請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63098完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李允中 | |
| dc.contributor.author | Shih-Rong Huang | en |
| dc.contributor.author | 黃世榮 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:22:37Z | - |
| dc.date.available | 2013-02-01 | |
| dc.date.copyright | 2013-02-01 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-01-29 | |
| dc.identifier.citation | Reference
1. 吳尚澤。2010。米糕類蒸製過程的熱傳研究。碩士論文。台北:台灣大學生物產業機電工程學研究所。 2. Baik, O. D., M. Marcotte, S. S. Sablani, and F. Castaigne. 2001. Thermal and Physical Properties of Bakery Products. Critical Reviews in Food Science and Nutrition 41(5): 321-352. 3. Bajd, F. and I. Serša. 2011. Continuous monitoring of dough fermentation and bread baking by magnetic resonance microscopy. Magnetic Resonance Imaging 29(3): 434-442. 4. Beck, J. V., and K. J. Arnold. 1977. Parameter estimation in engineering and science, Wiley. 5. Beck, J. V., B. Blackwell, and C. R. S. Clair. 1985. Inverse Heat Conduction: Ill-Posed Problems, John Wiley & Sons. 6. Bell, J. W., B. E. Farkas, S. A. Hale, and T. C. Lanier. 2001. Effect of thermal treatment on moisture transport during steam cooking of skipjack tuna (Katsuwonas pelamis). Journal of Food Science 66(2): 307-313. 7. Blasco, R. and P. I. Alvarez. 1999. Flash drying of fish meals with superheated steam: Isothermal process. Drying Technology 17(4-5): 775-790. 8. Cenkowski, S., C. Pronyk, D. Zmidzinska, and W. E. Muir. 2007. Decontamination of food products with superheated steam. Journal of Food Engineering 83(1): 68-75. 9. Chang, S. F., T. C. Huang, and A. M. Pearson. 1991. Some parameters involved in production of Zousoon--a semi-dry, long fibered pork product. Meat Science 30(4): 303-325. 10. Chiavaro, E., M. Rinaldi, E. Vittadini, and D. Barbanti. 2009. Cooking of pork longissimus dorsi at different temperature and relative humidity values: Effects on selected physico-chemical properties. Journal of Food Engineering 93(2): 158-165. 11. Datta, A.K. 2007. Porous media approaches to studying simultaneous heat and mass transfer in food processes. I: Problem formulations. Journal of Food Engineering, 80(1), 80-95. 12. Datta, A.K.. 2007. Porous media approaches to studying simultaneous heat and mass transfer in food processes. II: Property data and representative results. Journal of Food Engineering, 80(1), 96-110. 13. De Cindio, B.D., & Correra, S. 1995. Mathematical modelling of leavened cereal goods. Journal of Food Engineering, 24(3), 379–403. 14. Fan, J., Mitchell, J.R., & Blanshard, J.M.V. (1999). A model for the oven rise of dough during. Journal of Food Engineering, 41(2), 69–77. 15. Fang, C., Chinnan, M.S. & Thai, C. 2003. Finite element modeling of heat and mass transfer during steaming of cowpea seeds. Journal of Food Science, 68(5), 1702-1712. 16. Fang, C., & Chinnan, M.S. 2004. Kinetics of cowpea starch gelatinization and modeling of starch gelatinization during steaming of intact cowpea seed. Lebensm.-Wiss. u.-Technol., 37(3), 345-354. 17. Flory, P. J. 1953. Principles of polymer Chemistry. Ithaca: Cornell University Press. 18. Frydman, A., J. Vasseur, F. Ducept, M. Sionneau and J. Moureh. 1999. Simulation of spray drying in superheated steam using computational fluid dynamics. Drying Technology 17(7-8): 1313-1326. 19. Geankoplis, C. 2003. Transport processes and separation process principles (Includes Unit Operations), Pearson Education, Limited. 20. Gomez, J. E., D. L. Melo, R. M. Borquez, and E. R. Canales. 2009. Computational Study of Impingement Jet Drying of Seeds Using Superheated Steam Based on Kinetic Theory of Granular Flow. Drying Technology 27(11): 1171-1182. 21. Gupta, T. R. 1996. Thermal diffusivity measurements of wheat flour and wheat flour dough. Journal of Food Process Engineering 19(3): 343-352. 22. He, S., & Liu, C.H. 2004. The primary studying of steamed- bread steaming theory. Grain processing, 1, 43-47. 23. Hoke, K., Houska, M., Kyhos, K., Landfeld, A., & Pipek, P. 2002. Modeling of beef surface temperatures during steam decontamination. Journal of Food Engineering, 58(1): 95–102. 24. Hong, S. W., Z. Y. Yan, M. S. Otterburn and M. J. McCarthy. 1996. Magnetic resonance imaging (MRI) of a cookie in comparison with time-lapse photographic analysis (TLPA) during baking process. Magnetic Resonance Imaging 14(7–8): 923-927. 25. Horrobin, D., Landman, K.A. & Ryder, L. 2003. Understanding wheat grain steaming. Ind. Eng. Chem. Res., 42, 4109-4122. 26. Huang, T.-C., C.-T. Ho, and H.-Y. Fu. 2004. Inhibition of lipid oxidation in pork bundles processing by superheated steam frying. Journal of Agricultural and Food Chemistry 52(10): 2924-2928. 27. Huang, H., P. Lin, and W. Zhou. 2007. Moisture Transport and Diffusive Instability During Bread Baking. SIAM Journal on Applied Mathematics 68(1): 222-238. 28. Isobe, S., Y. Ogasahara, Y. Negishi, and F. Tonozuka. 2011. Development of a new heating system by combining superheated steam and a hot water spray (Aqua-Gas TM) and its application to food processing. Nippon Shokuhin Kagaku Kogaku Kaishi 58(8): 351-358. 29. Itaya, Y., Kobayashi, T., & Hayakawa, K.I. 1995. Three dimensional heat and mass transfer with viscoelastic strain–stress formation in composite food during drying. International Journal of Heat and Mass Transfer, 38(7), 1173–1185. 30. Jones, F.E. 1991. Evaporation of Water. CRC Press. 31. Kokini, J. L., Lai, L. S. and Chedid, L. L. 1992. Effect of starch structure on starch rheological properties. Food Technology, 46(6): 124-139. 32. Kumcuoglu, S., S. Tavman, P. Nesvadba, and I. H. Tavman. 2007. Thermal conductivity measurements of a traditional fermented dough in the frozen state. Journal of Food Engineering 78(3): 1079-1082. 33. Lagrain, B., Boeckx, L., Wilderjans, E., Delcour, J.A., Lauriks, W., 2006. Non-contact ultrasound characterization of bread crumb: application of the Biot-Allard model. Food research International 39 (10): 1067-1075. 34. Lucas, T., M. Musse, M. Bornert, A. Davenel and S. Quellec. 2012. Temperature mapping in bread dough using SE and GE two-point MRI methods: experimental and theoretical estimation of uncertainty. Magnetic Resonance Imaging 30(3): 431-445. 35. Marchant, J. L., and J. M. V. Blanshard. 1978. Studies of the dynamics of the gelatinization of starch granules employing a small angle light scattering system. Starch/Staerke 30: 257-264. 36. Lin, X.Y., He, C., Ruan, Y.R., Zhang, J.S., Chen, W.J., & Zhu, R.B. 2005. Studies of water mobility in frozen steamed bread under microwave reheating using magnetic resonance imaging. Food Science, 26(8), 82-85. 37. Lopez, A. 1987. A Complete course in canning and related processes. Baltimore, Md., USA, Canning Trade. 38. Lurie, S. 1998. Postharvest heat treatments. Postharvest Biology and Technology, 14, 257–269. 39. Miller, R.C. 1988. Continuous cooking of breakfast cereals. Cereal Foods World, 33, 284-291. 40. Mondal, A., & Datta, A.K.. 2008. Bread baking – A review. Journal of Food Engineering 86(4), 465-474. 41. Nagao, K., and S. Matsumoto. 2005. Retardation phenomenon applied to the thermal conduction in foodstuffs during a variety of heating procedures. Journal of the Society of Rheology, Japan 33(2): 93-100. 42. Nix, G.H., Lowery, G.W., Vachan, R.J. & Tanger, G.E. 1967. Direct determination of thermal diffusivity and conductivity with a refined line-source technique. Prog. in Aeronautics and Astronautics, 20, 865. 43. Nygaard, H., and O. Hostmark. 2008. Microbial inactivation during superheated steam drying of fish meal. Drying Technology 26(2): 222-230. 44. Ozisik, N. 1977. Basic heat transfer, McGraw-Hill Book Company. 45. Ozisik, M.N. & Orlande, H.R.B. 2000. Inverse heat transfer fundamentals and applications. (1st ed., pp 35-93). Taylor & Francis, New York. 46. Purlis, E., & Salvadori, V.O. 2009. Bread baking as a moving boundary problem. Part 2: Model validation and numerical simulation. Journal of Food Engineering, 91(3), 434-442. 47. Rahman, S. 1999. Handbook of food preservation. New York, Marcel Dekker. 48. Rahman, S. 2009. Food properties handbook. Boca Raton, CRC Press. 49. Ramaswamy, H.S., & Tung, M.A., & Stark, R. 1983. A method to measure surface heat transfer from steam/air mixtures in batch retorts. Journal of food Science, 48(3), 900-904. 50. Ramaswamy, H.S., & Tung, M.A. 1986 Modeling heat transfer in steam/air processing of thin profile packages. Can Inst. Food Sci. Technol. J., 19(5), 215-222. 51. Rausch, M. H., A. P. Froba and A. Leipertz. 2008. Dropwise condensation heat transfer on ion implanted aluminum surfaces. International Journal of Heat and Mass Transfer 51(5–6): 1061-1070. 52. Rohsenow, W.M., Hartnett, J.P., & Cho, Y.I. 1998. Handbook of heat transfer (3rd ed.) McGraw Hill, New York. 53. Sablani, S S., M. Marcotte, O.D. Baik, and F. Castaigne. 1998. Modeling of simultaneous heat and water transport in the baking process. Lebensm.-Wiss. U.-Technol., 31(3): 201-209. 54. Siebel, E. 1892. Specific heats of various products. Ice and Refrigeration, 2, 256–257. 55. Slade, L., and H. Levine. 1991. Beyond water activity: recent advances based in an alternative approach to the assessment of food quality and safety. Critical Reviews in Food Science and Nutrition, 30, 115- 360. 56. Sluimer, P. and Krist-Spit, C. E. 1987. Heat transport in dough during the baking of bread. In: Morton, I. D. (Ed.) Cereals in a European Context. Basel: Ellis Horwood Ltd., pp. 355-363. 57. Stapley, A.G.F., Landman, K.A., Please, C.P., & Fryer, P.J. 1999. Modeling the steaming of whole wheat grains. Chemical Engineering Science, 54(8), 965-975. 58. Su, A., Kolbe, E., & Park, J.W. 1999. A model of heat transfer coefficients over steam-cooked Surimi Paste. Journal of Aquatic Food Product Technology, 8(3), 39-53. 59. Su, D.M., Ma, R.K., Jiang, B., & Li, L.T. 2009. Dough of Chinese Mantou with different level of water addition during steaming process. Grain processing, 34(2), 66-70。 60. Thorvaldsson, K. and Skjoldebrand, C. 1998. Water diffusion in bread during baking. Lebensm.-Wiss. U.-Technol., 31: 658-663. 61. Thorvaldson, K., & Janestad, H. 1999. A model for simultaneous heat water and vapor diffusion. Journal of Food Engineering, 40(3), 167– 172. 62. Tong, C.H., & Lund, D.B. 1993. Microwave heating of baked dough products with simultaneous heat and moisture transfer. Journal of Food Engineering, 19(4), 319–339. 63. Tung, M.A., Ramawamy, H.S., Smith, T., & Stark, R. 1984. Surface heat transfer coefficient for steam/air mixtures in two pilot scale retorts. Journal of Food Science, 49(3), 939-943 64. Unklesbay, N., Unklesbay, K., Nahaisi, M., Krause, G., 1981. Thermal conductivity of white bread during convective heat processing. Journal of Food Engineering 47: 249-253. 65. USDA. 2007. Table of Nutrient Retention Factors Release 6. Nutrient Data Laboratory. Beltsville Human Nutrition Research Center. Agricultural Research Service. Available at: http://www.ars.usda.gov/nutrientdata. Accessed 23 July 2009. 66. Vittadini, E., M. Rinaldi, E. Chiavaro, D. Barbanti, and R. Massini. 2005. The effect of different convection cooking methods on the instrumental quality and yield of pork longissimus dorsi. Meat Science 69(4): 749-756. 67. Wagner, M., S. Quellec, G. Trystram and T. Lucas. 2008. MRI evaluation of local expansion in bread crumb during baking. Journal of Cereal Science 48(1): 213-223. 68. Wagner, M. J., M. Loubat, A. Sommier, D. Le Ray, G. Collewet, B. Broyart, H. Quintard, A. Davenel, G. Trystram and T. Lucas. 2008. MRI study of bread baking: experimental device and MRI signal analysis. International Journal of Food Science & Technology 43(6): 1129-1139. 69. Zanoni, B., & Peri, C. 1993. A study of the bread-baking process. I: A phenomenological model. Journal of Food Engineering, 19(4), 389– 398. 70. Zanoni, B., Pierucci, S., & Peri, C. 1994. Study of bread baking process – II. Mathematical modeling. Journal of Food Engineering, 23(3), 321–336. 71. Zanoni, B., C. Peri, and D. Bruno. 1995. Modeling of starch gelatinization kinetics of bread crumb during baking. Lebensm.- Wiss. u.- Technol., 28. 314-318. 72. Zanoni, B., Peri, C., and Gianotti, R. 1995b. Determination of the thermal diffusivity of bread as a function of porosity. Journal of Food Engineering, 26: 497-510. 73. Zhang, J., Farkas, B.E., & Hale, S.A. 2002. Precooking and cooling of Skipjack Tuna (Katsuwonas pelamis): A numerical simulation. LWT - Food Science and Technology, 35(7), 607-616. 74. Zhang, J., Datta, A.K., & Mukherjee, S. 2005. Transport processes and large deformation during baking of bread. AIChE Journal, 51(9), 2569–2580. 75. Zhang, J., & Datta, A.K. 2006. Mathematical modeling of bread baking process. Journal of Food Engineering, 75(1), 78-89. 76. Zhou, W., 2005. Application of FDM and FEM in solving the simultaneous heat and moisture transfer inside bread baking. International Journal of computational Fluid Dynamics 19(1):73-77. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63098 | - |
| dc.description.abstract | Steaming is a common practice in both household and industrial food processing; however, the process of heat transfer during steaming has not been fully explored. In this study, mathematical models that consider coupled energy, water and vapor transport were developed, and were solved using finite element software (COMSOL Multiphysics) for their application to the steam reheating of non-porous starch gel radish cake and steamed buns with porous matrices. Our simulation results indicated that the reheating of non-porous starch gel is a heat conduction process. During the reheating of the porous starch matrix, the infusion of condensate and evaporation–condensation mechanism contribute to steep sigmoid-shaped temperature profiles that are different from those of normal heat conduction. The validity of our mathematical model is corroborated by our experimental work of the steam reheating of samples with and without PE film wraps in a rice cooker. It shows a good agreement between the simulation and experimental results in terms of temperature and increased moisture. The implications of these models can provide a basis for future elucidation of more complicated food steaming processes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:22:37Z (GMT). No. of bitstreams: 1 ntu-102-F95631009-1.pdf: 8075660 bytes, checksum: fc4b6cb31f1f7ea8c1362303b447d0da (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 誌謝 ii
Abstract iv Nomenclature v Contents viii Lists of Figure xi Lists of Table xxvii 1. Introduction 1 2. Literature review 3 2.1 The gas effect in volume expansion of the fermenting dough 4 2.2 Water content in the dough 5 2.3 The physical properties of the dough 6 2.4 The heat and mass transfer model of dough during baking process 8 2.5 Surface heat transfer coefficient measurement 11 2.6 Recent studies related to the model of steaming 13 2.7 Recent studies about the model of superheated steaming 15 3. Materials and Methods 18 3.1 Mathematical model 18 3.2 Methods and materials 23 3.2.1 Density, specific heat, and porosity 23 3.2.2 Thermal conductivity 30 3.2.3 Surface heat transfer coefficient 33 3.2.4 Water activity 34 3.2.5 Water diffusivity 36 3.2.6 Computer simulations 36 3.2.7 Experiment setup 39 3.2.8 Steaming and hot moist air condensation heat transfer in a water oven 47 4. Results and Discussions 53 4.1 Results of thermal properties measurement 54 4.1.1 Thermal conductivity of steamed bun 54 4.1.2 Porosity 57 4.1.3 Specific heat 60 4.1.4 Surface transfer coefficient during steaming by using inverse method 64 4.1.5 The humidity of water oven when using the mode of superheated steam 74 4.2 Model validation of non-porous food 76 4.3 Model validation of porous food 79 4.4 The evaporation–condensation mechanism in the porous structure 91 4.5 Water content 102 4.6 The superheated steaming of steamed bun in the water oven 113 4.7 Comparison with the literature on the effect of the water and vapor flow 126 4.8 Steaming of the fully proofed dough 127 5. Conclusions 138 Reference 141 Appendices 152 | |
| dc.language.iso | en | |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | 熱質傳 | zh_TW |
| dc.subject | 澱粉食物 | zh_TW |
| dc.subject | 蒸煮 | zh_TW |
| dc.subject | 數學建模 | zh_TW |
| dc.subject | Heat and mass transfer | en |
| dc.subject | Finite element method | en |
| dc.subject | Mathematical modeling | en |
| dc.subject | Starchy foods | en |
| dc.subject | Steaming | en |
| dc.title | 澱粉類食品於蒸汽再熱過程的熱質傳研究 | zh_TW |
| dc.title | Interactions of Heat and Mass Transfer in Steam Reheating of Starchy Foods | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 馮臨惠,周呈霙,黃振康,楊炳輝 | |
| dc.subject.keyword | 蒸煮,澱粉食物,熱質傳,有限元素法,數學建模, | zh_TW |
| dc.subject.keyword | Steaming,Starchy foods,Heat and mass transfer,Finite element method,Mathematical modeling, | en |
| dc.relation.page | 165 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-01-29 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 7.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
