請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63146完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭彥彬 | |
| dc.contributor.author | Jenny Zwei-Chieng Chang | en |
| dc.contributor.author | 張瑞青 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:25:00Z | - |
| dc.date.available | 2023-01-21 | |
| dc.date.copyright | 2013-03-04 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-01-22 | |
| dc.identifier.citation | 1. Pindborg, J.J., et al., Oral submucous fibrosis as a precancerous condition. Scand J Dent Res, 1984. 92(3): p. 224-9.
2. Pindborg, J.J. and S.M. Sirsat, Oral submucous fibrosis. Oral Surg Oral Med Oral Pathol, 1966. 22(6): p. 764-79. 3. Angadi, P.V. and K.P. Rekha, Oral submucous fibrosis: a clinicopathologic review of 205 cases in Indians. Oral Maxillofac Surg, 2011. 15(1): p. 15-19. 4. Sirsat, S.M. and J.J. Pindborg, Subepithelial changes in oral submucous fibrosis. Acta Pathol Microbiol Scand, 1967. 70(2): p. 161-73. 5. Yusuf, H. and S.L. Yong, Oral submucous fibrosis in a 12-year-old Bangladeshi boy: a case report and review of literature. Int J Paediatr Dent, 2002. 12(4): p. 271-6. 6. Kwan, H.W., A statistical study on oral carcinomas in Taiwan with emphasis on the relationship with betel nut chewing: a preliminary report. Taiwan Yi Xue Hui Za Zhi, 1976. 75(9): p. 497-505. 7. Rajendran, R., Oral submucous fibrosis: etiology, pathogenesis, and future research. Bull World Health Organ, 1994. 72(6): p. 985-96. 8. Sinor, P.N., et al., A case-control study of oral submucous fibrosis with special reference to the etiologic role of areca nut. J Oral Pathol Med, 1990. 19(2): p. 94-8. 9. Dave, B.J., A.H. Trivedi, and S.G. Adhvaryu, Role of areca nut consumption in the cause of oral cancers. A cytogenetic assessment. Cancer, 1992. 70(5): p. 1017-23. 10. Jeng, J.H., M.C. Chang, and L.J. Hahn, Role of areca nut in betel quid-associated chemical carcinogenesis: current awareness and future perspectives. Oral Oncol, 2001. 37(6): p. 477-92. 11. Rajalalitha, P. and S. Vali, Molecular pathogenesis of oral submucous fibrosis--a collagen metabolic disorder. J Oral Pathol Med, 2005. 34(6): p. 321-8. 12. Chiang, C.P., et al., Expression of proliferating cell nuclear antigen (PCNA) in oral submucous fibrosis, oral epithelial hyperkeratosis and oral epithelial dysplasia in Taiwan. Oral Oncol, 2000. 36(4): p. 353-9. 13. Chiang, C.P., et al., Expression of p53 protein in oral submucous fibrosis, oral epithelial hyperkeratosis, and oral epithelial dysplasia. J Formos Med Assoc, 2000. 99(3): p. 229-34. 14. Maher, R., et al., Role of areca nut in the causation of oral submucous fibrosis: a case-control study in Pakistan. J Oral Pathol Med, 1994. 23(2): p. 65-9. 15. Murti, P.R., et al., Etiology of oral submucous fibrosis with special reference to the role of areca nut chewing. J Oral Pathol Med, 1995. 24(4): p. 145-52. 16. Shah, N. and P.P. Sharma, Role of chewing and smoking habits in the etiology of oral submucous fibrosis (OSF): a case-control study. J Oral Pathol Med, 1998. 27(10): p. 475-9. 17. Pillai, R., P. Balaram, and K.S. Reddiar, Pathogenesis of oral submucous fibrosis. Relationship to risk factors associated with oral cancer. Cancer, 1992. 69(8): p. 2011-20. 18. Chen, H.M., et al., HLA typing in Taiwanese patients with oral submucous fibrosis. J Oral Pathol Med, 2004. 33(4): p. 191-9. 19. Canniff, J.P., et al., HLA-typing in oral submucous fibrosis. Tissue Antigens, 1985. 26(2): p. 138-42. 20. Rajendran, R. and Vidyarani, Familial occurrence of oral submucous fibrosis: report of eight families from northern Kerala, south India. Indian J Dent Res, 2004. 15(4): p. 139-44. 21. Chiang, C.P., et al., High incidence of autoantibodies in Taiwanese patients with oral submucous fibrosis. J Oral Pathol Med, 2002. 31(7): p. 402-9. 22. Ko, Y.C., et al., Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med, 1995. 24(10): p. 450-3. 23. Thomas, S.J. and R. MacLennan, Slaked lime and betel nut cancer in Papua New Guinea. Lancet, 1992. 340(8819): p. 577-8. 24. Sen, S., G. Talukder, and A. Sharma, Betel cytotoxicity. J Ethnopharmacol, 1989. 26(3): p. 217-47. 25. Ko, Y.C., et al., Prevalence of betel quid chewing habit in Taiwan and related sociodemographic factors. J Oral Pathol Med, 1992. 21(6): p. 261-4. 26. Yang, Y.H., et al., Incidence rates of oral cancer and oral pre-cancerous lesions in a 6-year follow-up study of a Taiwanese aboriginal community. J Oral Pathol Med, 2005. 34(10): p. 596-601. 27. Yang, Y.H., et al., Epidemiological survey of oral submucous fibrosis and leukoplakia in aborigines of Taiwan. J Oral Pathol Med, 2001. 30(4): p. 213-9. 28. Auluck, A., et al., Oral submucous fibrosis, a clinically benign but potentially malignant disease: report of 3 cases and review of the literature. J Can Dent Assoc, 2008. 74(8): p. 735-40. 29. Aziz, S.R., Coming to America: betel nut and oral submucous fibrosis. J Am Dent Assoc, 2010. 141(4): p. 423-8. 30. Reichart, P.A. and H.P. Phillipsen, Betel chewer's mucosa--a review. J Oral Pathol Med, 1998. 27(6): p. 239-42. 31. Squier, C.A. and N.W. Johnson, Permeability of oral mucosa. Br Med Bull, 1975. 31(2): p. 169-75. 32. Haque, M.F., et al., Immunolocalization of cytokines and growth factors in oral submucous fibrosis. Cytokine, 1998. 10(9): p. 713-9. 33. Haque, M.F., et al., Oral submucous fibrosis patients have altered levels of cytokine production. J Oral Pathol Med, 2000. 29(3): p. 123-8. 34. Mauviel, A., Cytokine regulation of metalloproteinase gene expression. J Cell Biochem, 1993. 53(4): p. 288-95. 35. Meghji, S., et al., An in-vitro comparison of human fibroblasts from normal and oral submucous fibrosis tissue. Arch Oral Biol, 1987. 32(3): p. 213-5. 36. de Waal, J., et al., The fibroblast population in oral submucous fibrosis. J Oral Pathol Med, 1997. 26(2): p. 69-74. 37. Tsai, C.C., R.H. Ma, and T.Y. Shieh, Deficiency in collagen and fibronectin phagocytosis by human buccal mucosa fibroblasts in vitro as a possible mechanism for oral submucous fibrosis. J Oral Pathol Med, 1999. 28(2): p. 59-63. 38. Shieh, T.Y. and J.F. Yang, Collagenase activity in oral submucous fibrosis. Proc Natl Sci Counc Repub China B, 1992. 16(2): p. 106-10. 39. Kuo, M.Y., et al., Collagen biosynthesis in human oral submucous fibrosis fibroblast cultures. J Dent Res, 1995. 74(11): p. 1783-8. 40. Ma, R.H., C.C. Tsai, and T.Y. Shieh, Increased lysyl oxidase activity in fibroblasts cultured from oral submucous fibrosis associated with betel nut chewing in Taiwan. J Oral Pathol Med, 1995. 24(9): p. 407-12. 41. Trivedy, C., et al., The upregulation of lysyl oxidase in oral submucous fibrosis and squamous cell carcinoma. J Oral Pathol Med, 1999. 28(6): p. 246-51. 42. van Wyk, C.W., H.A. Seedat, and V.M. Phillips, Collagen in submucous fibrosis: an electron-microscopic study. J Oral Pathol Med, 1990. 19(4): p. 182-7. 43. Borle, R.M. and S.R. Borle, Management of oral submucous fibrosis: a conservative approach. J Oral Maxillofac Surg, 1991. 49(8): p. 788-91. 44. Kakar, P.K., R.K. Puri, and V.P. Venkatachalam, Oral submucous fibrosis--treatment with hyalase. J Laryngol Otol, 1985. 99(1): p. 57-9. 45. Gupta, D. and S.C. Sharma, Oral submucous fibrosis--a new treatment regimen. J Oral Maxillofac Surg, 1988. 46(10): p. 830-3. 46. Rajendran, R., V. Rani, and S. Shaikh, Pentoxifylline therapy: a new adjunct in the treatment of oral submucous fibrosis. Indian J Dent Res, 2006. 17(4): p. 190-8. 47. Maher, R., et al., Evaluation of multiple micronutrient supplementation in the management of oral submucous fibrosis in Karachi, Pakistan. Nutr Cancer, 1997. 27(1): p. 41-7. 48. Haque, M.F., et al., Interferon gamma (IFN-gamma) may reverse oral submucous fibrosis. J Oral Pathol Med, 2001. 30(1): p. 12-21. 49. Kumar, A., et al., Efficacy of lycopene in the management of oral submucous fibrosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007. 103(2): p. 207-13. 50. Rai, B., et al., Possible action mechanism for curcumin in pre-cancerous lesions based on serum and salivary markers of oxidative stress. J Oral Sci, 2010. 52(2): p. 251-6. 51. Tai, Y.S., et al., Oral administration of milk from cows immunized with human intestinal bacteria leads to significant improvements of symptoms and signs in patients with oral submucous fibrosis. J Oral Pathol Med, 2001. 30(10): p. 618-25. 52. Hastak, K., et al., Effect of turmeric oil and turmeric oleoresin on cytogenetic damage in patients suffering from oral submucous fibrosis. Cancer Lett, 1997. 116(2): p. 265-9. 53. Jiang, X. and J. Hu, Drug treatment of oral submucous fibrosis: a review of the literature. J Oral Maxillofac Surg, 2009. 67(7): p. 1510-5. 54. Jacob, B.J., et al., Betel quid without tobacco as a risk factor for oral precancers. Oral Oncol, 2004. 40(7): p. 697-704. 55. Phatak, A.G., Oral submucous fibrosis. BMJ, 1995. 310(6983): p. 871. 56. Andrew, A. and A. Barchowsky, Nickel-induced plasminogen activator inhibitor-1 expression inhibits the fibrinolytic activity of human airway epithelial cells. Toxicol Appl Pharmacol, 2000. 168(1): p. 50-7. 57. Kincaid-Smith, P., Coagulation and renal disease. Kidney Int, 1972. 2(4): p. 183-90. 58. Enestrom, S., H. Druid, and L. Rammer, Fibrin deposition in the kidney in post-ischaemic renal damage. Br J Exp Pathol, 1988. 69(3): p. 387-94. 59. Faulk, W.P., et al., Hemostasis and fibrinolysis in renal transplantation. Semin Thromb Hemost, 1989. 15(1): p. 88-98. 60. Wang, Y., et al., Expression of tissue type plasminogen activator and type 1 plasminogen activator inhibitor, and persistent fibrin deposition in chronic renal allograft failure. Kidney Int, 1997. 52(2): p. 371-7. 61. Wang, Y., et al., Up-regulation of type 1 plasminogen activator inhibitor messenger RNA with thrombotic changes in renal grafts. Transplantation, 1996. 61(5): p. 684-9. 62. Wendt, T., et al., Tissue factor expression in an animal model of hydronephrosis. Nephrol Dial Transplant, 1995. 10(10): p. 1820-8. 63. Chambers, R.C., et al., Thrombin is a potent inducer of connective tissue growth factor production via proteolytic activation of protease-activated receptor-1. J Biol Chem, 2000. 275(45): p. 35584-91. 64. Howell, D.C., et al., Direct thrombin inhibition reduces lung collagen, accumulation, and connective tissue growth factor mRNA levels in bleomycin-induced pulmonary fibrosis. Am J Pathol, 2001. 159(4): p. 1383-95. 65. Blanc-Brude, O.P., et al., Factor Xa stimulates fibroblast procollagen production, proliferation, and calcium signaling via PAR1 activation. Exp Cell Res, 2005. 304(1): p. 16-27. 66. Howell, D.C., et al., Absence of proteinase-activated receptor-1 signaling affords protection from bleomycin-induced lung inflammation and fibrosis. Am J Pathol, 2005. 166(5): p. 1353-65. 67. Davis, D.R., et al., The development of cardiac fibrosis in low tissue factor mice is gender-dependent and is associated with differential regulation of urokinase plasminogen activator. J Mol Cell Cardiol, 2007. 42(3): p. 559-71. 68. Deng, X., et al., Thrombin induces fibroblast CCL2/JE production and release via coupling of PAR1 to Galphaq and cooperation between ERK1/2 and Rho kinase signaling pathways. Mol Biol Cell, 2008. 19(6): p. 2520-33. 69. Anstee, Q.M., et al., Parenchymal extinction: coagulation and hepatic fibrogenesis. Clin Liver Dis, 2009. 13(1): p. 117-26. 70. Borensztajn, K., et al., FXa-induced intracellular signaling links coagulation to neoangiogenesis: potential implications for fibrosis. Biochim Biophys Acta, 2009. 1793(5): p. 798-805. 71. Scotton, C.J., et al., Increased local expression of coagulation factor X contributes to the fibrotic response in human and murine lung injury. J Clin Invest, 2009. 119(9): p. 2550-63. 72. Borensztajn, K., et al., Protease-activated receptor-2 induces myofibroblast differentiation and tissue factor up-regulation during bleomycin-induced lung injury: potential role in pulmonary fibrosis. Am J Pathol, 2010. 177(6): p. 2753-64. 73. Sullivan, B.P., et al., The coagulation system contributes to alphaVbeta6 integrin expression and liver fibrosis induced by cholestasis. Am J Pathol, 2010. 177(6): p. 2837-49. 74. Mitroulis, I., et al., The multivalent activity of the tissue factor-thrombin pathway in thrombotic and non-thrombotic disorders as a target for therapeutic intervention. Expert Opin Ther Targets, 2011. 15(1): p. 75-89. 75. Gunther, A., et al., Enhanced tissue factor pathway activity and fibrin turnover in the alveolar compartment of patients with interstitial lung disease. Thromb Haemost, 2000. 83(6): p. 853-60. 76. Kambas, K., et al., C5a and TNF-alpha up-regulate the expression of tissue factor in intra-alveolar neutrophils of patients with the acute respiratory distress syndrome. J Immunol, 2008. 180(11): p. 7368-75. 77. Kubo, H., et al., Anticoagulant therapy for idiopathic pulmonary fibrosis. Chest, 2005. 128(3): p. 1475-82. 78. Chang, J.Z., et al., Thrombin-stimulated connective tissue growth factor (CTGF/CCN2) production in human buccal mucosal fibroblasts: inhibition by epigallocatechin-3-gallate. Head Neck, 2012. 34(8): p. 1089-94. 79. Scutt, A., et al., Stabilisation of collagen by betel nut polyphenols as a mechanism in oral submucous fibrosis. Experientia, 1987. 43(4): p. 391-3. 80. Trivedy, C., et al., Copper stimulates human oral fibroblasts in vitro: a role in the pathogenesis of oral submucous fibrosis. J Oral Pathol Med, 2001. 30(8): p. 465-70. 81. Trivedy, C., et al., Copper content in Areca catechu (betel nut) products and oral submucous fibrosis. Lancet, 1997. 349(9063): p. 1447. 82. Harvey, W., et al., Stimulation of human buccal mucosa fibroblasts in vitro by betel-nut alkaloids. Arch Oral Biol, 1986. 31(1): p. 45-9. 83. Chang, Y.C., et al., Cytotoxic and non-genotoxic effects of arecoline on human buccal fibroblasts in vitro. J Oral Pathol Med, 1998. 27(2): p. 68-71. 84. Shieh, D.H., et al., Effects of arecoline, safrole, and nicotine on collagen phagocytosis by human buccal mucosal fibroblasts as a possible mechanism for oral submucous fibrosis in Taiwan. J Oral Pathol Med, 2004. 33(9): p. 581-7. 85. Sundqvist, K., et al., Cytotoxic and genotoxic effects of areca nut-related compounds in cultured human buccal epithelial cells. Cancer Res, 1989. 49(19): p. 5294-8. 86. Jeng, J.H., et al., Arecoline cytotoxicity on human oral mucosal fibroblasts related to cellular thiol and esterase activities. Food Chem Toxicol, 1999. 37(7): p. 751-6. 87. Thangjam, G.S. and P. Kondaiah, Regulation of oxidative-stress responsive genes by arecoline in human keratinocytes. J Periodontal Res, 2009. 44(5): p. 673-82. 88. Chang, Y.C., et al., Increased tissue inhibitor of metalloproteinase-1 expression and inhibition of gelatinase A activity in buccal mucosal fibroblasts by arecoline as possible mechanisms for oral submucous fibrosis. Oral Oncol, 2002. 38(2): p. 195-200. 89. Chang, Y.C., et al., Elevated vimentin expression in buccal mucosal fibroblasts by arecoline in vitro as a possible pathogenesis for oral submucous fibrosis. Oral Oncol, 2002. 38(5): p. 425-30. 90. Tsai, C.H., M.Y. Chou, and Y.C. Chang, The up-regulation of cyclooxygenase-2 expression in human buccal mucosal fibroblasts by arecoline: a possible role in the pathogenesis of oral submucous fibrosis. J Oral Pathol Med, 2003. 32(3): p. 146-53. 91. Tsai, C.H., et al., Regulation of interleukin-6 expression by arecoline in human buccal mucosal fibroblasts is related to intracellular glutathione levels. Oral Dis, 2004. 10(6): p. 360-4. 92. Tsai, C.H., et al., Raised keratinocyte growth factor-1 expression in oral submucous fibrosis in vivo and upregulated by arecoline in human buccal mucosal fibroblasts in vitro. J Oral Pathol Med, 2005. 34(2): p. 100-5. 93. Tsai, C.H., et al., The upregulation of insulin-like growth factor-1 in oral submucous fibrosis. Oral Oncol, 2005. 41(9): p. 940-6. 94. Yang, S.F., et al., The upregulation of type I plasminogen activator inhibitor in oral submucous fibrosis. Oral Oncol, 2003. 39(4): p. 367-72. 95. Yang, S.F., et al., Increased plasminogen activator inhibitor-1/tissue type plasminogen activator ratio in oral submucous fibrosis. Oral Dis, 2007. 13(2): p. 234-8. 96. Ni, W.F., et al., Elevated expression of NF-kappaB in oral submucous fibrosis--evidence for NF-kappaB induction by safrole in human buccal mucosal fibroblasts. Oral Oncol, 2007. 43(6): p. 557-62. 97. Tsai, C.H., S.F. Yang, and Y.C. Chang, The upregulation of cystatin C in oral submucous fibrosis. Oral Oncol, 2007. 43(7): p. 680-5. 98. Yang, S.F., C.H. Tsai, and Y.C. Chang, The upregulation of heat shock protein 47 expression in human buccal fibroblasts stimulated with arecoline. J Oral Pathol Med, 2008. 37(4): p. 206-10. 99. Tsai, C.H., et al., Augmented heme oxygenase-1 expression in areca quid chewing-associated oral submucous fibrosis. Oral Dis, 2009. 15(4): p. 281-6. 100. Deng, Y.T., et al., Arecoline-stimulated connective tissue growth factor production in human buccal mucosal fibroblasts: Modulation by curcumin. Oral Oncol, 2009. 45(9): p. e99-e105. 101. Thangjam, G.S., et al., Transglutaminase-2 regulation by arecoline in gingival fibroblasts. J Dent Res, 2009. 88(2): p. 170-5. 102. Moutasim, K.A., et al., Betel-derived alkaloid up-regulates keratinocyte alphavbeta6 integrin expression and promotes oral submucous fibrosis. J Pathol, 2011. 223(3): p. 366-377. 103. Rajendran, R., et al., Transforming growth factor-beta-1 polymorphisms are infrequent but exist at selected loci in oral submucous fibrosis. Indian J Dent Res, 2010. 21(3): p. 413-9. 104. Verrecchia, F. and A. Mauviel, Transforming growth factor-beta and fibrosis. World J Gastroenterol, 2007. 13(22): p. 3056-62. 105. Massague, J., The transforming growth factor-beta family. Annu Rev Cell Biol, 1990. 6: p. 597-641. 106. Prime, S.S., et al., TGF-beta signal transduction in oro-facial health and non-malignant disease (part I). Crit Rev Oral Biol Med, 2004. 15(6): p. 324-36. 107. Flanders, K.C., Smad3 as a mediator of the fibrotic response. Int J Exp Pathol, 2004. 85(2): p. 47-64. 108. Kingsley, D.M., The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev, 1994. 8(2): p. 133-46. 109. Massague, J., TGF-beta signal transduction. Annu Rev Biochem, 1998. 67: p. 753-91. 110. Powell, D.W., et al., Myofibroblasts. II. Intestinal subepithelial myofibroblasts. Am J Physiol, 1999. 277(2 Pt 1): p. C183-201. 111. Barnes, J.L. and Y. Gorin, Myofibroblast differentiation during fibrosis: role of NAD(P)H oxidases. Kidney Int, 2011. 79(9): p. 944-56. 112. Utsunomiya, H., et al., Extracellular matrix remodeling in oral submucous fibrosis: its stage-specific modes revealed by immunohistochemistry and in situ hybridization. J Oral Pathol Med, 2005. 34(8): p. 498-507. 113. Border, W.A. and N.A. Noble, Transforming growth factor beta in tissue fibrosis. N Engl J Med, 1994. 331(19): p. 1286-92. 114. Chiu, C.J., et al., Interaction of collagen-related genes and susceptibility to betel quid-induced oral submucous fibrosis. Cancer Epidemiol Biomarkers Prev, 2002. 11(7): p. 646-53. 115. Thangjam, G.S., et al., Regulation of extracellular matrix genes by arecoline in primary gingival fibroblasts requires epithelial factors. J Periodontal Res, 2009. 44(6): p. 736-43. 116. Huang, C.H. and T.Y. Shieh, Immunohistochemical expression of transforming growth factor beta in oral submucous fibrosis. Journal of the Academy of Formosan Stomatology, 1999. 15(2): p. 227-239. 117. Yamada, M., et al., Gene transfer of soluble transforming growth factor type II receptor by in vivo electroporation attenuates lung injury and fibrosis. J Clin Pathol, 2007. 60(8): p. 916-20. 118. Kondo, T., et al., Application of an adenoviral vector encoding soluble transforming growth factor-beta type II receptor to the treatment of diabetic nephropathy in mice. Clin Exp Pharmacol Physiol, 2008. 35(11): p. 1288-93. 119. Schultze-Mosgau, S., et al., Plasminogen activator inhibitor-I-related regulation of procollagen I (alpha1 and alpha2) by antitransforming growth factor-beta1 treatment during radiation-impaired wound healing. Int J Radiat Oncol Biol Phys, 2006. 64(1): p. 280-8. 120. Gagliardini, E. and A. Benigni, Role of anti-TGF-beta antibodies in the treatment of renal injury. Cytokine Growth Factor Rev, 2006. 17(1-2): p. 89-96. 121. Breitkopf, K., et al., Anti-TGF-beta strategies for the treatment of chronic liver disease. Alcohol Clin Exp Res, 2005. 29(11 Suppl): p. 121S-131S. 122. Yamamoto, T., et al., Anti-sclerotic effect of transforming growth factor-beta antibody in a mouse model of bleomycin-induced scleroderma. Clin Immunol, 1999. 92(1): p. 6-13. 123. Varga, J. and B. Pasche, Antitransforming growth factor-beta therapy in fibrosis: recent progress and implications for systemic sclerosis. Curr Opin Rheumatol, 2008. 20(6): p. 720-8. 124. Tian, M., J.R. Neil, and W.P. Schiemann, Transforming growth factor-beta and the hallmarks of cancer. Cell Signal, 2011. 23(6): p. 951-62. 125. Wrzesinski, S.H., Y.Y. Wan, and R.A. Flavell, Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin Cancer Res, 2007. 13(18 Pt 1): p. 5262-70. 126. Denton, C.P., et al., Recombinant human anti-transforming growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis Rheum, 2007. 56(1): p. 323-33. 127. Igarashi, A., et al., Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Mol Biol Cell, 1993. 4(6): p. 637-45. 128. Bradham, D.M., et al., Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol, 1991. 114(6): p. 1285-94. 129. Brigstock, D.R., The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocr Rev, 1999. 20(2): p. 189-206. 130. Lau, L.F. and S.C. Lam, The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res, 1999. 248(1): p. 44-57. 131. Paradis, V., et al., Expression of connective tissue growth factor in experimental rat and human liver fibrosis. Hepatology, 1999. 30(4): p. 968-76. 132. Chen, Y., et al., Connective tissue growth factor is secreted through the Golgi and is degraded in the endosome. Exp Cell Res, 2001. 271(1): p. 109-17. 133. Chen, Y., et al., CTGF expression in mesangial cells: involvement of SMADs, MAP kinase, and PKC. Kidney Int, 2002. 62(4): p. 1149-59. 134. Ito, Y., et al., Expression of connective tissue growth factor in human renal fibrosis. Kidney Int, 1998. 53(4): p. 853-61. 135. Kapoor, M., et al., Connective tissue growth factor promoter activity in normal and wounded skin. Fibrogenesis Tissue Repair, 2008. 1(1): p. 3. 136. Frazier, K., et al., Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. J Invest Dermatol, 1996. 107(3): p. 404-11. 137. Chu, C.Y., et al., Connective tissue growth factor (CTGF) and cancer progression. J Biomed Sci, 2008. 15(6): p. 675-85. 138. Oemar, B.S., et al., Human connective tissue growth factor is expressed in advanced atherosclerotic lesions. Circulation, 1997. 95(4): p. 831-9. 139. Dammeier, J., et al., Connective tissue growth factor: a novel regulator of mucosal repair and fibrosis in inflammatory bowel disease? Int J Biochem Cell Biol, 1998. 30(8): p. 909-22. 140. Igarashi, A., et al., Connective tissue growth factor gene expression in tissue sections from localized scleroderma, keloid, and other fibrotic skin disorders. J Invest Dermatol, 1996. 106(4): p. 729-33. 141. Leask, A., et al., The control of ccn2 (ctgf) gene expression in normal and scleroderma fibroblasts. Mol Pathol, 2001. 54(3): p. 180-3. 142. Allen, J.T., et al., Enhanced insulin-like growth factor binding protein-related protein 2 (Connective tissue growth factor) expression in patients with idiopathic pulmonary fibrosis and pulmonary sarcoidosis. Am J Respir Cell Mol Biol, 1999. 21(6): p. 693-700. 143. di Mola, F.F., et al., Connective tissue growth factor is involved in pancreatic repair and tissue remodeling in human and rat acute necrotizing pancreatitis. Ann Surg, 2002. 235(1): p. 60-7. 144. Kantarci, A., et al., Epithelial and connective tissue cell CTGF/CCN2 expression in gingival fibrosis. J Pathol, 2006. 210(1): p. 59-66. 145. Leask, A. and D.J. Abraham, TGF-beta signaling and the fibrotic response. FASEB J, 2004. 18(7): p. 816-27. 146. Duncan, M.R., et al., Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis: down-regulation by cAMP. FASEB J, 1999. 13(13): p. 1774-86. 147. Mori, T., et al., Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: A mouse fibrosis model. J Cell Physiol, 1999. 181(1): p. 153-9. 148. Tsai, C.T., et al., Tachycardia of atrial myocytes induces collagen expression in atrial fibroblasts through transforming growth factor {beta}1. Cardiovasc Res. 149. Thompson, K., D.W. Hamilton, and A. Leask, ALK5 inhibition blocks TGFss-induced CCN2 expression in gingival fibroblasts. J Dent Res. 89(12): p. 1450-4. 150. Black, S.A., Jr., et al., Tissue-specific mechanisms for CCN2/CTGF persistence in fibrotic gingiva: interactions between cAMP and MAPK signaling pathways, and prostaglandin E2-EP3 receptor mediated activation of the c-JUN N-terminal kinase. J Biol Chem, 2007. 282(21): p. 15416-29. 151. Tall, E.G., et al., TGF-beta-stimulated CTGF production enhanced by collagen and associated with biogenesis of a novel 31-kDa CTGF form in human corneal fibroblasts. Invest Ophthalmol Vis Sci. 51(10): p. 5002-11. 152. Chang, Y. and X.Y. Wu, JNK1/2 siRNA inhibits transforming-growth factor-beta1-induced connective tissue growth factor expression and fibrotic function in THSFs. Mol Cell Biochem. 335(1-2): p. 83-9. 153. Blalock, T.D., et al., Connective tissue growth factor expression and action in human corneal fibroblast cultures and rat corneas after photorefractive keratectomy. Invest Ophthalmol Vis Sci, 2003. 44(5): p. 1879-87. 154. Li, J., et al., Roasted licorice extracts dampen high glucose-induced mesangial hyperplasia and matrix deposition through blocking Akt activation and TGF-beta signaling. Phytomedicine. 17(10): p. 800-10. 155. Schieren, G., et al., Balance of profibrotic and antifibrotic [corrected] signaling in nephrogenic systemic fibrosis skin lesions. Am J Kidney Dis. 55(6): p. 1040-9. 156. Mizutani, M., et al., Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate. Am J Physiol Renal Physiol. 298(3): p. F721-33. 157. Xiao, L., et al., Connective tissue growth factor knockdown attenuated matrix protein production and vascular endothelial growth factor expression induced by transforming growth factor-beta1 in cultured human peritoneal mesothelial cells. Ther Apher Dial. 14(1): p. 27-34. 158. Favreau, F., et al., Anti-thrombin therapy during warm ischemia and cold preservation prevents chronic kidney graft fibrosis in a DCD model. Am J Transplant. 10(1): p. 30-9. 159. Suk, F.M., et al., 15-deoxy-Delta(12,14)-prostaglandin J(2) inhibits fibrogenic response in human hepatoma cells. Toxicol Lett, 2009. 187(1): p. 22-7. 160. Rachfal, A.W. and D.R. Brigstock, Connective tissue growth factor (CTGF/CCN2) in hepatic fibrosis. Hepatol Res, 2003. 26(1): p. 1-9. 161. Gervaz, P., P. Morel, and M.C. Vozenin-Brotons, Molecular aspects of intestinal radiation-induced fibrosis. Curr Mol Med, 2009. 9(3): p. 273-80. 162. Lopes, L.B., et al., Cell permeant peptide analogues of the small heat shock protein, HSP20, reduce TGF-beta1-induced CTGF expression in keloid fibroblasts. J Invest Dermatol, 2009. 129(3): p. 590-8. 163. Lai, T.C., et al., Small interfering RNAs (siRNAs) targeting TGF-beta1 mRNA suppress asbestos-induced expression of TGF-beta1 and CTGF in fibroblasts. J Environ Pathol Toxicol Oncol, 2009. 28(2): p. 109-19. 164. Abraham, D., Connective tissue growth factor: growth factor, matricellular organizer, fibrotic biomarker or molecular target for anti-fibrotic therapy in SSc? Rheumatology (Oxford), 2008. 47 Suppl 5: p. v8-9. 165. Sun, G., et al., Connective tissue growth factor is overexpressed in muscles of human muscular dystrophy. J Neurol Sci, 2008. 267(1-2): p. 48-56. 166. Ruiz-Ortega, M., et al., TGF-beta signaling in vascular fibrosis. Cardiovasc Res, 2007. 74(2): p. 196-206. 167. Zhang, C., et al., Role of connective tissue growth factor in extracellular matrix degradation in renal tubular epithelial cells. J Huazhong Univ Sci Technolog Med Sci, 2007. 27(1): p. 44-7. 168. Phanish, M.K., et al., TGF-beta1-induced connective tissue growth factor (CCN2) expression in human renal proximal tubule epithelial cells requires Ras/MEK/ERK and Smad signalling. Nephron Exp Nephrol, 2005. 100(4): p. e156-65. 169. Luo, X., L. Ding, and N. Chegini, CCNs, fibulin-1C and S100A4 expression in leiomyoma and myometrium: inverse association with TGF-beta and regulation by TGF-beta in leiomyoma and myometrial smooth muscle cells. Mol Hum Reprod, 2006. 12(4): p. 245-56. 170. Razzaque, M.S., C.S. Foster, and A.R. Ahmed, Role of connective tissue growth factor in the pathogenesis of conjunctival scarring in ocular cicatricial pemphigoid. Invest Ophthalmol Vis Sci, 2003. 44(5): p. 1998-2003. 171. Sedlaczek, N., et al., Proliferating bile duct epithelial cells are a major source of connective tissue growth factor in rat biliary fibrosis. Am J Pathol, 2001. 158(4): p. 1239-44. 172. Chen, M.M., et al., CTGF expression is induced by TGF- beta in cardiac fibroblasts and cardiac myocytes: a potential role in heart fibrosis. J Mol Cell Cardiol, 2000. 32(10): p. 1805-19. 173. Holmes, A., et al., CTGF and SMADs, maintenance of scleroderma phenotype is independent of SMAD signaling. J Biol Chem, 2001. 276(14): p. 10594-601. 174. Haydont, V., et al., Specific signals involved in the long-term maintenance of radiation-induced fibrogenic differentiation: a role for CCN2 and low concentration of TGF-beta1. Am J Physiol Cell Physiol, 2008. 294(6): p. C1332-41. 175. Shi-wen, X., et al., CCN2 is necessary for adhesive responses to transforming growth factor-beta1 in embryonic fibroblasts. J Biol Chem, 2006. 281(16): p. 10715-26. 176. Deng, Y., Arecoline-induced CCN2 expression in human buccal mucosal fibroblasts via TGF-β signaling pathway. PhD thesis, 2012. 177. Weng, H.L., et al., Profibrogenic transforming growth factor-beta/activin receptor-like kinase 5 signaling via connective tissue growth factor expression in hepatocytes. Hepatology, 2007. 46(4): p. 1257-70. 178. Thompson, K., D.W. Hamilton, and A. Leask, ALK5 inhibition blocks TGF-beta-induced CCN2 expression in gingival fibroblasts. J Dent Res, 2010. 89(12): p. 1450-4. 179. Bonniaud, P., et al., Progressive transforming growth factor beta1-induced lung fibrosis is blocked by an orally active ALK5 kinase inhibitor. Am J Respir Crit Care Med, 2005. 171(8): p. 889-98. 180. Higashiyama, H., et al., Inhibition of activin receptor-like kinase 5 attenuates bleomycin-induced pulmonary fibrosis. Exp Mol Pathol, 2007. 83(1): p. 39-46. 181. Grygielko, E.T., et al., Inhibition of gene markers of fibrosis with a novel inhibitor of transforming growth factor-beta type I receptor kinase in puromycin-induced nephritis. J Pharmacol Exp Ther, 2005. 313(3): p. 943-51. 182. Derynck, R. and Y.E. Zhang, Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature, 2003. 425(6958): p. 577-84. 183. Leivonen, S.K., et al., Smad3 and extracellular signal-regulated kinase 1/2 coordinately mediate transfor | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63146 | - |
| dc.description.abstract | 轉化生長因子β(transforming growth factor β;TGFβ)在口腔黏膜下纖維化症(OSF)中扮演了刺激膠原蛋白合成以及減少膠原蛋白分解因而加重纖維化的重要角色。結締組織生長因子(CTGF/CCN2)是轉化生長因子β下游基因產物,幾乎所有轉化生長因子β前纖維化作用和刺激細胞外間質蛋白合成的功能,都需要結締組織生長因子的共同參與。以檳榔鹼(arecoline)刺激人類頰黏膜纖維母細胞(BMFs)可以誘導人類頰黏膜纖維母細胞中結締組織生長因子與環氧酵素二型(cyclooxygenase-2;COX-2)表現。在口腔黏膜下纖維化症的組織中,可以發現結締組織生長因子與環氧酵素二型的過度表現。但是關於口腔黏膜中轉化生長因子β誘導結締組織生長因子表現的訊息傳遞路徑及環氧酵素二型對結締組織生長因子表現的影響仍不清楚。本研究主旨在研究以轉化生長因子β1刺激人類頰黏膜纖維母細胞誘導結締組織生長因子表現的訊息傳導路徑,冀望可以藉由抑制這些訊息傳導路徑成員來達到預防或治療口腔黏膜下纖維化症。我們發現使用TGFβ1 receptor ALK5抑制劑SB431542、Rac1抑制劑NSC23766 、JNK專一性抑制劑 SP600125、p38 MAPK專一性抑制劑SB203580、抗氧化劑N-acetylcysteine (NAC)、泛NOX抑制劑diphenyleneiodonium chloride (DPI)、NOX4抑制劑plumbagin、Src抑制劑 (PP2、Src inhibitor-1及 Src si-RNA)做前處理都可以明顯地減少人類頰黏膜纖維母細胞中TGFβ1誘導結締組織生長因子的表現。但ERK專一性抑制劑PD98059、NOX2抑制劑 apocynin 則沒有影響。進一步研究發現,NAC、DPI可以抑制 Src 的活化,但NSC23766 則沒有影響。NAC、DPI 、PP2可以抑制 JNK 的活化,但NSC23766 也沒有影響。NAC、DPI可以抑制 p38 MAPK 的活化,但NSC23766 、PP2沒有影響。NAC、PP2可以抑制 SMAD3 的活化,但NSC23766 、DPI沒有影響。結果顯示,人類頰黏膜纖維母細胞中TGFβ1誘導的結締組織生長因子表現至少經由四條路徑所調控,其分別為TGFβ1/ALK5/Rac1/CTGF(CCN2)、TGFβ1/ALK5/ROS/Src/SMAD3/CTGF、TGFβ1/ALK5/NOX4/ROS/Src/JNK/CTGF 和 TGFβ1/ALK5/NOX4/ROS/p38/CTGF 路徑。茶多酚 EGCG 藉由抑制 JNK 和 p38 MAPK 的磷酸化來阻斷TGFβ1誘導人類頰黏膜纖維母細胞產生的結締組織生長因子蛋白。前列腺素E2 (prostaglandin E2; PGE2)可以抑制人類肺細胞株IMR90中TGFβ1誘導的結締組織生長因子表現,但不能抑制人類頰黏膜纖維母細胞中TGFβ1誘導的結締組織生長因子表現。由於人類頰黏膜纖維母細胞中獨特的訊息傳導路徑致使前列腺素E2無法抑制結締組織生長因子表現以致在口腔黏膜下纖維化症組織中環氧酵素二型能與結締組織生長因子並存。最後發現EGCG亦可以抑制TGFβ1誘導人類頰黏膜纖維母細胞產生的第一型前膠原纖維蛋白表現、減少TGFβ1造成的膠狀膠原收縮、並且可以阻斷 TGFβ1引起的可溶性膠原蛋白的生成。因此茶多酚 EGCG 對於預防以及治療口腔黏膜下纖維化症將有很大的潛力。 | zh_TW |
| dc.description.abstract | Transforming growth factor β (TGFβ) has been suggested as the main trigger for the increased collagen production and decreased matrix degradation pathways in oral submucous fibrosis (OSF). Connective tissue growth factor (CTGF/CCN2) is required for most of the increased ECM production and other profibrotic activities generally observed in response to TGFβ. Arecoline induces CCN2 and cyclooxygenase-2 (COX-2) expressions in human buccal mucosal fibroblasts (BMFs). CTGF/CCN2 and COX-2 have been found to overexpress in OSF. However, the molecular mechanisms are not entirely clear. The aims of this study were to investigate the molecular mechanism underlying the TGFβ-induced CTGF/CCN2 expressions in human buccal mucosal fibroblasts (BMFs) and to identify the potential targets for drug intervention or chemoprevention of OSF. Pretreatment with activin receptor-like kinase 5 (ALK5) inhibitor SB431542, Rac1 inhibitor NSC23766, c-Jun NH2-terminal kinase (JNK) inhibitor SP600125, p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580, antioxidant N-acetyl-L-cysteine (NAC), NOX inhibitor diphenylene iodonium (DPI), NOX4 inhibitor plumbagin, and Src inhibitors (PP2, Src inhibitor-1, and Src si-RNA) significantly reduced TGFβ1-induced CTGF/CCN2 synthesis in BMFs, but not extracellular signal-regulated kinase (ERK) inhibitor PD98059, or NOX2 inhibitor apocynin. Furthermore, the phosphorylations of Src were inhibited by NAC and DPI but not NSC23766. The phosphorylations of JNK were inhibited by NAC, DPI, and PP2 but not NSC23766. The phosphorylations of p38 MAPK were inhibited by NAC and DPI but not NSC23766 or PP2. The phosphorylations of SMAD3 were inhibited by NAC and PP2 but not NSC23766 or DPI. These results revealed that multiple parallel signal transduction pathways together mediated the TGFβ1-induced CTGF/CCN2 expression in BMFs. At least four major pathways TGFβ1/ALK5/Rac1/CTGF(CCN2), TGFβ1/ALK5/ROS/Src/SMAD3/CTGF, TGFβ1/ALK5/NOX4/ROS/Src/JNK/CTGF, and TGFβ1/ALK5/NOX4/ROS/p38/CTGF were identified. Epigallocatechin-3-gallate (EGCG) blocked TGFβ1-induced CTGF/CCN2 synthesis by inhibiting the phosphorylation of Src, JNK, and p38 MAPK. Prostaglandin E2 (PGE2) inhibited the TGFβ1-induced CTGF/CCN2 synthesis in human fetal lung fibroblasts IMR90 but not in BMFs. The exceptional signal transduction pathways of TGFβ1-induced CTGF/CCN2 production in BMFs contribute to the resistance of PGE2 downregulation of CTGF/CCN2 expression; therefore, the CTGF/CCN2 levels are maintained in the OSF tissues in the presence of COX-2. In addition, EGCG inhibits the expression of TGFβ1-induced type I procollagen, reduces the excessive soluble collagens produced by TGFβ1-treated BMFs, and attenuates the fibroblast-mediated gel contraction stimulated by TGFβ1. Therefore, EGCG may serve as a useful agent in controlling OSF. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:25:00Z (GMT). No. of bitstreams: 1 ntu-102-D93422002-1.pdf: 4053355 bytes, checksum: 769ff3699319e6f0444697e3b794fd85 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS
DEDICATIONS iii CHINESE ABSTRACT iv ENGLISH ABSTRACT vi INTRODUCTION 1 The epidemiology of oral submucous fibrosis 1 The habit of areca quid 1 The histopathological manifestations of oral submucous fibrosis 2 The pathogenesis of oral submucous fibrosis 3 Management of oral submucous fibrosis 3 The molecular mechanisms regarding pathogenesis of OSF 4 Transforming growth factor-beta (TGFβ) versus fibrotic pathologies 7 Connective tissue growth factor (CTGF/CCN2) versus TGFβ 9 The transforming growth factor-beta (TGFβ) signaling 12 The role of reactive oxygen species (ROS) in fibrosis 14 The role of NADPH oxidase (NOX) in fibrosis 16 The Src family kinases vesus TGFβ signaling 18 The antifibrogenic effects of epigallocatechin-3-gallate (EGCG) 20 PURPOSE 25 MATERIALS AND METHODS 27 Materials 27 Cell culture 28 Western blot analysis 29 Src siRNA transfection 29 Quantitative real-time polymerase chain reaction (qRT-PCR) 30 Fibroblast-populated collagen lattices (FPCL) 31 Sircol soluble collagen assay 31 Statistical analysis 32 RESULTS 33 TGFβ1 stimulated CTGF/CCN2 expression in buccal mucosal fibroblasts (BMFs) 33 PGE2 could NOT inhibit the TGFβ1-induced CTGF/CCN2 in BMFs 33 ALK5, JNK, and p38 MAPK were involved in the TGFβ1-induced CTGF/CCN2 33 EGCG attenuated the TGFβ1-induced phosphorylation of JNK and p38 34 EGCG abrogated the TGFβ1-induced procollagen alpha-1 type I 35 EGCG decreased the TGFβ1-stimulated production of soluble collagens 35 EGCG attenuated the TGFβ1-stimulated collagen gel contraction 36 NOX4 and ROS are involved in the TGFβ1-induced CTGF/CCN2 in BMFs 36 Src played a role in the TGFβ1-induced CTGF/CCN2 in BMFs 37 Src was downstream of ROS and upstream of JNK and SMAD3 38 DISCUSSION 40 CONCLUSIONS 49 FIGURES 51 REFERENCES 70 APPENDIX 1 88 APPENDIX 2 94 | |
| dc.language.iso | en | |
| dc.subject | 結締組織生長因子 | zh_TW |
| dc.subject | 茶多酚 | zh_TW |
| dc.subject | CTGF/CCN2 | zh_TW |
| dc.subject | 口腔黏膜下纖維化症 | zh_TW |
| dc.subject | 轉化生長因子β | zh_TW |
| dc.subject | Transforming growth factor β | en |
| dc.subject | Connective tissue growth factor | en |
| dc.subject | EGCG | en |
| dc.subject | Oral submucous fibrosis | en |
| dc.subject | TGFβ1 | en |
| dc.subject | CTGF/CCN2 | en |
| dc.title | TGFβ1經由 NOX4/Src 訊息傳遞路徑誘導人類頰黏膜纖維母細胞結締組織生長因子表現 | zh_TW |
| dc.title | TGFβ1-induced CTGF/CCN2 expression in human buccal mucosal fibroblasts via NOX4/Src signaling pathway | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 江俊斌,張國威,張育超,周涵怡 | |
| dc.subject.keyword | 結締組織生長因子,茶多酚,口腔黏膜下纖維化症,轉化生長因子β,CTGF/CCN2, | zh_TW |
| dc.subject.keyword | CTGF/CCN2,Connective tissue growth factor,EGCG,Oral submucous fibrosis,TGFβ1,Transforming growth factor β, | en |
| dc.relation.page | 101 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-01-22 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
