Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63082
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王水深,楊偉勛
dc.contributor.authorNai-Hsin Chien
dc.contributor.author紀乃新zh_TW
dc.date.accessioned2021-06-16T16:21:49Z-
dc.date.available2013-03-04
dc.date.copyright2013-03-04
dc.date.issued2013
dc.date.submitted2013-01-29
dc.identifier.citationAkhmedov, A. T. and J. Marin-Garcia (2012). 'Myocardial regeneration of the failing heart.' Heart Fail Rev.
Akhyari, P., H. Kamiya, et al. (2008). 'Myocardial tissue engineering: the extracellular matrix.' Eur J Cardiothorac Surg 34(2): 229-241.
Barsotti, M. C., F. Felice, et al. (2011). 'Fibrin as a scaffold for cardiac tissue engineering.' Biotechnol Appl Biochem 58(5): 301-310.
Bondar, B., S. Fuchs, et al. (2008). 'Functionality of endothelial cells on silk fibroin nets: comparative study of micro- and nanometric fibre size.' Biomaterials 29(5): 561-572.
Burlacu, A., A. M. Rosca, et al. (2008). 'Promoting effect of 5-azacytidine on the myogenic differentiation of bone marrow stromal cells.' Eur J Cell Biol 87(3): 173-184.
Callegari, A., S. Bollini, et al. (2007). 'Neovascularization induced by porous collagen scaffold implanted on intact and cryoinjured rat hearts.' Biomaterials 28(36): 5449-5461.
Capi, O. and L. Gepstein (2006). 'Myocardial regeneration strategies using human embryonic stem cell-derived cardiomyocytes.' J Control Release 116(2): 211-218.
Chimenti, I., G. Rizzitelli, et al. (2011). 'Human cardiosphere-seeded gelatin and collagen scaffolds as cardiogenic engineered bioconstructs.' Biomaterials 32(35): 9271-9281.
Chiu, L. L., R. K. Iyer, et al. (2012). 'Cardiac tissue engineering: current state and perspectives.' Front Biosci 17: 1533-1550.
D'Amario, D., M. C. Cabral-Da-Silva, et al. (2011). 'Insulin-like growth factor-1 receptor identifies a pool of human cardiac stem cells with superior therapeutic potential for myocardial regeneration.' Circ Res 108(12): 1467-1481.
Dimomeletis, I., E. Deindl, et al. (2010). 'Assessment of human MAPCs for stem cell transplantation and cardiac regeneration after myocardial infarction in SCID mice.' Exp Hematol 38(11): 1105-1114.
Eitan, Y., U. Sarig, et al. (2009). 'Acellular cardiac extracellular matrix as a scaffold for tissue engineering: In-vitro cell support, remodeling and biocompatibility.' Tissue Eng Part C Methods.
Fan, H., H. Liu, et al. (2008). 'Enhanced differentiation of mesenchymal stem cells co-cultured with ligament fibroblasts on gelatin/silk fibroin hybrid scaffold.' Biomaterials 29(8): 1017-1027.
Fischer, K. M., C. T. Cottage, et al. (2009). 'Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase.' Circulation 120(21): 2077-2087.
Fogel, J. and V. Znamensky (2012). 'Cardiosphere-derived cells for heart regeneration.' Lancet 379(9835): 2426; author reply 2426-2427.
Garcia-Fuentes, M., A. J. Meinel, et al. (2009). 'Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering.' Biomaterials 30(28): 5068-5076.
Gobin, A. S., V. E. Froude, et al. (2005). 'Structural and mechanical characteristics of silk fibroin and chitosan blend scaffolds for tissue regeneration.' J Biomed Mater Res A 74(3): 465-473.
Gonzalez-Rosa, J. M. and N. Mercader (2012). 'Cryoinjury as a myocardial infarction model for the study of cardiac regeneration in the zebrafish.' Nat Protoc 7(4): 782-788.
Hofmann, I., E. H. Stover, et al. (2009). 'Hedgehog signaling is dispensable for adult murine hematopoietic stem cell function and hematopoiesis.' Cell Stem Cell 4(6): 559-567.
Jones, G. L., A. Motta, et al. (2009). 'Osteoblast: osteoclast co-cultures on silk fibroin, chitosan and PLLA films.' Biomaterials 30(29): 5376-5384.
Jopling, C., G. Sune, et al. (2012). 'p38alpha MAPK regulates myocardial regeneration in zebrafish.' Cell Cycle 11(6): 1195-1201.
Kai, D., M. P. Prabhakaran, et al. (2011). 'Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering.' J Biomed Mater Res B Appl Biomater 98B(2): 379-386.
Kikuchi, K., V. Gupta, et al. (2011). 'tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration.' Development 138(14): 2895-2902.
Lao, L., H. Tan, et al. (2008). 'Chitosan modified poly(L-lactide) microspheres as cell microcarriers for cartilage tissue engineering.' Colloids Surf B Biointerfaces 66(2): 218-225.
Lee, S. T., A. J. White, et al. (2011). 'Intramyocardial injection of autologous cardiospheres or cardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction.' J Am Coll Cardiol 57(4): 455-465.
Li, T. S., K. Cheng, et al. (2012). 'Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells.' J Am Coll Cardiol 59(10): 942-953.
Li, Z., X. Guo, et al. (2011). 'Differentiation of cardiosphere-derived cells into a mature cardiac lineage using biodegradable poly(N-isopropylacrylamide) hydrogels.' Biomaterials 32(12): 3220-3232.
Liau, B., D. Zhang, et al. (2012). 'Functional cardiac tissue engineering.' Regen Med 7(2): 187-206.
Malay, O., O. Bayraktar, et al. (2007). 'Complex coacervation of silk fibroin and hyaluronic acid.' Int J Biol Macromol 40(4): 387-393.
Marban, E. and E. Cingolani (2012). 'Heart to heart: Cardiospheres for myocardial regeneration.' Heart Rhythm 9(10): 1727-1731.
Martin-Rendon, E., D. Sweeney, et al. (2008). '5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies.' Vox Sang 95(2): 137-148.
Martinez-Fernandez, A., T. J. Nelson, et al. (2009). 'iPS programmed without c-MYC yield proficient cardiogenesis for functional heart chimerism.' Circ Res 105(7): 648-656.
Martinez, E. C. and T. Kofidis (2011). 'Adult stem cells for cardiac tissue engineering.' J Mol Cell Cardiol 50(2): 312-319.
Masuda, S., N. Montserrat, et al. (2012). 'Cardiosphere-derived cells for heart regeneration.' Lancet 379(9835): 2425-2426; author reply 2426-2427.
Matzner, U., D. Hartmann, et al. (2002). 'Bone marrow stem cell-based gene transfer in a mouse model for metachromatic leukodystrophy: effects on visceral and nervous system disease manifestations.' Gene Ther 9(1): 53-63.
Matzner, U., F. Schestag, et al. (2001). 'Bone marrow stem cell gene therapy of arylsulfatase A-deficient mice, using an arylsulfatase A mutant that is hypersecreted from retrovirally transduced donor-type cells.' Hum Gene Ther 12(9): 1021-1033.
Moroni, L. and P. M. Fornasari (2012). 'Human mesenchymal stem cells: a bank perspective on the isolation, characterization, and differentiation potential of alternative stem cell sources for the regeneration of musculoskeletal tissues.' J Cell Physiol.
Oldroyd, K. G., C. Berry, et al. (2012). 'Myocardial repair and regeneration: bone marrow or cardiac stem cells?' Mol Ther 20(6): 1102-1105.
Padin-Iruegas, M. E., Y. Misao, et al. (2009). 'Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction.' Circulation 120(10): 876-887.
Pasquinelli, G., C. Orrico, et al. (2008). 'Mesenchymal stem cell interaction with a non-woven hyaluronan-based scaffold suitable for tissue repair.' J Anat 213(5): 520-530.
Paul, D., S. M. Samuel, et al. (2009). 'Mesenchymal stem cell: present challenges and prospective cellular cardiomyoplasty approaches for myocardial regeneration.' Antioxid Redox Signal 11(8): 1841-1855.
Piao, H., J. S. Kwon, et al. (2007). 'Effects of cardiac patches engineered with bone marrow-derived mononuclear cells and PGCL scaffolds in a rat myocardial infarction model.' Biomaterials 28(4): 641-649.
Roh, D. H., S. Y. Kang, et al. (2006). 'Wound healing effect of silk fibroin/alginate-blended sponge in full thickness skin defect of rat.' J Mater Sci Mater Med 17(6): 547-552.
Sacks, M. S., F. J. Schoen, et al. (2009). 'Bioengineering challenges for heart valve tissue engineering.' Annu Rev Biomed Eng 11: 289-313.
Sawa, Y. (2012). 'Current status of myocardial regeneration therapy.' Gen Thorac Cardiovasc Surg.
Schoen, F. J., J. L. Titus, et al. (1982). 'Bioengineering aspects of heart valve replacement.' Ann Biomed Eng 10(3): 97-128.
Seguin, A., S. Baccari, et al. (2012). 'Tracheal regeneration: Evidence of bone marrow mesenchymal stem cell involvement.' J Thorac Cardiovasc Surg.
She, Z., C. Jin, et al. (2008). 'Silk fibroin/chitosan scaffold: preparation, characterization, and culture with HepG2 cell.' J Mater Sci Mater Med 19(12): 3545-3553.
Smart, N., S. Bollini, et al. (2012). 'Myocardial regeneration: expanding the repertoire of thymosin beta4 in the ischemic heart.' Ann N Y Acad Sci 1269(1): 92-101.
Takahashi, J. (2007). 'Stem cell therapy for Parkinson's disease.' Expert Rev Neurother 7(6): 667-675.
Takamiya, M., K. H. Haider, et al. (2011). 'Identification and characterization of a novel multipotent sub-population of Sca-1(+) cardiac progenitor cells for myocardial regeneration.' PLoS One 6(9): e25265.
Tang, Y. L., Q. Zhao, et al. (2005). 'Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction.' Ann Thorac Surg 80(1): 229-236; discussion 236-227.
Tayara, W., R. C. Starling, et al. (2006). 'Improved survival after acute myocardial infarction complicated by cardiogenic shock with circulatory support and transplantation: comparing aggressive intervention with conservative treatment.' J Heart Lung Transplant 25(5): 504-509.
Tee, R., Z. Lokmic, et al. (2010). 'Strategies in cardiac tissue engineering.' ANZ J Surg 80(10): 683-693.
Tiscornia, G., N. Monserrat, et al. (2011). 'Modelling long QT syndrome with iPS cells: be still, my beating heart.' Circ Res 108(6): 648-649.
Uebersax, L., H. P. Merkle, et al. (2009). 'Biopolymer-based growth factor delivery for tissue repair: from natural concepts to engineered systems.' Tissue Eng Part B Rev 15(3): 263-289.
Vunjak-Novakovic, G., K. O. Lui, et al. (2011). 'Bioengineering heart muscle: a paradigm for regenerative medicine.' Annu Rev Biomed Eng 13: 245-267.
Wang, X., A. H. From, et al. (2012). 'Myocardial regeneration: the role of progenitor cells derived from bone marrow and heart.' Prog Mol Biol Transl Sci 111: 195-215.
Wasserman, T. H. and P. Twentyman (1988). 'Use of a colorimetric microtiter (MTT) assay in determining the radiosensitivity of cells from murine solid tumors.' Int J Radiat Oncol Biol Phys 15(3): 699-702.
Willems, E., M. Lanier, et al. (2011). 'A chemical biology approach to myocardial regeneration.' J Cardiovasc Transl Res 4(3): 340-350.
Yacoub, M. and R. Nerem (2007). 'Introduction. Bioengineering the heart.' Philos Trans R Soc Lond B Biol Sci 362(1484): 1253-1255.
Ye, K. Y. and L. D. Black, 3rd (2011). 'Strategies for tissue engineering cardiac constructs to affect functional repair following myocardial infarction.' J Cardiovasc Transl Res 4(5): 575-591.
Ye, Z., Y. Zhou, et al. (2011). 'Myocardial regeneration: Roles of stem cells and hydrogels.' Adv Drug Deliv Rev 63(8): 688-697.
Yoshida, Y. and S. Yamanaka (2011). 'iPS cells: a source of cardiac regeneration.' J Mol Cell Cardiol 50(2): 327-332.
Zhang, H., H. Qiao, et al. (2012). 'Imaging Cell Therapy for Myocardial Regeneration.' Curr Cardiovasc Imaging Rep 5(1): 53-59.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63082-
dc.description.abstract心肌梗塞是心衰竭的首要原因,會造成心肌損傷、心組織逐漸喪失及左心室功能受損等。為了修補受損的心肌,有許多動物或臨床實驗正在研發各種骨髓間葉幹細胞治療技術如冠狀動脈內注射以及心肌內注射。雖然許多動物實驗已顯示骨髓間葉幹細胞療法能減少心肌梗塞區域大小、增強心臟功能,但臨床研究中對其增加左心室功能以及修復梗塞的成效仍有爭議。不同研究中骨髓間葉幹細胞療法的相異結果,可能肇因於植運入的骨髓間葉幹細胞在梗塞處微環境內存活率過低。為了增加骨髓間葉幹細胞療法對心肌梗塞的療效,發展一種能協助修補心臟的全新生物材料(如水凝膠或細胞補片),來增加骨髓間葉幹細胞的存活率或促進梗塞心臟血管新生等,是非常值得投注研究的。
生物系統中,蛋白質及聚醣類對於細胞活性及分化扮演很重要的角色,尤其對於細胞間質的合成與細胞分化。本研究使用新的方法將蠶絲蛋白(Silk Fibroin,SF)與幾丁聚糖(Chitosan,CS)和玻尿酸(Hyauronic acid, HA)使用噴霧乾燥的方式製備成微粒再以壓錠的製程製備薄膜,以再生醫學觀念將間葉幹細胞誘導分化後植入心肌壞死部位。骨髓間質幹細胞(bone marrow mesenchymal stem cell, BMSC)/絲素蛋白(SF)/玻尿酸(HA,與前者合稱SH)補片被植入心肌梗塞的老鼠心臟中,以研究其促進左心室重塑及修復的效力。共45隻老鼠被分成四組:假手術組、MI(心肌梗塞,利用冷凍傷害技術來誘導)、SH、BMSC/SH(在心肌梗塞的心臟中分別植入SH、或BMSC/SH補片)。植入後八週,SH及BMSC/SH兩組的補片保持完整、與心肌梗塞區域接合良好、且其引起的免疫反應分別為零與極少;而心肌梗塞組則出現劇烈的發炎反應。SH組在心肌梗塞區域表現出修補效力。和心肌梗塞組的梗塞處做進一步比較,BMSC/SH組能大幅增加左心室壁的厚度、有效運送BMSC、大幅減少細胞凋亡、大幅促進血管新生、刺激各種旁泌因子如血管內皮生長因子。綜合上述研究結果,使用BMSC/SH修復心肌梗塞的心臟,能同時顯現蠶絲蛋白補片之生物活性、以及骨髓間葉幹細胞為基礎之治療的好處。
zh_TW
dc.description.abstractCardiac tissue engineering aims at providing contractile heart muscle constructs for replacement therapy in vivo. At present, most cardiac tissue engineering attempts utilize heart cells from embryonic chicken and neonatal rats and scaffold materials bone marrow mesenchymal stem cells/silk fibroin/hyaluronic acid (BMSC/SH) patches were implanted into myocardial infarction (MI) rat hearts to investigate the efficacies of them on enhancing left ventricular (LV) remodeling and cardiac repair. 45 rats were divided into four groups: Sham, MI (MI hearts, induced by a cryo-injury technique), SH and BMSC/SH (MI hearts with implantations of SH and BMSC/SH patches, respectively). After eight weeks of post-implantation, the patches for the SH and BMSC/SH groups were intact and well adhered on the MI zones with no and minor immunological responses, respectively, examined by a CD68 marker, while severe inflammation on the zones was observed for the MI group. The SH group showed the efficacy of cardiac repair on MI zones. Moreover, BMSC/SH group significantly improved the wall thickness of LV, assessed by echocardiography, and had high viability of delivery BMSC, largely reduced apoptosis, significantly promoted neo-vascularization and stimulated the secretions of various paracrine factors such as VEGF, examined by real-time PCR, in MI zones compared with those of the SH and MI groups. In conclusion, the therapeutic efficacies of using BMSC/SH patches for repairing MI hearts were demonstrated by showing the advantages of both bioactive SH patches and BMSC-based therapy.en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:21:49Z (GMT). No. of bitstreams: 1
