Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63102
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱士維(Shi-Wei Chu)
dc.contributor.authorMing-Yin Leeen
dc.contributor.author李明穎zh_TW
dc.date.accessioned2021-06-16T16:22:50Z-
dc.date.available2017-02-16
dc.date.copyright2013-02-16
dc.date.issued2013
dc.date.submitted2013-01-28
dc.identifier.citation[1] R.H. Ritchie, “Plasma losses by fast electrons in thin films,”Physical Review,
106, 874, 1957.
[2] Z. Salamon, M. F. Brown, and G. Tollin, “Surface plasmon resonance
spectroscopy: probing molecular interactions within membranes.”Trends in
Biomedical Sciences, 24, 213, 1999.
[3] G. Steiner, V. Sablinskas, A. Hubner, C. Kuhne, and R. Salzer, “Surface plas-
mon resonance imaging of microstructured monolayer.”Journal of Molecular
Structure, 509, 265, 1999.
[4] S. Link, M. A. El-Sayed, ”Size and temperature dependence of the plasmon
absorption of colloidal gold nanoparticles.” Journal of Physical Chemistry B ,
103, 4212, 1999.
[5] J. Zhu, L. Q. Huang, J. M. Zhao, Y. C. Wang, Y. R. Zhao, L. M. Hao, Y. M.
Lu, ”Shape dependent resonance light scattering properties of gold nanorods.”
Materials Science and Engineering B-solid State Materials for Advanced Tech-
nology , 121, 199, 2005.
[6] J. Zhu, Y. C. Wang, L. Q. Huang, ”Simulation of the medium dielectric constant
dependent optical properties for gold nanosphere.” Materials Chemistry and
Physics , 93, 383, 2005.
[7] A. Paul, B. Kenens, J. Hofkens, H. Uji-i, ”Excitation Polarization Sensitivity
of Plasmon-Mediated Silver Nanotriangle Growth on a Surface.” Langmuir , 28,
8920, 2012.
[8] S. Link, M. B. Mohamed, M. A. El-Sayed, ”Simulation of the optical absorption
spectra of gold nanorods as a function of their aspect ratio and the effect of
the medium dielectric constant.” Journal of Physical Chemistry B , 103, 3073,
1999.
[9] O. J. F. Martin,C. Girard,”Controlling and tuning strong optical field gradients
at a local probe microscope tip apex”,Applied Physics Letters , 70, 705 ,1997.
[10] W. P. Hu, S. J. Chen, K. T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang and K.
A. Lai,“A novel ultrahigh-resolution surface plasmon resonance biosensor with
an Au nanocluster-embedded dielectric film.”Biosensors and Bioelectronics, 19,
1465, 2004.
[11] H. I. Elim, J. Yang, J. Y. Lee, J. Mi, W. Ji, “Observation of saturable and
reverse-saturable absorption at longitudinal surface plasmon resonance in gold
nanorods.”Applied Physics Letters, 88, p083107, 2006
[12] J. M. Lamarre. F. Billard, C. H. Kerboua, M. Lequime, S. Roorda, L. Martinu,
“Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix.”
Optics Communications, 281, 331, 2008.
[13] N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, H. M. van Driel,“Nonlinear
absorption in Au films: Role of thermal effects.”Physical Review B, 75, 155426,
2007.
[14] M. Kauranen, A. V. Zayats, “Nonlinear plasmonics.”Nature Photonics, 11,
737, 2012.
[15] P. K. Jain, M. A. El-Sayed, ”Plasmonic coupling in noble metal nanostructures.”
Chemical Physics Letters, 487, 153, 2010.
[16] Y. J. Zhang, ”Comparing the interparticle coupling effect on sensitivities of
silver and gold nanoparticles.” Journal of Quantitative Spectroscopy and Ra-
diative Transfer, 113, 578, 2012.
[17] S. Kawata, ”Near-field Optics and Surface Plasmon Polaritions.” Springer, 2001.
[18] A. Vial, A. S. Grimault, D. Macias, D. Barchiesi, M. L. de la Chapelle , ”Im-
proved analytical fit of gold dispesion: Application to the modeling of extinction
spectra with a finite-difference time-domain method.” Physical Review B, 71,
085416, 2005
[19] P. G. Etchegoin, E. C. Le Ru, M. Meyer, ”An analytic model for the optical
properties of gold.” Journal of Chemical Physics, 125, 164705, 2006.
[20] C. Yu and J. Irudayaraj ”Quantitative Evaluation of Sensitivity and Selectivity
of Multiplex NanoSPR Biosensor Assays.” Biophysical Journal, 93, 3684, 2007.
[21] A. J. Haes, D. Stuart, and S. M. Nie, R. P. J. Van Duyne, ”Using solution-phase
nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as
biological sensing platforms..” Fluoresc, 14, 355, 2004.
[22] X. Zhang, C. R. Yonzon, M. A. Youn,g D. A. Stuart, X. Y. Zhang and R. P.
Van Duyne ”Surface-enhanced Raman spectroscopy biosensors: excitation spec-
troscopy for optimisation of substrates fabricated by nanosphere lithography.”
IEE Proceedings Nanobiotechnology, 152, 195, 2005.
[23] S. Link, M. A. El-Sayed,”Spectral Properties and Relaxation Dynamics of
Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and
Nanorods.” Journal of Physical Chemistry B, 103, 8410, 1999.
[24] U. Kreibig, C. v. Fragstein, ”The limitation of electron mean free path in small
silver particles.” Z. Physik, 224, 307, 1969
[25] U. Kreibig, ”Kramers Kronig Analysis of the Optical Properties of Small Silver
Particles.” Z. Physik, 234, 307, 1970
[26] U. Kreibig, ”Vollmer, M. Optical Properties of Metal Clusters.” Springer:Berlin,
1995.
[27] U. Kreibig, ”Optical absorption of small metallic particles.” Surface Science,
156, 678, 1985
[28] W. L. Barnes, A. Dereux, and T. W. Ebbesen, ”Surface plasmon subwavelength
optics.” Nature, 424, 824, 2003.
[29] E. Hutter, J. H. Fendler, “Exploitation of Localized Surface plasmon Reso-
nance.” Advanced Materials, 21, 817, 2009
[30] M. Cardona, “Modulation spectroscopy.” New York : Academic Press, 1969.
[31] A. Taflove, S. C.Hagness, “Computational Electrodynamics The Finite-
Difference Time-Domain Method.”Artech House, 2005
[32] M. A. Alsunaidi, A A. Al-Jabr, “A General ADE-FDTD Algorithm for the
Simulation of Dispersive Structures.” IEEE Photonics Technology Letters, 21,
817, 2009
[33] A. Vial, ”Implementation of the critical points model in the recursive convo-
lution method for modelling dispersive media with the finite-difference time
domain method.” Journal of Optics A-pure and Applied, 9, 745, 2007
[34] D. F. Kelley, R. J. Luebbers, “Piecewise linear recursive convolution for dis-
persive media using FDTD.” IEEE Transactions on Antennas and Propagation,
44, 792, 1996
[35] P. B. Johnson, R. W. Christy, “Optical Constants of the Noble Metals.” Phys-
ical Review B, 6, 4370, 1972
[36] J. H. Greene, A. Taflove “General vector auxiliary differential equation finite-
difference time-domain method for nonlinear optics.” Optics Express, 14, 8305
,2006
[37] P. Sasanpoura, B. Rashidianb, M. Vossoughi “Fluorescent microscopy using
localized excitation source with gold nanotriangles: A computational study.”
Photonics and Nanostructures - Fundamental and Applicationa, 9 219, 2011
[38] 張榮興, ”Visual Basic 數值解析與工程應用.” 全威圖書有限公司, 2002.
[39] C. F. Bohren, D. R. Huffman, “Absorption and Scattering of Light by Small
Particle.” New York : Wiley, 1998
[40] G. Mie, ”Articles on the optical characteristics of turbid tubes, especially col-
loidal metal solutions.” Annaled Der Phtsik, 25, 377, 1908
[41] 蘇東榆, ” 奈米粒子非線性散射特性研究與應用”, 碩士論文, 國立臺灣大學物
理研究所, 2012
[42] J. H. Huang, R. L. Chang, P. T. Leung, D. P. Tsai, ”Nonlinear dispersion
relation for surface plasmon at a metal-Kerr medium interface,” Optics Com-
munications 282, 1412, 2009
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63102-
dc.description.abstract散射是常見的物理現象。也因為如此,讓我們考慮到是否有其方法可控制散
射。而近年來,金奈米粒子的吸收現象被廣泛的研究,甚至在近幾年發現到金奈米粒子的吸收會因為光強度的增加而達到飽和。考慮到吸收與散射皆為光學性質中常見之現象,提供給本研究一個方向: 金奈米粒子是否有飽和散射之現象、可否利用飽和現象去控制散射。
本篇論文希望提供關於單顆金奈米粒子散射現象之理論基礎。因此我們利用時域有限差分法 (finite-difference time-domain,簡稱 FDTD) 去模擬二維金奈米球與金奈米圓柱之散射性質。由於 FDTD 是在時域中進行,故我們使用 recursive convolution 將描述金屬色散介電常數的 Drude critical point 模型的頻域轉為適合在時域中。此外,我們在自製的模擬程式中加入了三階項的極化率,目的是為了探討金奈米粒子中之非線性光學現象。
本論文分成兩大重點: (1) 金奈米粒子 (金奈米球、金奈米圓柱) 的飽和散射現象 (2) 利用金奈米圓柱中兩軸散射的耦合來控制散射
結果顯示,無論飽和或是耦合現象都來自高次項的極化率。我們可以利用提高入射光強度使高次項極化率效應顯現,並用來抑制散射。
zh_TW
dc.description.abstractIn physics, scattering and absorption are general phenomenon. The saturable absorption has been observed in several kinds of metal nanostructures, and absorption can be saturable. Nevertheless, there has been no report for saturation of scattering before. The purpose of this work is to provide a theoretical basis for the saturable scattering, and use saturation to suppress scattering.
We use finite-difference time-domain (FDTD) method, to characterize scattering in a single gold nanoparticle (GNP). To obtain spectral response with FDTD, Drude critical point model as well as recursive convolution are adopted to transform frequency domain into time domain. The correctness of this simulation is checked by comparing with experimental results of the scattering spectrum of GNPs with different sizes. In addition, to examine the saturation effect, third order susceptibilities χ (3) are included in our model. Correlated to the experimental observation,χ (3) of a single GNP can be deduced from our simulation.
The results show that saturation is contribute by higher susceptibility, and we can enhance scattering of one mode to suppress scattering of the other mode in a single gold nanorod.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:22:50Z (GMT). No. of bitstreams: 1
ntu-102-R99222056-1.pdf: 1282626 bytes, checksum: 9ff8491fa3f5d5d5920916a89627d038 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents1 簡介 8
1.1 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 論文內容及架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 金屬性質簡介 12
2.1 Drude critical point model . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 表面電漿與侷限表面電漿 . . . . . . . . . . . . . . . . . . . . . . . . 13
3 時域有限差分法 17
3.1 Maxwell’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 二維系統中的馬克斯威爾方程 . . . . . . . . . . . . . . . . . . . . . . 18
3.3 中央差分法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 馬克斯威爾方程離散化過程 . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 金奈米粒子之程式化模型 . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 非線性下的金奈米粒子模擬 . . . . . . . . . . . . . . . . . . . . . . . 24
3.7 FDTD 之程式流程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4 數值結果及分析 29
4.1 模擬架設 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 模擬數值設定 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Mie theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 在線性 FDTD 情況下的 GNP(金奈米球、金奈米圓柱) 散射頻譜 . . 33
4.5 非線性金奈米球模擬與實驗比較之結果 . . . . . . . . . . . . . . . . . 36
4.6 非線性金奈米球模擬結果與討論 . . . . . . . . . . . . . . . . . . . . 39
4.7 非線性金奈米圓柱模擬設定、結果及其討論 . . . . . . . . . . . . . . 42
4.8 利用非線性金奈米圓柱達成耦合散射 . . . . . . . . . . . . . . . . . . 44
5 結論 56
參考文獻 58
dc.language.isozh-TW
dc.subject耦合zh_TW
dc.subject散射zh_TW
dc.subject電漿zh_TW
dc.subject金zh_TW
dc.subject奈米粒子zh_TW
dc.subject時域有限差分法zh_TW
dc.subject飽和zh_TW
dc.subjectgolden
dc.subjectnanoparticleen
dc.subjectfinite difference time domainen
dc.subjectcouplingen
dc.subjectsaturationen
dc.subjectscatteringen
dc.subjectplasmonen
dc.title利用時域有限差分法模擬金奈米粒子之飽和散射與耦合現象zh_TW
dc.titleSaturation and Coupling Scattering from a Single Gold Nanoparticle by FDTD Simulationen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡定平(Din Ping Tsai),曾雪峰(Snow H. Tseng)
dc.subject.keyword金,奈米粒子,時域有限差分法,耦合,飽和,散射,電漿,zh_TW
dc.subject.keywordgold,nanoparticle,finite difference time domain,coupling,saturation,scattering,plasmon,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2013-01-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
1.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved