Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63094
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳士元(Shih-Yuan Chen)
dc.contributor.authorYi-Lin Lien
dc.contributor.author李奕霖zh_TW
dc.date.accessioned2021-06-16T16:22:24Z-
dc.date.available2020-07-15
dc.date.copyright2020-07-15
dc.date.issued2020
dc.date.submitted2020-05-18
dc.identifier.citation[1] A. Aziz, F. Yang, S. Xu, M. Li and H. Chen, “Dual-band Dual-Polarized Transmitarray for Satellite Communications,” IEEE MTT-S International Wireless Symposium, Chengdu, China, May 2018.
[2] S. Yeap, X. Qing and Z. Chen, “77-GHz Dual-Layer Transmit-Array for Automotive Radar Applications,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 6, pp. 2833-2837, June 2015.
[3] S. Kapilavai, “Tips and Trends: Small Cell 5G Systems,” June 2019, https://www.qorvo.com/design-hub/blog/tips-and-trends-small-cell-5g-systems
[4] “How Carrier Networks Will Enable 5G”, Oct. 2017, https://www.qorvo.com/design-hub/blog/how-carrier-networks-will-enable-5g
[5] F. Manzillo, A. Clemente, B. Blampey, G. Pares, A. Siligaris, and J. González-Jiménez, “Transmitarray Antenna with Integrated Frequency Multiplier for High-speed D-band Communications in Low-cost PCB Technology,” European Conference on Antennas and Propagation, Krakow, Poland, Apr. 2019.
[6] Tuloti, S. Ramazannia, P. Rezaei and F. Hamedani, “High-Efficient Wideband Transmitarray Antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 5, pp. 817-820, May 2018.
[7] C. Ryan, M. Chaharmir, J. Shaker, J. Bray, Y. Antar, and A. Ittipiboon, “A Wideband Transmitarray Using Dual-Resonant Double Square Rings,” IEEE Transactions on Antennas and Propagation, vol.58, no.5, pp.1486-1493, May 2010.
[8] G. Liu, H. Wang, J. Jiang, F. Xue, and M. Yi, “A High-Efficiency Transmitarray Antenna Using Double Split Ring Slot Elements,” IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 1415-1418, Mar. 2015.
[9] R. Phillion and M. Okoniewski, “Lenses for Circular Polarization Using Planar Arrays of Rotated Passive Elements,” IEEE Transactions on Antennas and Propagation, vol.59, no. 4, pp. 1217-1227, April 2011.
[10] Y. Hou, X. Liu, Y. Li, Z. Zhang and Z. Feng, “Circular Polarization Transmitarray Element with Linear Polarization Feed,” IEEE International Conference on Microwave and Millimeter Wave Technology, pp. 774-776, Beijing, China, 2016.
[11] L. Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier and P. Pouliguen, “Reconfigurable Transmit-Array Antenna with Multiple Focal Sources,” European Conference on Antennas and Propagation, The Hague, Netherlands, April 2014.
[12] J. Lau and S. Hum, “A Planar Reconfigurable Aperture with Lens and Reflectarray Modes of Operation,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 12, pp. 3547-3555, Dec. 2010.
[13] J. Lau and S. Hum, “Reconfigurable Transmitarray Design Approaches for Beamforming Applications,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 12, pp. 5679-5689, Dec. 2012.
[14] C. Huang, W. Pan, X. Ma, B. Zhao, J. Cui and X. Luo, “Using Reconfigurable Transmitarray to Achieve Beam-Steering and Polarization Manipulation Applications,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 11, pp. 4801-4810, Nov. 2015.
[15] L. Boccia, I. Russo, G. Amendola and G. Massa, “Multilayer Antenna-Filter Antenna for Beam-Steering Transmit-Array Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 7, pp. 2287-2300, July 2012.
[16] B. Nguyen and C. Pichot, “Unit-Cell Loaded with PIN Diodes for 1-Bit Linearly Polarized Reconfigurable Transmitarrays,” IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 1, pp. 98-102, Jan. 2019.
[17] L. Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier and P. Pouliguen, “1-Bit Reconfigurable Unit Cell for Ka-Band Transmitarrays,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 560-563, July 2015.
[18] A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “Wideband 400-Element Electronically Reconfigurable Transmitarray in X Band,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 10, pp. 5017–5027, Oct. 2013.
[19] W. Pan, C. Huang, X. Ma, B. Jiang and X. Luo, “A Dual Linearly Polarized Transmitarray Element with 1-Bit Phase Resolution in X-Band,” IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 167-170, Sep. 2014.
[20] A. Vorobyov, Z. Baghchehsaraei, E. Fourn, J. Oberhammer, and R. Sauleau, “MEMS-Based Reconfigurable Transmit-Array Antenna for 77-GHz Automotive Radar Applications,” YCS Kharkov, Sep. 2011.
[21] C. Chieh, A. Abbaspour-Tamijani, “Study of 2-bit antenna–filter–antenna elements for reconfigurable millimeter-wave lens arrays”, IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 12, pp. 4498-4506, Dec. 2006.
[22] C. Cheng, B. Lakshminarayanan and A. Abbaspour-Tamijani, “A Programmable Lens-Array Antenna with Monolithically Integrated MEMS Switches,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 8, pp. 1874-1884, Aug. 2009.
[23] M. Frank, F. Lurz, R. Weigel and A. Koelpin, “Electronically Reconfigurable 6 × 6 Element Transmitarray at K-Band Based on Unit Cells with Continuous Phase Range,” IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 4, pp. 796-800, April 2019.
[24] A. Abdelrahman, F. Yang, A. Elsherbeni, P. Nayer, and C. Balanis, Analysis and Design of Transmitarray Antennas, Morgan & Claypool, 2017
[25] J. Lau and S. Hum, “Analysis and Characterization of a Multipole Reconfigurable Transmitarray Element,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 1, pp. 70-79, Jan. 2011.
[26] John D. Kraus and Ronald J. Marthefka, Antennas for all applications, third edition, McGraw-Hill, 2002.
[27] D. Pozar, S. Targonski, and H. Syrigos, “Design of Millimeter Wave Microstrip Reflectarrays,” IEEE Transactions on Antennas and Propagation, vol. 45, no. 2, pp. 287–296, 1997.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63094-
dc.description.abstract本論文提出一種使用一位元相位可切換之槽孔耦合貼片單元並且運用在波束掃描穿透陣列天線上,每一個單元由上下兩層矩形貼片天線及中間層的接地槽孔耦合所組成。每個貼片天線的中間切上一條橫向狹縫,以利於裝上負載變容二極體或電容器進而控制單元的穿透相位;為了進行初步驗證,採用裝有電容器以及無電容器的單元,作為提供兩種傳輸相位狀態,以至於實現一位元相位切換。未來,電容器可用變容二極體代替來實現即時的波束掃描穿透陣列天線。此外,我們也探討斜向入射波對單元效能影響,未裝上電容器的單元在大角度的斜向入射下會造成穿透相位的偏移,導致兩個狀態之間的相位差會窄於180°,此現象會在擺放單元於穿透陣列天線時納入考慮。
接下來,我們分析了設計使用一位元單元波束掃描穿透陣列天線時的重要條件。單元的穿透係數大小對於穿透陣列天線的增益極小地相關。然而,在單元中兩種狀態的較小相位差將會降低穿透天線增益並且增加旁辦電平。根據以上結論,我們提出了一套基於本文所提出的一位元相位可切換單元來設計波束掃描穿透陣列天線的系統化流程,結果表明出無裝上電容器的單元會受到斜向入射影響,應放置在穿透陣列天線的中央以增強性能。
在本論文的實驗驗證部分,我們提出了一個工作頻率為10GHz且由208個單元所組成簡化版的使用一位元相位可調單元的波束掃描陣列天線。模擬結果顯示,此穿透陣列天線可實現約80°的波束掃描範圍,並具有高於20 dBi的增益;製作且測試了基於本文所提出的一位元單元(裝有和不裝電容器)的兩種固定波束(波束方向為0°及20°)的陣列天線。在目標波束方向出測得的尖峰增益為分別為20 dBi和17.5 dBi。
zh_TW
dc.description.abstractA novel beam-steering transmitarray using 1-bit phase switchable aperture-coupled patch unit cell is presented. It consists of two identical, back-to-back
rectangular patch antennas and coupled through the middle layer ground slot. To control the transmission phase of the transmitarray unit cell, each patch is cut into halves by a transverse slit, at the middle of which the varactor diodes or chip capacitors is loaded. For preliminary verification, the unit cell loaded with and without chip capacitors is adopted to provide two states of transmission phase to achieve 1-bit phase switching. In the future, the capacitors can be replaced by varactor diodes to accomplish real-time beam-steering transmitarray. In addition, the effect of the oblique incident wave on unit cell performance is also discussed. The unit cell without capacitors suffers from the transmission phase shift in large oblique incident angles, resulting in phase difference narrower than 180 between the two states. This will be accounted for when arranging the unit cell in transmitarray.
Next, we analyze the important factors for designing a beam-steering transmitarray using 1-bit unit cell. The magnitude of the transmission coefficient of the unit cell is minimally relevant to the gain of the transmitarray. However, the smaller phase difference between the two states of the unit cells will lower the gain and increase the side lobe level of transmitarray. Above all, we propose a systematic process for designing a beam-steering transmitarray based on the proposed 1-bit phase switchable unit cell. It is shown that the unit cell without capacitors suffers from the effect of the oblique incidence and thus should be placed in the center part of a transmitarray to enhance the performance.
A simplified beam-steering transmitarray composed of 208 1-bit phase switchable unit cells for operation at 10 GHz is designed. The simulations showed that it can achieve about 80° beam-steering angular range and higher than 20 dBi gain. Two test pieces of fixed-beam X-band transmitarray (0° and 20° from broadside, respectively) based on the proposed unit cell (loaded with and without capacitors) are fabricated and tested. The measured peak gains at the targeted beam directions, namely θ = 0°and θ = 20°, are 20 dBi and 17.5 dBi, respectively.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:22:24Z (GMT). No. of bitstreams: 1
ntu-109-R06942029-1.pdf: 3352269 bytes, checksum: dffeae6f6cd39ba7a843fa7ca86def4b (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature survey 3
1.3 Contribution 5
Chapter 2 Beam Steering Transmitarray Based on 1-Bit Phase Switchable Unit Cell 6
2.1 Transmitarray Theory 6
2.1.1 Principle of Transmitarray 6
2.1.2 Beam-Steering Transmitarray Based on 1-Bit Phase Switchable Unit Cell 7
2.2 Simplified 1-Bit Transmitarray Unit Cell 10
2.2.1 Design of unit-cell 10
2.2.2 Equivalent Circuit of Unit Cell 17
2.2.3 Oblique incident wave influence 22
Chapter 3 Analysis of Transmitarray 28
3.1 Planar Transmitarray 28
3.2 Effect of Phase Difference and Transmission Coefficient on Transmitarray Performance 30
3.2.1 Influence of transmission coefficient of 1-bit unit cell on beam steering transmitarray 30
3.2.2 Influence of phase difference of 1-bit unit cell on beam steering transmitarray 31
3.3 Design flow of beam steering transmitarray using the proposed 1-bit phase-switchable unit cell 36
Chapter 4 Experiment setup and measurement result 41
Chapter 5 Conclusions and Future Work 47
5.1 Conclusion 47
5.2 Future work 47
REFERENCE 50
dc.language.isoen
dc.subject可重構式天線zh_TW
dc.subject一位元單元zh_TW
dc.subject波束掃描zh_TW
dc.subject孔徑耦合貼片天線zh_TW
dc.subject穿透陣列天線zh_TW
dc.subjecttransmitarrayen
dc.subjectaperture-coupled patch antennasen
dc.subjectbeam-steeringen
dc.subject1-bit unit cellen
dc.subjectreconfigurable antennasen
dc.title使用一位元相位可切換之槽孔耦合貼片單元之波束掃描穿透陣列天線zh_TW
dc.titleBeam-Steering Transmitarray using 1-Bit Phase-Switchable Aperture-Coupled Patch Unit Cellen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許博文(Powen Hsu),陳念偉(Nan-Wei Chen),歐陽良昱(Liang-Yu Ou Yang)
dc.subject.keyword孔徑耦合貼片天線,波束掃描,一位元單元,可重構式天線,穿透陣列天線,zh_TW
dc.subject.keywordaperture-coupled patch antennas,beam-steering,1-bit unit cell,reconfigurable antennas,transmitarray,en
dc.relation.page52
dc.identifier.doi10.6342/NTU202000851
dc.rights.note有償授權
dc.date.accepted2020-05-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
3.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved