請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63162完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃敏銓 | |
| dc.contributor.author | Chi-Hau Chen | en |
| dc.contributor.author | 陳啓豪 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:25:47Z | - |
| dc.date.available | 2013-03-04 | |
| dc.date.copyright | 2013-03-04 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-01-21 | |
| dc.identifier.citation | Al-azawi D, Kelly G, et al. (2006). CA 15-3 is predictive of response and disease recurrence following treatment in locally advanced breast cancer. BMC Cancer. 6: 220.
Aplin JD (1991). Glycans as biochemical markers of human endometrial secretory differentiation. J Reprod Fertil. 92(2): 525-541. Bishop EA, Lengyel ER, et al. (2011). The expression of hepatocyte growth factor (HGF) and c-Met in uterine serous carcinoma. Gynecol Oncol. 121(1): 218-223. Bitler BG, Goverdhan A, et al. (2010). MUC1 regulates nuclear localization and function of the epidermal growth factor receptor. J Cell Sci. 123(Pt 10): 1716-1723. Bokhman JV (1983). Two pathogenetic types of endometrial carcinoma. Gynecol Oncol. 15(1): 10-17. Bromberg J (2002). Stat proteins and oncogenesis. J Clin Invest. 109(9): 1139-1142. Chauhan SC, Vannatta K, et al. (2009). Expression and functions of transmembrane mucin MUC13 in ovarian cancer. Cancer Res. 69(3): 765-774. Chen CL, Hsieh FC, et al. (2007). Stat3 activation in human endometrial and cervical cancers. Br J Cancer. 96(4): 591-599. Dedes KJ, Wetterskog D, et al. (2011). Emerging therapeutic targets in endometrial cancer. Nat Rev Clin Oncol. 8(5): 261-271. Dellinger TH and Monk BJ (2009). Systemic therapy for recurrent endometrial cancer: a review of North American trials. Expert Rev Anticancer Ther. 9(7): 905-916. Devarajan E and Huang S (2009). STAT3 as a central regulator of tumor metastases. Curr Mol Med. 9(5): 626-633. Dimri M, Naramura M, et al. (2007). Modeling breast cancer-associated c-Src and EGFR overexpression in human MECs: c-Src and EGFR cooperatively promote aberrant three-dimensional acinar structure and invasive behavior. Cancer Res. 67(9): 4164-4172. Fung-Kee-Fung M, Dodge J, et al. (2006). Follow-up after primary therapy for endometrial cancer: a systematic review. Gynecol Oncol. 101(3): 520-529. Germain D and Frank DA (2007). Targeting the cytoplasmic and nuclear functions of signal transducers and activators of transcription 3 for cancer therapy. Clin Cancer Res. 13(19): 5665-5669. Haftchenary S, Avadisian M, et al. (2011). Inhibiting aberrant Stat3 function with molecular therapeutics: a progress report. Anticancer Drugs. 22(2): 115-127. Haura EB, Turkson J, et al. (2005). Mechanisms of disease: Insights into the emerging role of signal transducers and activators of transcription in cancer. Nat Clin Pract Oncol. 2(6): 315-324. Hebbar V, Damera G, et al. (2005). Differential expression of MUC genes in endometrial and cervical tissues and tumors. BMC Cancer. 5: 124. Hecht JL and Mutter GL (2006). Molecular and pathologic aspects of endometrial carcinogenesis. J Clin Oncol. 24(29): 4783-4791. Herbst RS, Fukuoka M, et al. (2004). Gefitinib--a novel targeted approach to treating cancer. Nat Rev Cancer. 4(12): 956-965. Higuchi T, Orita T, et al. (2004). MUC20 suppresses the hepatocyte growth factor-induced Grb2-Ras pathway by binding to a multifunctional docking site of met. Mol Cell Biol. 24(17): 7456-7468. Higuchi T, Orita T, et al. (2004). Molecular cloning, genomic structure, and expression analysis of MUC20, a novel mucin protein, up-regulated in injured kidney. J Biol Chem. 279(3): 1968-1979. Hollingsworth MA and Swanson BJ (2004). Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 4(1): 45-60. Hsu WM, Che MI, et al. (2011). B4GALNT3 expression predicts a favorable prognosis and suppresses cell migration and invasion via beta(1) integrin signaling in neuroblastoma. Am J Pathol. 179(3): 1394-1404. Huang J, Che MI, et al. (2009). Overexpression of MUC15 activates extracellular signal-regulated kinase 1/2 and promotes the oncogenic potential of human colon cancer cells. Carcinogenesis. 30(8): 1452-1458. Huang MC, Chen HY, et al. (2006). C2GnT-M is downregulated in colorectal cancer and its re-expression causes growth inhibition of colon cancer cells. Oncogene. 25(23): 3267-3276. Inata J, Hattori N, et al. (2007). Circulating KL-6/MUC1 mucin carrying sialyl Lewisa oligosaccharide is an independent prognostic factor in patients with lung adenocarcinoma. Int J Cancer. 120(12): 2643-2649. Itoh Y, Kamata-Sakurai M, et al. (2008). Identification and expression of human epiglycanin/MUC21: a novel transmembrane mucin. Glycobiology. 18(1): 74-83. Jemal A, Siegel R, et al. (2008). Cancer statistics, 2008. CA Cancer J Clin. 58(2): 71-96. Kitchener HC and Trimble EL (2009). Endometrial cancer state of the science meeting. Int J Gynecol Cancer. 19(1): 134-140. Kufe DW (2009). Mucins in cancer: function, prognosis and therapy. Nat Rev Cancer. 9(12): 874-885. Lay V, Yap J, et al. (2012). Interleukin 11 regulates endometrial cancer cell adhesion and migration via STAT3. Int J Oncol. 41(2): 759-764. Levy DE and Darnell JE, Jr. (2002). Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 3(9): 651-662. Marshall J (2006). Clinical implications of the mechanism of epidermal growth factor receptor inhibitors. Cancer. 107(6): 1207-1218. Merlin J, Stechly L, et al. (2011). Galectin-3 regulates MUC1 and EGFR cellular distribution and EGFR downstream pathways in pancreatic cancer cells. Oncogene. 30(22): 2514-2525. Morrison C, Merati K, et al. (2007). The mucin expression profile of endometrial carcinoma and correlation with clinical-pathologic parameters. Appl Immunohistochem Mol Morphol. 15(4): 426-431. Ponnusamy MP, Lakshmanan I, et al. (2010). MUC4 mucin-induced epithelial to mesenchymal transition: a novel mechanism for metastasis of human ovarian cancer cells. Oncogene. 29(42): 5741-5754. Senapati S, Das S, et al. (2010). Mucin-interacting proteins: from function to therapeutics. Trends Biochem Sci. 35(4): 236-245. Shyu MK, Lin MC, et al. (2008). MUC1 expression is increased during human placental development and suppresses trophoblast-like cell invasion in vitro. Biol Reprod. 79(2): 233-239. Shyu MK, Lin MC, et al. (2007). Mucin 15 is expressed in human placenta and suppresses invasion of trophoblast-like cells in vitro. Hum Reprod. 22(10): 2723-2732. Singh PK, Behrens ME, et al. (2008). Phosphorylation of MUC1 by Met modulates interaction with p53 and MMP1 expression. J Biol Chem. 283(40): 26985-26995. Singh PK and Hollingsworth MA (2006). Cell surface-associated mucins in signal transduction. Trends Cell Biol. 16(9): 467-476. Sivridis E, Giatromanolaki A, et al. (2002). Patterns of episialin/MUC1 expression in endometrial carcinomas and prognostic relevance. Histopathology. 40(1): 92-100. Tang JZ, Kong XJ, et al. (2010). STAT3alpha is oncogenic for endometrial carcinoma cells and mediates the oncogenic effects of autocrine human growth hormone. Endocrinology. 151(9): 4133-4145. van Wijk FH, van der Burg ME, et al. (2009). Management of recurrent endometrioid endometrial carcinoma: an overview. Int J Gynecol Cancer. 19(3): 314-320. Vergara D, Merlot B, et al. (2010). Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett. 291(1): 59-66. Watari H, Mitamura T, et al. (2009). Survival and failure pattern of patients with endometrial cancer after extensive surgery including systematic pelvic and para-aortic lymphadenectomy followed by adjuvant chemotherapy. Int J Gynecol Cancer. 19(9): 1585-1590. Yu H and Jove R (2004). The STATs of cancer--new molecular targets come of age. Nat Rev Cancer. 4(2): 97-105. Yu H, Kortylewski M, et al. (2007). Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 7(1): 41-51. Yu H, Pardoll D, et al. (2009). STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 9(11): 798-809. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63162 | - |
| dc.description.abstract | 研究背景:在台灣,子宮內膜癌是第二常見的婦科癌症,其發生率還有逐年增加的趨勢。雖然近年醫學對於癌症治療有長足的進步,但是目前對於晚期或是復發性子宮內膜癌的治療效果仍是非常差。為了進一步改善患者的預後,醫師需要闡明影響病人存活的危險因子以及開發新的治療策略。
近年的研究發現黏液蛋白(mucin)在腫瘤癌化及侵襲過程中都占有重要角色。因此,許多腫瘤都可以見到黏液蛋白的過度表現與病人較差的存活率有相關性,包括乳癌、卵巢癌、前列腺癌、大腸癌和肺癌都是如此。黏液蛋白第20型(MUC20)是一個近期發現的細胞膜結合型黏液蛋白,其大量表現於腎臟、中量表現於胎盤、大腸、肺、前列腺和肝等器官中。黏液蛋白第20型在腎細胞中的作用已被證明是肝細胞生長因子(HGF)所誘導之Grb2‒Ras訊息傳導路徑的負向調節器。 研究目的:雖然黏液蛋白在許多腫瘤的惡性過程中都扮演著關鍵的作用,並且已被作為診斷標誌和可行的治療標的,然而,黏液蛋白第20型在子宮內膜癌中的所扮演的角色仍是未知。 研究方法:本研究首先利用免疫組織化學方法來分析97個子宮內膜癌組織和16個正常內膜組織檢體中的黏液蛋白第20型表現量和臨床表徵的相關性。其後,利用兩種子宮內膜癌細胞株HEC-1A和RL95-2來分析黏液蛋白第20型表現量改變對癌細胞惡性型態的影響,包括進行體外環境中癌細胞的生長、移動、和侵襲能力測試,以及進行重度聯合免疫缺陷(SCID)小鼠體內的腫瘤生長能力試驗。西方墨點法則用來分析黏液蛋白第20型所調控的訊息傳導路徑。 研究結果:本研究顯示在癌組織檢體中具有黏液蛋白第20型過量表現的比例明顯高於正常組織。再以癌組織做分析,黏液蛋白第20型過量表現又與較差預後的組織學型別(第2型子宮內膜癌)明顯相關。利用多變數分析方法更確定了黏液蛋白第20型的過量表現為影響病人存活的獨立預後因子。在癌細胞株中過度表現黏液蛋白第20型顯著的促進癌細胞的生長、移動、和侵襲能力,以及增加腫瘤在小鼠體內的生長速度。再者,黏液蛋白第20型所促進的侵襲能力可以被表皮生長因子接受器(EGFR)的抑制劑erlotinib所明顯抑制,以及過度表現黏液蛋白第20型會顯著增強表皮生長因子(EGF)所媒介之移動和侵襲能力,這代表了表皮生長因子接受器在黏液蛋白第20型所影響的惡性型態中扮演了關鍵的角色。此外,過度表現黏液蛋白第20型會明顯加強表皮生長因子所誘導的表皮生長因子接受器和其下游訊號傳導與轉錄活化因子3(STAT3)的磷酸化,而利用STAT3 的抑制劑Stattic同樣可以顯著抑制黏液蛋白第20型所調控的侵襲行為。 研究結論:本研究發現黏液蛋白第20型是子宮內膜癌的新型預後因子,而黏液蛋白第20型過量表現會藉由活化EGFR‒STAT3 訊息傳導路徑來增強表皮生長因子所媒介的侵襲行為。此研究結果將助於未來研究人類子宮內膜癌的臨床診斷、發病機制、與治療模式。 | zh_TW |
| dc.description.abstract | Background: Endometrial cancer (EC) is the second most common gynecologic cancer in Taiwan, and its incidence has increased in recent years. Although there has been considerable progress in the treatment of malignancy over past decade, the survival rate of advanced and recurrent EC remains poor. To further improve on outcome for patients with this disease, physicians need to identify risk factors for poor survival and develop new treatment strategies.
Recent studies have shown that mucins play important roles in carcinogenesis and tumor invasion. Thus, a relationship between mucins overexpression and poor survival was found in many human tumors, including breast, ovarian, prostatic, colonic, and lung carcinomas. MUC20, a recently identified membrane-bound mucin, is highly expressed in kidney and moderately in placenta, colon, lung, prostate, and liver. MUC20 in kidney cells has been demonstrated to be a negative regulator in the hepatocyte growth factor (HGF)-induced Grb2‒Ras pathway. Objective: Although mucins play a critical role in the malignancy of various tumors and have been identified as diagnostic markers and as attractive therapeutic targets, however, the role of MUC20 in EC is still unknown. Methods: The relationship between MUC20 expression and clinical characteristics of EC was analyzed in 97 EC tumors and 16 normal tissues by immunohistochemistry. Effects of MUC20 on EC cells, HEC-1A and RL95-2, were examined by in vitro cell growth, migration, and invasion assays, as well as in vivo tumor growth in severe combined immunodeficiency (SCID) mouse model. Western blotting was performed to analyze signaling pathways modulated by MUC20. Results: MUC20 expression was significantly higher in EC tumors compared with the normal tissue. High levels of MUC20 expression in EC tumors were correlated with an unfavorable histologic subtype (type II EC). Furthermore, MUC20 was an independent prognostic factor for poor survival as evaluated by multivariate analyses. Overexpression of MUC20 in EC cells significantly enhanced cell growth, migration, and invasion, as well as tumor growth in vivo. The MUC20-enhanced invasive behavior was significantly blocked by erlotinib, an epidermal growth factor receptor (EGFR) inhibitor. Moreover, MUC20 overexpression enhanced EGF-mediated migration and invasion, suggesting a critical role of EGFR in MUC20-mediated effects. We found that MUC20 overexpression could enhance EGF-induced phosphorylation of EGFR and signal transducer and activator of transcription 3 (STAT3). Inhibition of the STAT3 activity by its inhibitor Stattic significantly suppressed the MUC20-enhanced invasive behavior. Conclusions: MUC20 is a novel prognostic factor for EC and its overexpression enhances EGF-triggered invasive behavior through activation of EGFR‒STAT3 pathway. These findings may assist to the diagnosis, pathogenesis, and therapy of human EC. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:25:47Z (GMT). No. of bitstreams: 1 ntu-102-D98446001-1.pdf: 5817405 bytes, checksum: c48d31ee41718f3cfc453a94993e4a10 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Signatures of Committees...I
Acknowledgement...II Abstract (Chinese)...III Abstract (English)...V Chapter I. General Introduction...1 1.1 Clinical presentation of endometrial cancer progression...2 1.2 Roles of mucins in cancer...3 1.3 Biologic functions of MUC20...5 1.4 EGFR–STAT3 signaling pathway...5 Chapter II. Hypothesis and Specific Aims...7 2.1 Hypothesis...8 2.2 Specific Aims...8 Chapter III. Materials and Methods...9 3.1 Experimental Design...10 3.2 Materials and Methods...11 3.2.1 Part I: Expression of MUC20 in endometrial cancer...11 3.2.1.1 Patient samples...11 3.2.1.2 Immunohistochemistry...11 3.2.1.3 Scoring of Immunohistochemical analysis...12 3.2.1.4 Statistical analysis...13 3.2.2 Part II: Functions of MUC20 in endometrial cancer...14 3.2.2.1 Cell lines and cell culture...14 3.2.2.2 Generation of MUC20 recombinant proteins and polyclonal antibody...14 3.2.2.3 Overexpression of MUC20 in endometrial cancer cells...15 3.2.2.4 Western blotting...15 3.2.2.5 Cell growth assay...16 3.2.2.6 Cell migration assay...16 3.2.2.7 Matrigel invasion assay...17 3.2.2.8 Tumor growth in a SCID mouse model...17 3.2.2.9 Co-immunoprecipitation analyses...18 3.2.2.10 Statistical analysis...19 Chapter IV. Results...21 4.1 Part I: Expression of MUC20 in endometrial cancer...22 4.1.1 MUC20 is frequently overexpressed in endometrial cancer...22 4.1.2 MUC20 overexpression is associated with poor survival in endometrial cancer...22 4.2 Part II: Functions of MUC20 in endometrial cancer...40 4.2.1 Effects of MUC20 on endometrial cancer cells in vitro...40 4.2.2 Effects of MUC20 on endometrial cancer cells in vivo...40 4.2.3 MUC20 overexpression enhances EGF-induced malignant phenotypes...41 4.2.4 MUC20 modulates signaling transduction in endometrial cancer cells...41 4.2.5 MUC20 directly interacts with Src...43 Chapter V. Discussion...62 5.1 Roles of MUC20 in endometrial cancer...63 5.2 MUC20 exerts its biological functions in a tissue-specific manner...63 5.3 Prognostic and therapeutic values of MUC20 in endometrial cancer patients...64 5.4 EGFR‒STAT3 pathway in endometrial cancer patients...66 5.5 Advantages of overexpression over knockdown of MUC20 in cancer cells...67 5.6 Proposed mechanism of MUC20 in human endometrial cancer...68 Chapter VI. Conclusions and Future Perspectives...70 References ...72 Appendix...80 | |
| dc.language.iso | en | |
| dc.subject | 子宮內膜癌 | zh_TW |
| dc.subject | 黏液蛋白 | zh_TW |
| dc.subject | 表皮生長因子接受器 | zh_TW |
| dc.subject | 訊號傳導與轉錄活化因子3 | zh_TW |
| dc.subject | 腫瘤標記 | zh_TW |
| dc.subject | 侵襲能力 | zh_TW |
| dc.subject | invasion | en |
| dc.subject | endometrial cancer | en |
| dc.subject | mucin | en |
| dc.subject | EGFR | en |
| dc.subject | STAT3 | en |
| dc.subject | marker | en |
| dc.title | 黏液蛋白第20型在人類子宮內膜癌中的表現與功能 | zh_TW |
| dc.title | Expression and Functions of MUC20 in Human Endometrial Cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林鶴雄,李明學,徐明洸,賴逸儒,廖玟潔 | |
| dc.subject.keyword | 子宮內膜癌,黏液蛋白,表皮生長因子接受器,訊號傳導與轉錄活化因子3,腫瘤標記,侵襲能力, | zh_TW |
| dc.subject.keyword | endometrial cancer,mucin,EGFR,STAT3,marker,invasion, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-01-22 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 解剖學暨生物細胞學研究所 | zh_TW |
| 顯示於系所單位: | 解剖學暨細胞生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 5.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
