Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63134
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李芳仁
dc.contributor.authorAn-Zhou Chengen
dc.contributor.author鄭安洲zh_TW
dc.date.accessioned2021-06-16T16:24:23Z-
dc.date.available2018-03-04
dc.date.copyright2013-03-04
dc.date.issued2013
dc.date.submitted2013-01-23
dc.identifier.citationAudrey, P., Paul, T., Camilla, M., Orna, C., Michael, B., Gisela, S., David, B. and Patrick. O.(2000). Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11: 4241–4257.
Anderson, P. , and Kedersha, N. (2006). RNA granules. J. Cell Biol 172: 803 – 808.
Anderson, P. and Kedersha, N. (2008). Stress granules: the Tao of RNA triage. Trends Biochem. Science 33: 141-150.
Anne C. and Stephanie C. (2009). Phosphorylation of FMRP inhibits association with Dicer. RNA 15: 362-366.
Bergkessel, M., and Reese, J.C. (2004). An essential role for the Saccharomyces cerevisiae DEAD-box helicase DHH1 in G1/S DNA-damage checkpoint recovery. Genetics 167: 21-33.
Buu, L. M., Jang, L. T., and Lee, F. J. (2004). The yeast RNA-binding protein Rbp1p modifies the stability of mitochondrial porin mRNA. J. Biol Chem 279: 453-462.
Brinkworth, R. I., Munn, A. L., and Kobe, B. (2006). Protein kinases associated with the yeast phosphoproteome. BMC Bioinformatics 7: 47.
Celenza, J. L., and Carlson, M. (1986). A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233: 1175–1180.
Clery, A., Blatter, M. and Allain, F. H. (2008). RNA recognition motifs: boring? Not quite. Curr Opon Struct Biol 18: 290-298.
Gimeno, C. J. and Fink, G. R. (1994). Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol Cell Biol 14: 2100-2112.


Gagiano, M., van Dyk D, Bauer, F. F., Lambrechts, M. G. and Pretorius, I. S. (1999). Msn1p/Mss10p, Mss11p and Muc1p/Flo11p are part of a signal transduction pathway downstream of Mep2p regulating invasive growth and pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Microbiol 31: 103-116.
Gasch, A. P., Spellman, P.T., Kao, C.M., Carmel, H. O., Eisen, M. B., Storz, G., Botstein, D. and Brown, P. O. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11: 4241-4257.
Gruhler, A., Olsen, J. V., Mohammed, S., Mortensen, P. Faergeman, N. J., Mann, M., and Jensen, O. N. (2005). Quantitative phosphoproteomic applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 4: 310-327.
Godin, K. S. and Varani, G. (2007). How arginine-rich domains coordinate mRNA maturation events. RNA Biol 4: 69–75.
Govender, P., Domingo, J. L., Bester, M. C., Pretorious, I. S. and Bauer, F. F. (2008). Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Appl Environ Microbiol 74: 6041-6052.
Hunter, T. and Plowman, G. D. (1997). The protein kinases of budding yeast: six score and more. Trends Biochem Sci 22: 18-22.
Horecka, J. and Jigami, Y. (1999). The trp1- delta FA designer deletion for PCR-based gene functional analysis in Saccharomyces cerevisiae. Yeast 15: 1769-1774.
Kedersha, N. and Anderson, P. (2002). Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochemical Society Transactions 30, part 6
Kristina, H. and Marian, C. (2009) SNF1/AMPK pathways in yeast. Front Biosci. 13: 2408–2420
Guo, B., Styles, C. A., Feng, Q. and Fink, G. R. (2000). A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc Nat Acad Sci USA 97: 12158-12163.
Hunter, T. (2000). Siganling--2000 and beyond. Cell 100: 113-127.
Henrik G. D. and Jeremy W. T. (2001). Regulation of G protein– initiated signal transduction in yeast: Paradigms and Principles. Annu Rev Biochem. 70: 703–54.
Holcik, M. and Sonenberg, N. (2005). Translational control in stress and apoptosis. Nat Rev Mol Cell Bio. 6: 318-327.
Jang, L. T., Buu, L. M., and Lee, F. J. (2006). Determinants of Rbp1p localization in specific cytoplasmic mRNA-processing foci, P-bodies. J. Biol Chem 281: 29379-29390.
Kim, H. H., Kotb, A., Ashish, L., Rudolf, P. Jr., Yang, X. L., Stefanie, G., Subramanya, S., Jennifer, L. M., Justin, B., Kevan, M. S. and Myriam, G. (2008) Nuclear HuR accumulation through phosphorylation by Cdk1. Genes & Development 22: 1804–1815
Lee, F. J. and Moss, J. (1993). An RNA-binding protein gene (RBP1) of Saccharomyces cerevisiae encodes a putative glucose-repressible protein containing two RNA recognition motifs. J. Biol Chem 268: 15080-15087.
Lo, W. S. and Dranginis, A. M. (1998). The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 9: 161-171.
Marx, J. (2005). Molecular biology. P-bodies mark the spot for controlling protein production. Science 310: 764-765.
Nancy, K., Georg, S., Maranatha, A., Patrick, Y., Jens, L. A., Marvin, J. F., Donalyn, S., Randa, J. K., David E. G. and Paul A.(2005). Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol. 169: 871 – 884.
Narayanan, A., and Jacobson, M. P.(2009). Computational studies of protein regulation by post-translational phosphorylation. Curr Opin Struct Biol 19: 156-163.

Paul J. C. and George F. S., Jr. (2000). Glucose depletion causes haploid invasive growth in yeast. PNAS 97: 13619–13624.
Parker, R. and Sheth, U. (2007). P Bodies and the Control of mRNA Translation and Degradation. Mol Cell 25.
Roberts, R. L. and Fink, G. R. (1994). Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev 8: 2974-2985.
Reijns, M. A., Alexander, R. D., Spiller, M. P., and Beggs, J. D. (2008). A role for Q/N-rich aggregation-prone regions in P-body localization. J. Cell Sci 121: 2463-2472.
Stark, M. J. R. (1996). Yeast Protein Serine/Threonine Phosphatases: Multiple Roles and Diverse Regulation. Yeast Vol 12: 1647-1675.
Scandalios, J. G. (1997). Oxidative Stress and the Molecular Biology of Antioxidant Defenses. Cold Spring Harbor Laboratory Press
Shen, E. C., Henry, M. F., Weiss, V. H., Valentini, S. R., Silver, P. A. and Lee, M. S. (1998). Arginine methylation facilitates the nuclear export of hnRNP proteins. Genes Dev 12: 679–91.
Spingola, M., and Ares, M., Jr. (2000). A yeast intronic splicing enhancer and Nam8p are required for Mer1p-activated splicing. Mol Cell 6: 329-338.
Sheth, U. and Parker, R. (2003). Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300: 805-808.
Simon, M., Yang, H.T., Ntsane, M., David, G., C., Philip, C. and Simon, R. (2006). Phosphorylation of the ARE-binding protein DAZAP1 by ERK2 induces its dissociation from DAZ. J. Biochem 399: 265–273.
Smukalla, S., Caldara, M., Pochet, N., Beauvais, A., Guadagnini, S., Yan, C., Vinces, M. D., Jansen, A., Prevost, M. C., Latge, J. P., Fink, G.R., Foster, K. R. and Verstrepen, K. L. (2008). FLO1 is a variable green gene that drives biofilm-like cooperation in budding yeast. Cell 135: 726-737.
Teixeira, D., Sheth, U., Valencia, S. M. A., Brengues, M. and Parker, R. (2005). Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 11: 371–382
Takashi, K., David, A. S., Shin, I. H., Sara, T. H. and Anne, D. D. (2012) Quantitative proteomic analysis of yeast DNA replication proteins. Methods 57: 196–202
Vasudevan, S. and Peltz, S.W. (2001). Regulated ARE-mediated mRNA decay in Saccharomyces cerevisiae. Mol Cell 7: 1191-1200.
Ramachandran, V., Khyati, H. S. and Paul, K. H. (2011). The cAMP- Dependent Protein Kinase SignalingPathway Is a Key Regulator of P Body Foci Formation. Mol Cell 43: 973–981.
Walsh, C. T., Garneau, T. S. and Gatto, G. J., Tr. (2005). Protein posttranslational modification: the chemistry of proteome diversifications. Angew Chem Int Ed Engl 44: 7342-7372.
Yu, M. C., Bachand, F., McBride, A. E., Komili, S., Casolari, J. M. and Silver, P. A. (2004). Arginine methyltransferase affects interactions and recruitment of mRNA processing and export factors. Genes Dev 18: 2024–35.
Zhang, T., Nathalie D., Georges, H., Veronique, K. and Cyril, G. (2005). Identification of the sequence determinants mediatingthe nucleo-cytoplasmic shuttling of TIAR and TIA-1 RNA-binding proteins. J. Cell Sci 118: 5453-5463
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63134-
dc.description.abstract在細胞當中,核醣核酸結合蛋白對於訊息核醣核酸(mRNA)的修飾作用(processing)、轉錄(translation)和穩定性(stability)中扮演著重要的角色。目前已經知道核醣核酸結合蛋白 Rbp1p 具有抑制酵母菌生長和調控某些特定訊息核糖核酸(mRNA)穩定性的功能。然而,對於Rbp1p是如何調控生長與訊息核糖核酸穩定度的機制還不是非常清楚。之前實驗室利用質譜儀分析而找到了在Rbp1p的碳端有八個可能會被磷酸化的位置。為了進一步了解這些位置的磷酸化是否會影響到Rbp1p的蛋白質功能。我們先利用定點突變(site-directed mutagenesis)的技術建構出這八個磷酸化的位置被突變成丙胺酸(alanine)或天門冬胺酸(aspartate)來模擬完全去磷酸化(Rbp1-S8A)和完全磷酸化(Rbp1-S8D)的狀態,我們發現Rbp1-S8D喪失了抑制酵母菌生長的能力。此外利用酵母菌雙雜交實驗(Yeast-two-hybrid)發現在這八個位置被磷酸化的狀態之下,Rbp1p的自相互作用(self-interaction)的能力會上升而沒辦法被磷酸化的Rbp1p的自相互作用則會降低。實驗當中也發現這八個位置的磷酸化與否並不會影響Rbp1p與Pub1p和Hrp1p之間的交互作用。 Rbp1p在細胞中的位置會隨著細胞生長時期(growth stage)的不同而改變且Rbp1p在延滯期 (lag phase)被發現會座落在細胞核的位置。Rbp1-S8A大部分是分佈在細胞質當中且呈現細小顆粒狀,Rbp1-S8D則是一直是聚集在細胞核的位置。當面對葡萄糖被剝奪(glucose deprivation)的壓力之下,這些突變型的Rbp1p依舊能聚集到細胞質處理小體 (Processing bodies)。另外,在熱休克(heat shock)的處理之下,突變形的Rbp1p仍然能與Rbp1p的結合蛋白Psp1p有位置重合的現象(co-localization)。最後,我們也發現這些突變型的Rbp1p一樣可以回復由Rbp1p做為媒介來誘導過度的洋菜附著現象(hyper-agar adhesive growth)。 總而言之,我們發現了位於碳端的這八個胺基酸的磷酸化確實會影響Rbp1p在細胞中的位置和喪失抑制酵母菌生長的能力。zh_TW
dc.description.abstractIn cells, RNA binding proteins play an important role in regulating RNA processing, translation and stability. The RNA binding protein Rbp1p was known to repress cell growth and regulate the stability of a subset of mRNAs in yeast. However, the regulatory mechanism of Rbp1p function is still unclear. In this study, we indentified eight putative phosphorylation sites at C-terminus of Rbp1p by mass spectrometry. To characterize the biological importance of these phosphorylation modifications of Rbp1p, we first generated a non-phosphorylatable construct at eight serine residues in the C-terminal region of Rbp1p, Rbp1-S8A, and a mimicking phosphorylation at these residues, Rbp1-S8D. We observed that, unlike wild-type Rbp1p or Rbp1-S8A, Rbp1-S8D mutant lacked the ability to repress cell growth. Using yeast-two-hybrid analysis, we observed that Rbp1-S8D, but not Rbp1-S8A, increased self-interaction of Rbp1p. However, Rbp1-S8D did not affect its interaction with Hrp1p or Pub1p. We also found that Rbp1p exhibited dynamics cellular localization at different growth stage and was partially localized to the nucleus at the lag growth phase. Interestingly, we found that, at different growth stage, most of Rbp1-S8D was sequestered to localize in the nucleus and Rbp1-S8A exhibited diffuse and small cytoplasmic granules. Furthermore, Rbp1-S8A or Rbp1-S8D mutant did not affect their localization to P-bodies in response to glucose deprivation or heat-stress granules under heat shock. In addition, Rbp1-S8A and Rbp1-S8D still can restore Rbp1p mediated hyper-adhesive or invasive growth. Together, we demonstrate that subcellular localization and cellular function of Rbp1p is modulated by phosphorylation of serine residues in the C-terminal region.en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:24:23Z (GMT). No. of bitstreams: 1
ntu-102-R99448002-1.pdf: 2299876 bytes, checksum: e3d356b5aa1e0d436f28f8e46468e14a (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員審定書 I
致謝 II
中文摘要 III
Abstract V
Table of content VII
Abbreviations IX
Introduction 1
Results 9
Part I : Characterize the biological importance of phosphorylation modifications of Rbp1p 9
Part II. To investigate how Rbp1p can be recruited to P-bodies when yeasts face to stresses 15
Discussion 17
Material and methods 21
Tables
Table 1. Yeast strains used in this thesis. 33
Table 2. Primers used in this thesis 34
Table 3. Plasmids used in this thesis 38
Table 4. Antibodies used in this thesis 39
Figures
Figure 1. Structure organization of Rbp1p and its phosphor-mutants 40
Figure 2. Rbp1-S8D mutant lacked the ability to repress cell growth 41
Figure 3. Dissect which phosphorylation sites is the most important for regulating cell growth and Rbp1-S6D is sufficient to disrupt growth defect caused by overexpression of Rbp1p. 42
Figure4. Ser/Ala mutations did not affect growth defect caused by overexpression
of Rbp1p.. 43
Figure5. Rbp1p exhibited dynamic cellular localization at different growth stage. 45
Figure6. Rbp1-S8A and Rbp1-S8D affect self-associated ability 47
Figure7. Phosphor-mutants of Rbp1 still co-localized with Dcp2p in response to glucose deprivation 51
Figure8. Phosphor-mutants of Rbp1p still co-localize with Psp1p under heat shock stress. 52
Figure9. Rbp1-S8A or Rbp1-S8D still can restore rbp1Δ induced hyper adhesive or invasive growth 53
Figure10. Recruitment of Rbp1p to P-bodies may not be controlled
by cAMP- dependent protein kinase pathway. 54
Figure11. Rbp1p still localize to P-bodies marker in response to
glucose deprivation in snf1Δ strain 55
Figure12. Use SILAC approach to identify which residue of Rbp1p can be post-
translationally modified in response to glucose deprivation. 56
Figure13. Comparing patterns of protein complex which is co-immunoprecipitated
by Rbp1-S8A or Rbp1-S8D 57
Appendix 1. Rbp1p shows different patterns between glucose-containing and glucose- deprivation medium by 2DE analysis 58
Appendix 2. Rbp1p is localized in part to the perinuclear region.. 59
Reference. 60
dc.language.isoen
dc.title磷酸化對於酵母菌核醣核酸結合蛋白Rbp1p之功能特性探討zh_TW
dc.titleFunctional characterization of phosphorylation of Rbp1p in Saccharomyces cerevisiaeen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧述諄,張典顯,譚婉玉
dc.subject.keyword磷酸化,定點突變,酵母菌雙雜交實驗,蛋白自相互作用,葡萄糖剝奪處理,熱休克壓力,位置重合現象,細胞質處理小體,洋菜膠附著現象,zh_TW
dc.subject.keywordPhosphorylation,Site-directed mutagenesis,Yeast-two-hybrid,Protein self-interaction,Glucose deprivation treatment,Heat shock stress,Co-localization,Cytoplasmic processing bodies,Agar adhesive growth,en
dc.relation.page64
dc.rights.note有償授權
dc.date.accepted2013-01-23
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
2.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved