Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63135
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖文彬
dc.contributor.authorPo-Cheng Wuen
dc.contributor.author吳柏徵zh_TW
dc.date.accessioned2021-06-16T16:24:26Z-
dc.date.available2023-01-01
dc.date.copyright2013-03-06
dc.date.issued2013
dc.date.submitted2013-01-23
dc.identifier.citation1. MacDiarmid, A. G., “Synthetic Metals”: A Novel Role for Organic Polymers (Nobel Lecture). Angewandte Chemie International Edition 2001, 40 (14), 2581-2590.
2. MacDiarmid, A. G.; Heeger, A. J., Organic metals and semiconductors: The chemistry of polyacetylene, (CH)x, and its derivatives. Synthetic Metals 1980, 1 (2), 101-118.
3. Bredas, J. L.; Street, G. B., Polarons, bipolarons, and solitons in conducting polymers. Accounts of Chemical Research 1985, 18 (10), 309-315.
4. Norden, B.; Krutmeijer, E., Advanced Information of The Nobel Prize in Chemistry, 2000 : Conductive Polymers. 2000.
5. Letheby, H., XXIX.-On the production of a blue substance by the electrolysis of sulphate of aniline. Journal of the Chemical Society 1862, 15 (0), 161-163.
6. Sun, L.-J.; Liu, X.-X.; Lau, K. K.-T.; Chen, L.; Gu, W.-M., Electrodeposited hybrid films of polyaniline and manganese oxide in nanofibrous structures for electrochemical supercapacitor. Electrochimica Acta 2008, 53 (7), 3036-3042.
7. Bessiere, A.; Duhamel, C.; Badot, J. C.; Lucas, V.; Certiat, M. C., Study and optimization of a flexible electrochromic device based on polyaniline. Electrochimica Acta 2004, 49 (12), 2051-2055.
8. Dutta, D.; Sarma, T. K.; Chowdhury, D.; Chattopadhyay, A., A polyaniline-containing filter paper that acts as a sensor, acid, base, and endpoint indicator and also filters acids and bases. Journal of Colloid and Interface Science 2005, 283 (1), 153-159.
9. Trivedi, D. C.; Dhawan, S. K., Shielding of electromagnetic interference using polyaniline. Synthetic Metals 1993, 59 (2), 267-272.
10. Willner, I.; Willner, B.; Katz, E., Biomolecule–nanoparticle hybrid systems for bioelectronic applications. Bioelectrochemistry 2007, 70 (1), 2-11.
11. Kalendova, A.; Vesely, D.; Stejskal, J., Organic coatings containing polyaniline and inorganic pigments as corrosion inhibitors. Progress in Organic Coatings 2008, 62 (1), 105-116.
12. Green, A. G.; Woodhead, A. E., CCXLIII.-Aniline-black and allied compounds. Part I. Journal of the Chemical Society, Transactions 1910, 97 (0), 2388-2403.
13. Green, A. G.; Woodhead, A. E., CXVII.-Aniline-black and allied compounds. Part II. Journal of the Chemical Society, Transactions 1912, 101 (0), 1117-1123.
14. Chiang, J.-C.; MacDiarmid, A. G., ‘Polyaniline’: Protonic acid doping of the emeraldine form to the metallic regime. Synthetic Metals 1986, 13 (1–3), 193-205.
15. Huang, W.-S.; Humphrey, B. D.; MacDiarmid, A. G., Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1986, 82 (8), 2385-2400.
16. de Albuquerque, J. E.; Mattoso, L. H. C.; Faria, R. M.; Masters, J. G.; MacDiarmid, A. G., Study of the interconversion of polyaniline oxidation states by optical absorption spectroscopy. Synthetic Metals 2004, 146 (1), 1-10.
17. MacDiarmid, A. G.; Epstein, A. J., Polyanilines: a novel class of conducting polymers. Faraday Discussions of the Chemical Society 1989, 88 (0), 317-332.
18. Genies, E. M.; Boyle, A.; Lapkowski, M.; Tsintavis, C., Polyaniline: A historical survey. Synthetic Metals 1990, 36 (2), 139-182.
