請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6313完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志宏(Jyh-Horng Chen) | |
| dc.contributor.author | Chun-Wei Chen | en |
| dc.contributor.author | 陳俊瑋 | zh_TW |
| dc.date.accessioned | 2021-05-16T16:25:47Z | - |
| dc.date.available | 2013-03-15 | |
| dc.date.available | 2021-05-16T16:25:47Z | - |
| dc.date.copyright | 2013-03-15 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-02-21 | |
| dc.identifier.citation | [1] E. M. Purcell, H. C. Torrey, and R. V. Pound, 'Resonance Absorption by Nuclear Magnetic Moments in a Solid,' Physical Review, vol. 69, pp. 37-38, 1946.
[2] F. Bloch, W. W. Hansen, and M. Packard, 'The Nuclear Induction Experiment,' Physical Review, vol. 70, pp. 474-485, 1946. [3] Raymond Damadian. Available: http://web.mit.edu/invent/a-winners/a-damadian.html [4] R. E. Brummett, J. M. Talbot, and P. Charuhas, 'Potential hearing loss resulting from MR imaging,' Radiology, vol. 169, pp. 539-540, November 1, 1988 1988. [5] M. E. Quirk, A. J. Letendre, R. A. Ciottone, and J. F. Lingley, 'Anxiety in patients undergoing MR imaging,' Radiology, vol. 170, pp. 463-466, February 1, 1989 1989. [6] 勞工安全衛生設施規則. Available: http://www.iosh.gov.tw/Law/LawPublish.aspx?LID=4 [7] R. Hurwitz, S. R. Lane, R. A. Bell, and M. N. Brant-Zawadzki, 'Acoustic analysis of gradient-coil noise in MR imaging,' Radiology, vol. 173, pp. 545-548, November 1, 1989 1989. [8] M. J. McJury, 'Acoustic noise levels generated during high field MR imaging,' Clinical Radiology, vol. 50, pp. 331-334, 1995. [9] D. L. Price, J. P. De Wilde, A. M. Papadaki, J. S. Curran, and R. I. Kitney, 'Investigation of acoustic noise on 15 MRI scanners from 0.2 T to 3 T,' Journal of Magnetic Resonance Imaging, vol. 13, pp. 288-293, 2001. [10] P. Mansfield and B. Haywood, 'Principles of active acoustic control in gradient coil design,' Magnetic Resonance Materials in Physics, Biology and Medicine, vol. 10, pp. 147-151, 2000. [11] A. Katsunuma, H. Takamori, Y. Sakakura, Y. Hamamura, Y. Ogo, and R. Katayama, 'Quiet MRI with novel acoustic noise reduction,' Magnetic Resonance Materials in Physics, Biology and Medicine, vol. 13, pp. 139-144, 2001. [12] J. A. de Zwart, P. van Gelderen, P. Kellman, and J. H. Duyn, 'Reduction of Gradient Acoustic Noise in MRI Using SENSE-EPI,' NeuroImage, vol. 16, pp. 1151-1155, 2002. [13] F. Hennel, F. Girard, and T. Loenneker, '“Silent” MRI with soft gradient pulses,' Magnetic Resonance in Medicine, vol. 42, pp. 6-10, 1999. [14] 耳塞耳罩圖. Available: http://www.indiamart.com/afps/saftey-item.html [15] Active Noise Cancellation. Available: http://www.podcomplex.com/blog/noise-cancelling/ [16] Active noise cancellation headsets. Available: http://www.themotorreport.com.au/5928/toyota-to-fit-active-noise-cancelling-to-crown-hybrid [17] A. M. Goldman, W. E. Gossman, and P. C. Friedlander, 'Reduction of sound levels with antinoise in MR imaging,' Radiology, vol. 173, pp. 549-550, November 1, 1989 1989. [18] M. McJury, R. W. Stewart, D. Crawford, and E. Toma, 'The use of active noise control (ANC) to reduce acoustic noise generated during MRI scanning: Some initial results,' Magnetic Resonance Imaging, vol. 15, pp. 319-322, 1997. [19] C. K. Chen, C. Tzi-Dar, and C. Jyh-Horng, 'Active cancellation system of acoustic noise in MR imaging,' Biomedical Engineering, IEEE Transactions on, vol. 46, pp. 186-191, 1999. [20] 卓冠宏, '以DSP建構之磁振造影主動噪音抑制系統,' 2003. [21] M. Li, T. C. Lim, and J.-H. Lee, 'Simulation study on active noise control for a 4-T MRI scanner,' Magnetic Resonance Imaging, vol. 26, pp. 393-400, 2008. [22] M. Li, B. Rudd, T. C. Lim, and J.-H. Lee, 'In situ active control of noise in a 4 T MRI scanner,' Journal of Magnetic Resonance Imaging, vol. 34, pp. 662-669, 2011. [23] S. Ogawa, T.-M. Lee, A. S. Nayak, and P. Glynn, 'Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields,' Magnetic Resonance in Medicine, vol. 14, pp. 68-78, 1990. [24] VisualDSP++ 5.0. Available: http://www.analog.com/en/content/visualdsp_tools_upgrades/fca.html [25] ADSP-24169. Available: http://www.analog.com/en/evaluation/21469-ezlite/eb.html [26] SSM 2167. Available: http://www.analog.com/en/audiovideo-products/audio-amplifiers/ssm2167/products/product.html [27] LM386. Available: http://www.nari.ee.ethz.ch/wireless/education/PPS/PPS02/doc/LM386.pdf [28] 非鐵磁性耳機. Available: http://www.mrivideo.com/product/products.asp?id=7&sub_id=14 [29] ASUS A52JC. Available: http://tw.asus.com/Notebooks/Versatile_Performance/A52JC/#specifications [30] Equal-loudness contour. Available: http://en.wikipedia.org/wiki/Equal-loudness_contour [31] dBA. Available: http://en.wikipedia.org/wiki/A-weighting | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6313 | - |
| dc.description.abstract | 磁共振影像(Magnetic Resonance Imaging)在醫學影像上有卓越的貢獻,然而在取得影像的過程中,卻會產生100分貝以上的噪音,其中以回波平面影像序列(Echo-planar imaging, EPI)為最。對於這樣的音量,人體只能承受約30分鐘的掃描時間。本研究是討論如何降低這些噪音。
目前已有許多論文致力解決磁共振影像的噪音問題,像是透過改善磁場線圈、設置真空層隔絕介質等方法減少噪音。但這些方式皆過於昂貴,且不能在現有的醫療器材上使用。較為實際的方法為使用耳塞、耳罩等被動材料消除高頻噪音,再加上主動式噪音抑制。即利用耳機主動製造出與噪音波型正負相反的波,稱之為抗噪波,藉由聲波的正負相消來抗噪,消除低頻噪音。 先前的研究大多會使用FxLMS演算法來進行降噪,但是效果不甚佳,仍需改善。本研究針對EPI產生的噪音設計了一種新的適應性演算法,利用EPI所產生重複性噪音的特性,將先驗資訊納入考量,稱為先驗資訊演算法(Prior information Based Algorithm)。此演算法能準確預測噪音的波型,並有效的地播放出抗噪波做抵消,來達成抗噪目的。而本實驗也將比較FxLMS演算法和先驗資訊演算法於模擬和實作上的優劣。 本實驗除了提出新的演算法構想,以及電腦模擬,更實構了一個主動式噪音抑制的系統。已經實際於本實驗室的3T(Tesla)磁共振影像系統上有26分貝的總降噪效果。其中被動式抗噪約16分貝,主動式抗噪約10分貝。在未來,可以將此系統實際應用於功能性磁振造影(functional MRI)系統中,讓受試者在更舒服的環境進行心理學實驗,尤其是需要降低噪音的聽覺刺激或語音刺激方面的研究。 | zh_TW |
| dc.description.abstract | Magnetic Resonance Imaging (MRI) is an important modality in medical care systems. However, MRI conducts the noise over 100dB while acquiring the imaging, especially for Echo-Planar Imaging (EPI). Subjects or Patients will feel uncomfortable after half of an hour under this noisy environment. Such that, reducing the noise level and providing the comfortable environment is a big issue for MRI scanning.
The traditional methods to reduce the noise is limited, such as providing the passive material (ex. Ear plug) is failed to reduce the low frequency noise, or improving the MRI system (ex. change MRI scanning sequence and implement the vacuum layer in the MRI system) is hard to implement on the current system. To solve the noise problem, the headset with active noise cancellation was established. Active noise cancellation was using a headset to produce an inverse waveform in order to cancel the noise waveform conducted from the system, especially the low-frequency noise. A novel algorithm required the EPI noise as the prior information was used in generate the inverse waveform, in which the periodic properties of EPI noise was considered, so called Prior information Based Algorithm. The pre-required prior information was considered as a template in order to predict the following EPI noise. Our approach was combined the active noise cancellation and passive material, not only provided the low frequency noise reduction in a cost effective way but also compatible to the current systems. In this study, we also compare FxLMS algorithm with Prior information based algorithm in simulation and realistic results. Besides providing the novel idea of algorithm and computer simulation, a real noise cancellation system has been demonstrated in 3T MRI system. The noise cancellation system revealed 26dB noise reduction totally, whereas the passive reduction was 16dB and active reduction was 10dB. In the future, the noise cancellation system will be applied for the MRI scanning to provide a more comfortable environment, especially in the fMRI study with auditory task. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-16T16:25:47Z (GMT). No. of bitstreams: 1 ntu-102-R99945030-1.pdf: 5643085 bytes, checksum: d04f09cc909a5244794c8f65e393b599 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書
誌謝 1 中文摘要 2 ABSTRACT 3 目錄 4 圖目錄 7 表目錄 10 第一章 緒論 1.1 MRI簡介 11 1.2 研究動機與目的 13 1.3 論文架構 15 第二章 文獻探討 2.1 MRI噪音來源及分析 16 2.2 噪音抑制的方法 18 2.2.1 噪音源 18 2.2.2 軟體 19 2.2.3 被動式元件 20 2.2.4 主動式元件 21 2.3 MRI噪音與大腦功能性影像 25 第三章 實驗方法 3.1 主動式噪音抑制 27 3.2 先驗資訊演算法(Prior information) 30 3.2.1 系統之轉移函數(Secondary Path - S(n)) 32 3.2.2 系統之抗噪波(Secondary wave) 35 3.2.3 系統之啟動時間 36 3.3 FxLMS (Filtered -x- Least Mean Square) 37 第四章 系統架構與實驗流程 4.1 系統架構 40 4.2 實驗流程 45 第五章 實驗結果 5.1 電腦模擬結果 46 5.1.1 FxLMS之模擬結果 46 5.1.2 先驗資訊演算法之模擬結果 47 5.2 系統之頻率響應 49 5.3 系統之抗噪波與啟動時間 52 5.4 噪音抑制結果 54 5.3.1 被動式噪音抑制結果 54 5.3.2 主動式噪音抑制結果(FxLMS演算法) 55 5.3.2 主動式噪音抑制結果(先驗資訊演算法) 56 第六章 結果討論及未來展望 6.1 討論 60 6.1.1 硬體表現 60 6.1.2 硬體實作 65 6.1.3 程式與訊號處理 66 6.1.4 MRI噪音訊號 68 6.1.5 受試者實驗 70 6.2 結論 78 6.3 未來展望 79 參考文獻 80 | |
| dc.language.iso | zh-TW | |
| dc.title | 使用適應性演算法之磁振造影主動抗噪系統 | zh_TW |
| dc.title | An Active Noise Cancellation System for fMRI Based on Adaptive Algorithm | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 闕志達(Tzi-Dar Chiueh),吳昌衛(Chang-Wei Wu),蔡振家(Chen-Gia Tsai),林慶波(Ching-Po Lin) | |
| dc.subject.keyword | 主動式噪音抑制,核磁共振影像, | zh_TW |
| dc.subject.keyword | active noise cancellation,magnetic resonance imaging, | en |
| dc.relation.page | 81 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2013-02-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf | 5.51 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