ntu-102-D93421105-1.pdf: 3406392 bytes, checksum: b0e32111a2f391b479b490fca8809c92 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents目錄
口試委員審定書 i
誌謝 ii
目錄 iii
中文摘要 vii
英文摘要 viii
第一章:緒論 1
第一節:背景 1
第二節:文獻回顧:心肌再生的研究 2
兩棲類與魚類心臟再生 3
齧齒動物的心肌有限再生 3
人類心臟再生證據 5
人類心臟生長之細胞核動力學 5
第三節:幹細胞和細胞治療簡介 9
心臟前驅細胞 9
心球衍生細胞(cardiosphere) 10
骨髓細胞 11
多功能幹細胞 12
第四節:組織工程與生醫材料 15
第五節:擬研究的問題 17
第二章:研究方法與材料 18
第一節:細胞 18
第二節:幾丁聚醣與纖維蛋白之研究 18
第三節:幹細胞與蠶絲/多醣類之研究 21
第四節:蠶絲蛋白/幾丁聚醣-玻尿酸在組織工程的應用 23

第三章:結果 25
第一部份:於心肌補片薄膜上大鼠間葉幹細胞進行體外蠶絲蛋白-多醣體之心肌分化 25
3-1.1 敘述蠶絲蛋白/幾丁聚糖和蠶絲蛋白/幾丁聚糖-玻尿酸微粒混合薄膜的特性 25
3-1.2 蠶絲蛋白,蠶絲蛋白/幾丁聚糖和蠶絲蛋白/幾丁聚糖-玻尿酸薄膜在經過七天的培養後,於大鼠間葉幹細胞的生長速率及形態 26
3-1.3 針對大鼠間葉幹細胞,其心肌細胞形成的心臟特殊基因表現之即時聚合鏈反應PCR分析 27
3-1.4 大鼠間葉幹細胞心肌細胞形成的心臟特殊蛋白表現之免疫熒光染色 29
4 結論 31
第二部份:幹細胞結合生醫材料(蠶絲蛋白為基質和多醣類)應用於心肌梗塞之心肌再生 32
3-2.1 補片與心肌梗塞的心臟—型態測量學與組織學檢查 32
3-2.2 梗塞心臟的左心室功能 33
3-2.3 植入補片後心肌梗塞區內的發炎反應 34
3-2.4 BMSC在心肌梗塞區的存活-FISH分析 35
3-2.5 在梗塞區內對於vWF與a-MHC的免疫染色法 36
4 結論 38
第四章:討論 39
第一部份:於心肌補片薄膜上大鼠間葉幹細胞進行體外蠶絲蛋白-多醣體之心肌分化 39
第二部份:幹細胞結合生醫材料(蠶絲蛋白為基質和多醣類)應用於心肌梗塞之心肌再生 40
第五章:展望 43

論文英文簡述(summary) 46
1.1 Foreword 46
1.2 Myocardial Infarction 48
1.3 Myocardial tissue engineering 49
1.4 Mesenchymal stem cells 53
1.5 Silk Fibroin (SF) 54
1.6 Chitosan (CS) 56
1.7 Hyaluronic Acid (HA) 56
1.8 Purpose of Study 57
2.1 List of materials 60
2.2 List of machines 61
2.3 Experimental setup 62
2.4 Rat cryoinjured model and scaffold implantation 63
2.5 Histology, histochemistry and morphometry 64
2.6 Functional evaluation of cryoinjured myocardium 65
3.1 Stage I — rMSCs on silk fibroin–polysaccharide cardiac patches in vitro 66
3.1.1 Characterizing SF/CS and SF/CS–HA microparticles of the hybrid patches 66
3.1.2 Real-time PCR analysis for the cardiac-specific gene expressions of cardiomyogenesis of rMSCs 72
4.1 Gross and histological examination of rat animal study 76
4.2 Left ventricular function assessment 80
Conclusions 83
圖一 85
圖二 86
圖三 87
圖四 88
圖五 89
圖六 90
圖七 91
圖八 92
圖九 93
圖十 94
圖十一 95
圖十二 96
圖十三 97
圖十四 98
圖十五 99
參考文獻 100
相關論文發表 104
dc.language.isozh-TW
dc.subject心肌分化zh_TW
dc.subject間葉幹細胞zh_TW
dc.subject蠶絲蛋白摻和材料zh_TW
dc.subjectHearten
dc.subjectCardiac tissue engineeringen
dc.subjectMesenchymal stem cellen
dc.subjectSilk fibroin hybrid patchesen
dc.title探討利用幹細胞結合生醫材料(蠶絲蛋白為基質和多醣類)應用於心肌梗塞之心肌再生zh_TW
dc.titleCardiac repair achieved by bone marrow mesenchymal
stem cells/silk fibroin/hyaluronic acid patches in a rat of myocardial infarction model
en
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree博士
dc.contributor.oralexamcommittee黃瑞仁,陳益祥,周財福,鍾次文
dc.subject.keyword蠶絲蛋白摻和材料,間葉幹細胞,心肌分化,zh_TW
dc.subject.keywordHeart,Cardiac tissue engineering,Mesenchymal stem cell,Silk fibroin hybrid patches,en
dc.relation.page104
dc.rights.note有償授權
dc.date.accepted2013-01-30
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved