Muscle innervation,Neurotrophin,Nerve regeneration, | en |
| dc.relation.page | 32 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-01-21 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | zh_TW |
| Appears in Collections: | 解剖學暨細胞生物學科所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-102-1.pdf Restricted Access | 1.64 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