19. Wei, Y., Nonclassical or Reactivation Chain Polymerization: A General Scheme of Polymerization. Journal of Chemical Education 2001, 78 (4), 551.
20. Sapurina, I.; Stejskal, J., The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polymer International 2008, 57 (12), 1295-1325.
21. Morrison, R. T.; Boyd, R. N., Organic Chemistry. 6 ed.; Prentice-Hall Inc.: 1992.
22. Wei, Y.; Hariharan, R.; Patel, S. A., Chemical and electrochemical copolymerization of aniline with alkyl ring-substituted anilines. Macromolecules 1990, 23 (3), 758-764.
23. Manohar, S. K.; Macdiarmid, A. G.; Epstein, A. J., Polyaniline: Pernigranile, an isolable intermediate in teh conventional chemical synthesis of emeraldine. Synthetic Metals 1991, 41 (1–2), 711-714.
24. Chakraborty, M.; Mukherjee, D. C.; Mandal, B. M., Dispersion Polymerization of Aniline in Different Media:  A UV−Visible Spectroscopic and Kinetic Study. Langmuir 2000, 16 (6), 2482-2488.
25. Syed, A. A.; Dinesan, M. K., Review: Polyaniline—A novel polymeric material. Talanta 1991, 38 (8), 815-837.
26. Armes, S. P.; Miller, J. F., Optimum reaction conditions for the polymerization of aniline in aqueous solution by ammonium persulphate. Synthetic Metals 1988, 22 (4), 385-393.
27. Blinova, N. V.; Stejskal, J.; Trchova, M.; Prokeš, J.; Omastova, M., Polyaniline and polypyrrole: A comparative study of the preparation. European Polymer Journal 2007, 43 (6), 2331-2341.
28. Huang, J.; Kaner, R. B., A General Chemical Route to Polyaniline Nanofibers. Journal of the American Chemical Society 2003, 126 (3), 851-855.
29. Huang, J.; Kaner, R. B., Nanofiber Formation in the Chemical Polymerization of Aniline: A Mechanistic Study. Angewandte Chemie International Edition 2004, 43 (43), 5817-5821.
30. Adams, P. N.; Laughlin, P. J.; Monkman, A. P.; Kenwright, A. M., Low temperature synthesis of high molecular weight polyaniline. Polymer 1996, 37 (15), 3411-3417.
31. Stejskal, J.; Riede, A.; Hlavata, D.; Prokeš, J.; Helmstedt, M.; Holler, P., The effect of polymerization temperature on molecular weight, crystallinity, and electrical conductivity of polyaniline. Synthetic Metals 1998, 96 (1), 55-61.
32. Cao, Y.; Smith, P.; Heeger, A. J., Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers. Synthetic Metals 1992, 48 (1), 91-97.
33. Kuramoto, N.; Genies, E. M., Micellar chemical polymerization of aniline. Synthetic Metals 1995, 68 (2), 191-194.
34. Kuramoto, N.; Tomita, A., Aqueous polyaniline suspensions: Chemical oxidative polymerization of dodecylbenzene-sulfonic acid aniline salt. Polymer 1997, 38 (12), 3055-3058.
35. Michaelson, J. C.; McEvoy, A. J.; Kuramoto, N., Morphology and growth rate of polyaniline films modified by surfactants and polyelectrolytes. Reactive Polymers 1992, 17 (2), 197-206.
36. Kim, B.-J.; Oh, S.-G.; Han, M.-G.; Im, S.-S., Synthesis and characterization of polyaniline nanoparticles in SDS micellar solutions. Synthetic Metals 2001, 122 (2), 297-304.
37. Stejskal, J.; Kratochvil, P.; Gospodinova, N.; Terlemezyan, L.; Mokreva, P., Polyaniline dispersions: preparation of spherical particles and their light-scattering characterization. Polymer 1992, 33 (22), 4857-4858.
38. Blinova, N. V.; Sapurina, I.; Klimovič, J.; Stejskal, J., The chemical and colloidal stability of polyaniline dispersions. Polymer Degradation and Stability 2005, 88 (3), 428-434.
39. Jang, J.; Ha, J.; Cho, J., Fabrication of Water-Dispersible Polyaniline-Poly(4-styrenesulfonate) Nanoparticles For Inkjet-Printed Chemical-Sensor Applications. Advanced Materials 2007, 19 (13), 1772-1775.
40. Kuo, C.-W.; Wen, T.-C., Dispersible polyaniline nanoparticles in aqueous poly(styrenesulfonic acid) via the interfacial polymerization route. European Polymer Journal 2008, 44 (11), 3393-3401.
41. Nagy, A.; Mestl, G., High temperature partial oxidation reactions over silver catalysts. Applied Catalysis A: General 1999, 188 (1–2), 337-353.
42. Willets, K. A.; Van Duyne, R. P., Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry 2007, 58 (1), 267-297.
43. Jadhav, R. S.; Patil, K. J.; Hundiwale, D. G.; Mahulikar, P. P., Synthesis of waterborne nanopolyanilne latexes and application of nanopolyaniline particles in epoxy paint formulation for smart corrosion resistivity of carbon steel. Polymers for Advanced Technologies 2011, 22 (12), 1620-1627.
44. Wang, H. L.; Jeon, S. H.; Mack, N. H. Metal-Polymer Composite Comprising Nanostructures and Applications thereof. US2010/0091275 A1, 2010.
45. Vanysek, P., Handbook of Chemistry and Physics. 88th ed.; Chemical Rubber Company: 2007.
46. Li, W.; Jia, Q. X.; Wang, H.-L., Facile synthesis of metal nanoparticles using conducting polymer colloids. Polymer 2006, 47 (1), 23-26.
47. Dimeska, R.; Murray, P. S.; Ralph, S. F.; Wallace, G. G., Electroless recovery of silver by inherently conducting polymer powders, membranes and composite materials. Polymer 2006, 47 (13), 4520-4530.
48. Wang, H.-L.; Li, W.; Jia, Q. X.; Akhadov, E., Tailoring Conducting Polymer Chemistry for the Chemical Deposition of Metal Particles and Clusters. Chemistry of Materials 2007, 19 (3), 520-525.
49. Xu, P.; Mack, N. H.; Jeon, S.-H.; Doorn, S. K.; Han, X.; Wang, H.-L., Facile Fabrication of Homogeneous 3D Silver Nanostructures on Gold-Supported Polyaniline Membranes as Promising SERS Substrates. Langmuir 2010, 26 (11), 8882-8886.
50. Xu, P.; Zhang, B.; Mack, N. H.; Doorn, S. K.; Han, X.; Wang, H.-L., Synthesis of homogeneous silver nanosheet assemblies for surface enhanced Raman scattering applications. Journal of Materials Chemistry 2010, 20 (34), 7222-7226.
51. Xu, P.; Jeon, S.-H.; Chen, H.-T.; Luo, H.; Zou, G.; Jia, Q.; Anghel, M.; Teuscher, C.; Williams, D. J.; Zhang, B.; Han, X.; Wang, H.-L., Facile Synthesis and Electrical Properties of Silver Wires through Chemical Reduction by Polyaniline. The Journal of Physical Chemistry C 2010, 114 (50), 22147-22154.
52. Zhang, B.; Xu, P.; Xie, X.; Wei, H.; Li, Z.; Mack, N. H.; Han, X.; Xu, H.; Wang, H.-L., Acid-directed synthesis of SERS-active hierarchical assemblies of silver nanostructures. Journal of Materials Chemistry 2011, 21 (8), 2495-2501.
53. Yan, J.; Han, X.; He, J.; Kang, L.; Zhang, B.; Du, Y.; Zhao, H.; Dong, C.; Wang, H.-L.; Xu, P., Highly Sensitive Surface-Enhanced Raman Spectroscopy (SERS) Platforms Based on Silver Nanostructures Fabricated on Polyaniline Membrane Surfaces. ACS Applied Materials & Interfaces 2012, 4 (5), 2752-2756.
54. He, J.; Han, X.; Yan, J.; Kang, L.; Zhang, B.; Du, Y.; Dong, C.; Wang, H.-L.; Xu, P., Fast fabrication of homogeneous silver nanostructures on hydrazine treated polyaniline films for SERS applications. CrystEngComm 2012, 14 (15), 4952-4954.
55. Fang, J.; You, H.; Kong, P.; Yi, Y.; Song, X.; Ding, B., Dendritic Silver Nanostructure Growth and Evolution in Replacement Reaction. Crystal Growth & Design 2007, 7 (5), 864-867.
56. Fang, J.; Ma, X.; Cai, H.; Song, X.; Ding, B.; Guo, Y., Double-interface growth mode of fractal silver trees within replacement reaction. Applied Physics Letters 2006, 89 (17), 173104-3.
57. Fang, J.; You, H.; Zhu, C.; Kong, P.; Shi, M.; Song, X.; Ding, B., Thermodynamic and kinetic competition in silver dendrite growth. Chemical Physics Letters 2007, 439 (1–3), 204-208.
58. 王宛婷. 聚苯胺奈米纖維與銀金屬複合材料之製備. 碩士論文, 國立台灣大學, 2012.
59. Zujovic, Z. D.; Laslau, C.; Bowmaker, G. A.; Kilmartin, P. A.; Webber, A. L.; Brown, S. P.; Travas-Sejdic, J., Role of Aniline Oligomeric Nanosheets in the Formation of Polyaniline Nanotubes. Macromolecules 2009, 43 (2), 662-670.
60. Stejskal, J.; Prokeš, J.; Trchova, M., Reprotonation of polyaniline: A route to various conducting polymer materials. Reactive and Functional Polymers 2008, 68 (9), 1355-1361.
61. ICDD, JCPDS No. 89-3722. 2.4 ed.
62. Williams, D. B.; Carter, C. B., Transmission Electron Microscopy. 1st ed.; Plenum Press: 1996.
63. Jiang, Z.; Lin, Y.; Xie, Z., Structural investigations and growth mechanism of well-defined Ag dendrites prepared by conventional redox displacement. Materials Chemistry and Physics 2012, 134 (2–3), 762-767.
64. Huang, J., Syntheses and applications of conducting polymer polyaniline nanofibers. Pure Appl. Chem. 2006, 78 (1), 15-27.
65. Wei, Y.; Hsueh, K. F., Thermal analysis of chemically synthesized polyaniline and effects of thermal aging on conductivity. Journal of Polymer Science Part A: Polymer Chemistry 1989, 27 (13), 4351-4363.
66. Wang, Y.; Tran, H. D.; Liao, L.; Duan, X.; Kaner, R. B., Nanoscale Morphology, Dimensional Control, and Electrical Properties of Oligoanilines. Journal of the American Chemical Society 2010, 132 (30), 10365-10373.
67. Laidler, K. J.; Meiser, J. H.; Sanctuary, B. C., Physical Chemistry. 4th ed.; Houghton Mifflin: 2002.
68. Gentry, S. T.; Fredericks, S. J.; Krchnavek, R., Controlled Particle Growth of Silver Sols through the Use of Hydroquinone as a Selective Reducing Agent. Langmuir 2009, 25 (5), 2613-2621.
69. Deno, N. C.; Peterson, H. J.; Sacher, E., Nitric Acid Equilibria in Water—Sulfuric Acid1. The Journal of Physical Chemistry 1961, 65 (2), 199-201.
70. Ogoshi, T.; Hasegawa, Y.; Aoki, T.; Ishimori, Y.; Inagi, S.; Yamagishi, T.-a., Reduction of Emeraldine Base Form of Polyaniline by Pillar[5]arene Based on Formation of Poly(pseudorotaxane) Structure. Macromolecules 2011, 44 (19), 7639-7644.
71. Martinez-Castanon, G. A.; Nino-Martinez, N.; Loyola-Rodriguez, J. P.; Patino-Marin, N.; Martinez-Mendoza, J. R.; Ruiz, F., Synthesis of silver particles with different sizes and morphologies. Materials Letters 2009, 63 (15), 1266-1268.
72. Li, D.; Kaner, R. B., Processable stabilizer-free polyaniline nanofiber aqueous colloids. Chemical Communications 2005, 0 (26), 3286-3288.
73. O'Connell, M. J.; Boul, P.; Ericson, L. M.; Huffman, C.; Wang, Y.; Haroz, E.; Kuper, C.; Tour, J.; Ausman, K. D.; Smalley, R. E., Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chemical Physics Letters 2001, 342 (3–4), 265-271.
74. Sulimenko, T.; Stejskal, J.; Křivka, I.; Prokeš, J., Conductivity of colloidal polyaniline dispersions. European Polymer Journal 2001, 37 (2), 219-226.
75. Huang, L.-M.; Chen, C.-H.; Wen, T.-C.; Gopalan, A., Effect of secondary dopants on electrochemical and spectroelectrochemical properties of polyaniline. Electrochimica Acta 2006, 51 (13), 2756-2764.
76. Jin, Z.; Su, Y.; Duan, Y., Development of a polyaniline-based optical ammonia sensor. Sensors and Actuators B: Chemical 2001, 72 (1), 75-79.
77. Witten, T. A., Jr.; Sander, L. M., Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon. Physical Review Letters 1981, 47 (19), 1400-1403.
78. You, H.; Fang, J.; Chen, F.; Shi, M.; Song, X.; Ding, B., Morphological Evolution of Fractal Dendritic Silver Induced by Ions Walking within the Diffusion Layer. The Journal of Physical Chemistry C 2008, 112 (42), 16301-16305.
79. Oaki, Y.; Imai, H., Experimental Demonstration for the Morphological Evolution of Crystals Grown in Gel Media. Crystal Growth & Design 2003, 3 (5), 711-716.
80. Moulton, S. E.; Innis, P. C.; Kane-Maguire, L. A. P.; Ngamna, O.; Wallace, G. G., Polymerisation and characterisation of conducting polyaniline nanoparticle dispersions. Current Applied Physics 2004, 4 (2–4), 402-406.
81. Petrosino, M.; Vacca, P.; Miscioscia, R.; Nenna, G.; Minarini, C.; Rubino, A., Effect of PEDOT:PSS ratio on the electrical and optical properties of OLEDs. 2007, 659310-659310.
82. Liu, J. M.; Sun, L.; Yang, S. C. Molecular complex of conductive polymer and polyelectrolyte; and a process of producing same. US5489400, 1996.
83. Dorey, S.; Vasilev, C.; Vidal, L.; Labbe, C.; Gospodinova, N., Ultrafine nano-colloid of polyaniline. Polymer 2005, 46 (4), 1309-1315.
84. Yang, W.; Wang, Y.; Li, J.; Yang, X., Polymer wrapping technique: an effective route to prepare Pt nanoflower/carbon nanotube hybrids and application in oxygen reduction. Energy & Environmental Science 2010, 3 (1), 144-149.
85. Jongen, N.; Bowen, P.; Lemaı; amp; x; tre, J.; Valmalette, J.-C.; Hofmann, H., Precipitation of Self-Organized Copper Oxalate Polycrystalline Particles in the Presence of Hydroxypropylmethylcellulose (HPMC): Control of Morphology. Journal of Colloid and Interface Science 2000, 226 (2), 189-198.
86. Judat, B.; Kind, M., Morphology and internal structure of barium sulfate—derivation of a new growth mechanism. Journal of Colloid and Interface Science 2004, 269 (2), 341-353.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63135-
dc.description.abstract本論文利用聚苯胺(PANI)的氧化還原性質,將銀離子還原成銀金屬,並且設計不同實驗,探討產物銀金屬的形態變化。首先製備三種不同形態之PANI(奈米纖維、奈米顆粒與奈米平板);與硝酸銀反應後所還原之銀金屬形態受到PANI本身化學結構與形態的影響;所混摻之聚電解質聚苯乙烯磺酸(PSSA)會吸附在PANI表面,影響銀金屬成長環境,進而改變其晶體結構;外加還原劑並未與PANI在供應還原電子上產生加乘效果,從銀金屬的形態變化上可以看出其個別的影響;將膠體溶液PANI-PSSA與硝酸銀反應,利用高分子上銀金屬的分佈情形確定兩者為均勻混和,銀奈米粒子藉由互相聚集形成較大尺寸的結構,並且調整晶體位向使晶體結構趨於一致。zh_TW
dc.description.abstractIn this work, we have exploited the redox property of polyaniline(PANI) to reduce silver ion to metallic silver, whose morphology is investigated in various experiments. First, we have prepared 3 kinds of PANI with different morphologies, i.e. nanofiber(F), nanogranule(G) and nanoplate(P). Not only morphology but also the chemical structure of PANI is found to pose influence on the metal morphology after the reaction between PANI and silver nitrate. Blending poly(4-styrene sulfonic acid)(PSSA) with PANI leads to adsorption of polyelectrolyte onto PANI surface, altering the environment for metal growth, thus changing its crystallographic structure. Addition of reducing agent does not induce synergistic effect with PANI concerning the provision of reducing electrons. The respective influence is noticed by observing metal morphology. PANI-PSSA colloidal solution is prepared and reacted with silver nitrate. PANI and PSSA are believed to be homogeneously mixed based on the distribution of the resulting metal nanoparticles within polymer matrix. The size of metal is increased by aggregation of individual nanoparticles, meanwhile, the crystallographic orientation is adjusted to develop a structure with higher crystallographic coherency.en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:24:26Z (GMT). No. of bitstreams: 1
ntu-102-R99549032-1.pdf: 8796244 bytes, checksum: 64818899edbb824e9b47eafa7784ff41 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
第一章 研究動機 1
第二章 文獻回顧 2
2.1 導電高分子 2
2.1.1 概說 2
2.1.2 摻雜與導電機制 2
2.2 導電高分子聚苯胺 4
2.2.1 概說 4
2.2.2 聚苯胺的聚合機制與製備方式 6
2.2.3 聚苯胺的溶液分散性 11
2.3 銀金屬形態的控制 13
2.3.1 概說 13
2.3.2 以聚苯胺還原銀離子 14
2.3.3 以金屬板還原銀離子 20
第三章 實驗部分 23
3.1 實驗藥品 23
3.2 實驗儀器 25
3.3 不同形態聚苯胺之製備與鑑定 (實驗條件整理於表3.1) 28
3.3.1 聚苯胺奈米纖維 28
3.3.2 聚苯胺奈米顆粒 28
3.3.3 聚苯胺奈米平板 29
3.3.4 聚苯胺導電度之量測 31
3.4 不同形態聚苯胺與硝酸銀之還原反應 32
3.4.1 聚苯胺直接與硝酸銀反應 32
3.4.2 聚苯胺混摻聚苯乙烯磺酸(b-PANI-PSSA)與硝酸銀反應 32
3.5 外加還原劑至聚苯胺奈米纖維與硝酸銀反應系統 33
3.6 製備聚苯胺-聚苯乙烯磺酸(PANI-PSSA)膠體溶液 34
3.7 聚苯胺-聚苯乙烯磺酸(PANI-PSSA)膠體溶液與硝酸銀反應 34
第四章 結果與討論 36
4.1 不同形態聚苯胺之製備與鑑定 36
4.2 不同形態聚苯胺與硝酸銀之還原反應 43
4.3 外加還原劑至聚苯胺奈米纖維與硝酸銀反應系統 58
4.4 聚苯胺混摻聚苯乙烯磺酸(b-PANI-PSSA)與硝酸銀反應 66
4.5 聚苯胺-聚苯乙烯磺酸(PANI-PSSA)膠體溶液與硝酸銀反應 73
第五章 結論 79
參考文獻 80
dc.language.isozh-TW
dc.title聚苯胺-聚苯乙烯磺酸與銀金屬複合材料之製備與銀金屬形態探討zh_TW
dc.titlePreparation of PANI-PSSA and Silver Composite with Investigation of Silver Morphologyen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee邱文英,曾勝茂
dc.subject.keyword聚苯胺,聚苯乙烯磺酸,銀,形態學,尺度,zh_TW
dc.subject.keywordpolyaniline,poly(4-styrene sulfonic acid),silver,morphology,size,en
dc.relation.page89
dc.rights.note有償授權
dc.date.accepted2013-01-23
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
8.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved