Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63140
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳正平(Jen-Ping Chen)
dc.contributor.authorChi-Yun Wangen
dc.contributor.author王啟芸zh_TW
dc.date.accessioned2021-06-16T16:24:42Z-
dc.date.available2014-02-01
dc.date.copyright2013-02-01
dc.date.issued2013
dc.date.submitted2013-01-23
dc.identifier.citationAshmore, M. R. (2005), Assessing the future global impacts of ozone on vegetation, Plant Cell Environ., 28(8), 949-964.
Aw, J., and M. J. Kleeman (2003), Evaluating the first-order effect of intraannual temperature variability on urban air pollution, J. Geophys. Res.-Atmos., 108(D12).
Baertsch-Ritter, N., J. Keller, J. Dommen, and A. S. H. Prevot (2004), Effects of various meteorological conditions and spatial emission resolutions on the ozone concentration and ROG/NOx limitation in the Milan area (I), Atmos. Chem. Phys., 4, 423-438.
Bey, I., D. J. Jacob, J. A. Logan, and R. M. Yantosca (2001), Asian chemical outflow to the Pacific in spring: Origins, pathways, and budgets, J. Geophys. Res.-Atmos., 106(D19), 23097-23113.
Brasseur, G., and M. H. Hitchman (1988), Stratospheric Response to Trace Gas Perturbations - Changes in Ozone and Temperature Distributions, Science, 240(4852), 634-637.
Brunekreef, B., and S. T. Holgate (2002), Air pollution and health, Lancet, 360(9341), 1233-1242.
Camalier, L., W. Cox, and P. Dolwick (2007), The effects of meteorology on ozone in urban areas and their use in assessing ozone trends, Atmos. Environ., 41(33), 7127-7137.
Cess, R. D., et al. (1990), Intercomparison and Interpretation of Climate Feedback Processes in 19 Atmospheric General-Circulation Models, J. Geophys. Res.-Atmos., 95(D10), 16601-16615.
Chan, L. Y., H. Y. Liu, K. S. Lam, T. Wang, S. J. Oltmans, and J. M. Harris (1998), Analysis of the seasonal behavior of tropospheric ozone at Hong Kong, Atmos. Environ., 32(2), 159-168.
Chen, W. T., H. Liao, and J. H. Seinfeld (2007), Future climate impacts of direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and long-lived greenhouse gases, J. Geophys. Res.-Atmos., 112(D14).
Dawson, J. P., P. J. Adams, and S. N. Pandis (2007), Sensitivity of ozone to summertime climate in the eastern USA: A modeling case study, Atmos. Environ., 41(7), 1494-1511.
Dockery, D. W., and C. A. Pope (1994), Acute respiratory effects of particulate air-pollution, Annu. Rev. Public Health, 15, 107-132.
Draxler, R. R., and G. D. Hess (2004), DESCRIPTION OF THE HYSPLIT_4 MODELING SYSTEMRep., NOAA Technical Memorandum ERL ARL-224.
Emmons, L. K., et al. (2010), Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci Model Dev, 3(1), 43-67.
Fisher, B. E. A. (1983), A review of the processes and models of long-range transport of air pollutants, Atmospheric Environment (1967), 17(10), 1865-1880.
Haigh, J. D., and J. A. Pyle (1979), 2-Dimensional Calculation Including Atmospheric Carbon-Dioxide and Stratospheric Ozone, Nature, 279(5710), 222-224.
He, Y. J., I. Uno, Z. F. Wang, P. Pochanart, J. Li, and H. Akimoto (2008), Significant impact of the East Asia monsoon on ozone seasonal behavior in the boundary layer of Eastern China and the west Pacific region, Atmos. Chem. Phys., 8(24), 7543-7555.
Hogrefe, C., J. Biswas, B. Lynn, K. Civerolo, J. Y. Ku, J. Rosenthal, C. Rosenzweig, R. Goldberg, and P. L. Kinney (2004), Simulating regional-scale ozone climatology over the eastern United States: model evaluation results, Atmos. Environ., 38(17), 2627-2638.
IPCC (2007), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)].Rep., 996 pp, Cambridge, United Kingdom and New York, NY, USA.
Jacob, D. J., and D. A. Winner (2009), Effect of climate change on air quality, Atmos. Environ., 43(1), 51-63.
Jacob, D. J., J. A. Logan, G. M. Gardner, R. M. Yevich, C. M. Spivakovsky, S. C. Wofsy, S. Sillman, and M. J. Prather (1993), Factors Regulating Ozone over the United-States and Its Export to the Global Atmosphere, J. Geophys. Res.-Atmos., 98(D8), 14817-14826.
Johnson, C. E., W. J. Collins, D. S. Stevenson, and R. G. Derwent (1999), Relative roles of climate and emissions changes on future tropospheric oxidant concentrations, J. Geophys. Res.-Atmos., 104(D15), 18631-18645.
Koumoutsaris, S., I. Bey, S. Generoso, and V. Thouret (2008), Influence of El Nino-Southern Oscillation on the interannual variability of tropospheric ozone in the northern midlatitudes, J. Geophys. Res.-Atmos., 113(D19).
Kunkel, K. E., H. C. Huang, X. Z. Liang, J. T. Lin, D. Wuebbles, Z. Tao, A. Williams, M. Caughey, J. Zhu, and K. Hayhoe (2008), Sensitivity of future ozone concentrations in the northeast USA to regional climate change, Mitig. Adapt. Strateg. Glob. Chang., 13(5-6), 597-606.
Lamarque, J.-F., et al. (2011), CAM-chem: description and evaluation of interactive atmospheric chemistry in CESM, Geoscientific Model Development Disscuss, 4.
Levy, H., M. D. Schwarzkopf, L. Horowitz, V. Ramaswamy, and K. L. Findell (2008), Strong sensitivity of late 21st century climate to projected changes in short-lived air pollutants, J. Geophys. Res.-Atmos., 113(D6).
Liao, H., W. T. Chen, and J. H. Seinfeld (2006), Role of climate change in global predictions of future tropospheric ozone and aerosols, J. Geophys. Res.-Atmos., 111(D12).
Lin, J. T., K. O. Patten, K. Hayhoe, X. Z. Liang, and D. J. Wuebbles (2008), Effects of future climate and biogenic emissions changes on surface ozone over the United States and China, J. Appl. Meteorol. Climatol., 47(7), 1888-1909.
Liu, H., D. J. Jacob, I. Bey, R. M. Yantosca, B. N. Duncan, and G. W. Sachse (2003), Transport pathways for Asian pollution outflow over the Pacific: Interannual and seasonal variations, J. Geophys. Res., 108(D20), 8786.
Mao, H. T., W. C. Wang, X. Z. Liang, and R. W. Talbot (2003), Global and seasonal variations of O-3 and NO2 photodissociation rate coefficients, J. Geophys. Res.-Atmos., 108(D7).
Meleux, F., F. Solmon, and F. Giorgi (2007), Increase in summer European ozone amounts due to climate change, Atmos. Environ., 41(35), 7577-7587.
Mickley, L. J., D. J. Jacob, B. D. Field, and D. Rind (2004), Effects of future climate change on regional air pollution episodes in the United States, Geophys Res Lett, 31(24).
Moss, R. H., et al. (2010), The next generation of scenarios for climate change research and assessment, Nature, 463(7282), 747-756.
Murazaki, K., and P. Hess (2006), How does climate change contribute to surface ozone change over the United States?, J. Geophys. Res.-Atmos., 111(D5).
Nolte, C. G., A. B. Gilliland, C. Hogrefe, and L. J. Mickley (2008), Linking global to regional models to assess future climate impacts on surface ozone levels in the United States, J. Geophys. Res.-Atmos., 113(D14).
Oltmans, S. J., et al. (2004), Tropospheric ozone over the North Pacific from ozonesonde observations, J. Geophys. Res.-Atmos., 109(D15).
Ordonez, C., H. Mathis, M. Furger, S. Henne, C. Huglin, J. Staehelin, and A. S. H. Prevot (2005), Changes of daily surface ozone maxima in Switzerland in all seasons from 1992 to 2002 and discussion of summer 2003, Atmos. Chem. Phys., 5, 1187-1203.
Palmer, P. I., D. J. Jacob, K. Chance, R. V. Martin, R. J. D. Spurr, T. P. Kurosu, I. Bey, R. Yantosca, A. Fiore, and Q. B. Li (2001), Air mass factor formulation for spectroscopic measurements from satellites: Application to formaldehyde retrievals from the Global Ozone Monitoring Experiment, J. Geophys. Res.-Atmos., 106(D13), 14539-14550.
Racherla, P. N., and P. J. Adams (2006), Sensitivity of global tropospheric ozone and fine particulate matter concentrations to climate change, J. Geophys. Res.-Atmos., 111(D24).
Seibert, P., A. Frank, and H. Formayer (2007), Synoptic and regional patterns of heavy precipitation in Austria, Theor. Appl. Climatol., 87.
Seinfeld, J. H., and S. N. Pandis (2006), Atmospheric Chemistry and Physics - From Air Pollution to Climate Change (2nd Edition), edited, John Wiley & Sons.
Shepherd, T. G., and A. I. Jonsson (2008), On the attribution of stratospheric ozone and temperature changes to changes in ozone-depleting substances and well-mixed greenhouse gases, Atmos. Chem. Phys., 8(5), 1435-1444.
Sillman, S. (1995), The Use of Noy, H2o2, and Hno3 as Indicators for Ozone-Nox-Hydrocarbon Sensitivity in Urban Locations, J. Geophys. Res.-Atmos., 100(D7), 14175-14188.
Sillman, S., et al. (1995), Photochemistry of Ozone Formation in Atlanta, Ga - Models and Measurements, Atmos. Environ., 29(21), 3055-3066.
Sitch, S., P. M. Cox, W. J. Collins, and C. Huntingford (2007), Indirect radiative forcing of climate change through ozone effects on the land-carbon sink, Nature, 448(7155), 791-794.
Solberg, S., O. Hov, A. Sovde, I. S. A. Isaksen, P. Coddeville, H. De Backer, C. Forster, Y. Orsolini, and K. Uhse (2008), European surface ozone in the extreme summer 2003, Journal of Geophysical Research, 113.
Stevenson, D. S., et al. (2006), Multimodel ensemble simulations of present-day and near-future tropospheric ozone, J. Geophys. Res.-Atmos., 111(D8).
Stohl, A., and G. Wotawa (1995), A METHOD FOR COMPUTING SINGLE TRAJECTORIES REPRESENTING BOUNDARY-LAYER TRANSPORT, Atmos. Environ., 29(22), 3235-3238.
Thompson, D. W. J., and S. Solomon (2002), Interpretation of recent Southern Hemisphere climate change, Science, 296(5569), 895-899.
Trenberth, K. E. (1997), The Definition of El nino, Bullentin of the American Meteorological Society, 78(12), 7.
Vautard, R., C. Honore, M. Beekmann, and L. Rouil (2005), Simulation of ozone during the August 2003 heat wave and emission control scenarios, Atmos. Environ., 39(16), 2957-2967.
Wang, K. Y. (2005), A 9-year climatology of airstreams in East Asia and implications for the transport of pollutants and downstream impacts, J. Geophys. Res.-Atmos., 110(D7).
Wang, B., R. G. Wu, and X. H. Fu (2000), Pacific-East Asian teleconnection: how does ENSO affect East Asian climate?, J Climate, 13(9), 1517-1536.
Wang, W. C., J. P. Chen, I. S. A. Isaksen, I. C. Tsai, N. K., and K. McGuffie (2012), ClimateeChemistry Interaction: Future Tropospheric Ozone and Aerosols, in The Future of the World's Climate, edited, p. 660, Elsevier.
Waugh, D. W., L. Oman, S. R. Kawa, R. S. Stolarski, S. Pawson, A. R. Douglass, P. A. Newman, and J. E. Nielsen (2009), Impacts of climate change on stratospheric ozone recovery, Geophys Res Lett, 36.
Wu, S., L. J. Mickley, and D. J. Jacob (2008), Effects of 2000-2050 changes in climate and emissions on global tropospheric ozone and the policy-relevant backgroud surface ozone in the United States, Journal of Geophysical Research, 113.
Wu, S. L., L. J. Mickley, D. J. Jacob, D. Rind, and D. G. Streets (2008), Effects of 2000-2050 changes in climate and emissions on global tropospheric ozone and the policy-relevant background surface ozone in the United States, J. Geophys. Res.-Atmos., 113(D18).
Zhang, Y., K. R. Sperber, and J. S. Boyle (1997), Climatology and interannual variation of the East Asian winter monsoon: Results from the 1979-95 NCEP/NCAR reanalysis, Mon Weather Rev, 125(10), 2605-2619.
Zhang, X., T. Nakazawa, M. Ishizawa, S. Aoki, S. I. Nakaoka, S. Sugawara, S. Maksyutov, T. Saeki, and T. Hayasaka (2007), Temporal variations of atmospheric carbon dioxide in the southernmost part of Japan, Tellus B, 59(4), 654-663.
柳中明, and 葉銘德 (2004), 台灣近海臭氧變遷探討Rep. NSC93-2119-M-002-014-.
彭眾恩 (2009), 大氣長程傳送對台灣背景臭氧之影響:空氣胞逆軌跡線之群集分析, 國立台灣大學.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63140-
dc.description.abstract藉由14年Yonagunijima(YON)地表臭氧觀測資料分析與討論,使我進一步想要了解─未來氣候變遷的傳送機制和化學機制之改變對臭氧的影響。YON地表臭氧與其他氣象參數的觀測資料分析結果顯示,其臭氧濃度變化主要是受水平傳送機制調控。為驗證分析解結果,本研究使用HYSPLIT模式模擬不同臭氧濃度變異的氣流軌跡,並使用群集分析探討不同源區與行經路徑對YON臭氧變化之影響。若氣流源於東亞大陸,則有較大的機率造成YON臭氧濃度增加,若氣流源於太平洋或南海,則有較大機率造成YON臭氧濃度下降。
YON的資料分析顯示水平傳輸在季風地區的重要性。未來氣候變遷其環流結構隨之改變,勢必會影響這些區域的臭氧濃度。為了探討未來全球暖化氣候變遷對臭氧濃度的影響,本研究使用CESM模擬未來情境,並設計五組實驗(固定為相同的排放)探討化學機制與傳送機制對臭氧濃度的影響。化學機制分為溫度與水氣對反應速率的影響:溫度升高對臭氧的影響有明顯的海陸差異,陸地為增加海洋為減少。由於陸地的淨化學反應是增加臭氧,而海洋則是減少臭氧,當溫度升高化學反應式增快,因此呈現陸地增加而洋面減少之現象;整體來說平均地表臭氧濃度下降0.34 ppb。水氣增加對化學反應的影響使臭氧濃度下降,全球平均約降2.18 ppb。在溫度與濕度的共同影響下,平均地表臭氧濃度下降2.53 ppb。傳送機制的改變則造成地表臭氧濃度增加1.32 ppb,其重要性(相對於化學機制)隨高度增加。綜合以上各項因素,未來氣候變遷的情境下,地表臭氧濃度下降1.21 ppb。
zh_TW
dc.description.abstractThe result of 14-year Yonagunijima(YON) O3 observation data showed the importance of meteorological transport, and thus inspired me to study the role of the transport and chemistry play in O3 concentration under a future climate scenario. The aim of this study is to separate the contribution of transport and chemistry on O3 concentration change under the RCP4.5 future climate scenario.
Observational data analysis showed that atmospheric circulation should be more important than chemistry in influencing regional O3. Backward trajectory cluster analysis was applied to support this conclusion. O3 over YON tends to be higher if the airflow originates from the continent or passing through East China Sea, but lower if the airflow originates from the Pacific oceans or South China Sea. Such influences have strong signatures of seasonal and inter-annual variations.
Under future climate change scenario, atmospheric circulation and monsoon will change which, in turn, influences O3 concentration. CESM global model was used to study the O3 change in future climate scenario and sort out the contributions from meteorological transport and chemistry. Five experiments with fixed emission were conducted by controlling temperature or moisture in chemistry calculation. Warming climate leads to an increase in surface O3 over polluted areas, but a decrease in remote areas. The overall chemistry over land is to produce O3 whereas that over remote areas is to destruct O3. The net effect of rising temperature is to decrease global surface O3 by 0.34 ppb. Wetter climate leads to a decrease in global surface O3 by 2.18 ppb. The net effect of chemistry, including temperature effect and moisture effect, is to decrease global average O3 by 2.53 ppb, and it implies the domination of moisture effect. The net effect of meteorologic transport is to increase global surface O3 by 1.32 ppb, and the effect becomes more significant with increasing height. All mechanisms conbined, surface O3 decreases by 1.21 ppb under the RC future climate scenario.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:24:42Z (GMT). No. of bitstreams: 1
ntu-102-R98229027-1.pdf: 11578334 bytes, checksum: 3d9aecc88a2bda6f619f695bcfae189e (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝 I
摘要 II
ABSTRACT III
表說 V
圖說 VI
目錄 XII
第一章 前言 1
第二章 資料與數值模式 6
2.1 資料說明及處理 6
2.1.1 資料來源 6
2.1.2 資料處理 7
2.2 數值模式 8
2.2.1 HYSPLIT 8
2.2.2 CESM 10
第三章 臭氧濃度增加機制 13
3.1傳送作用 13
3.2大氣化學作用 15
第四章 資料分析結果與討論 18
4.1 影響臭氧濃度變化之因子 18
4.2 不同時間尺度的臭氧變化 22
4.2.1 季節變化 22
4.2.2 年際變化 25
4.3 結語 28
第五章 模擬結果與討論 30
5.1 未來氣象場模擬結果 31
5.2 氣候變遷對空氣污染的影響 34
5.2.1 化學機制 36
5.2.2 傳送機制 38
5.3 結語 39
第六章 總結 41
文獻 43
附表 52
附圖 56
dc.language.isozh-TW
dc.subject化學機制對臭氧變化的影響zh_TW
dc.subject傳送機制對臭氧變化的影響zh_TW
dc.subject未來氣候變遷與臭氧變化zh_TW
dc.subjectozone change under future climate changeen
dc.subjectmeteorogical transport effect on ozoneen
dc.subjectchemistry effect on ozoneen
dc.title未來氣候變遷對地表臭氧之影響─傳送機制與化學機制之探討zh_TW
dc.titleThe Impact of Future Climate Change on Surface Ozone:
The Contribution of Meteorologic Transport and Chemistry
en
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee劉紹臣(Shaw-Chen Liu),許晃雄(Huang-Hsiung Hsu),洪惠敏(Hui-Ming Hung),陳維婷(Wei-Ting Chen)
dc.subject.keyword未來氣候變遷與臭氧變化,傳送機制對臭氧變化的影響,化學機制對臭氧變化的影響,zh_TW
dc.subject.keywordozone change under future climate change,meteorogical transport effect on ozone,chemistry effect on ozone,en
dc.relation.page98
dc.rights.note有償授權
dc.date.accepted2013-01-23
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
11.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved