請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63066
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 羅?升(Wan-Sheng Lo) | |
dc.contributor.author | Chung-Yi Liang | en |
dc.contributor.author | 梁中怡 | zh_TW |
dc.date.accessioned | 2021-06-16T16:21:05Z | - |
dc.date.available | 2015-03-04 | |
dc.date.copyright | 2013-03-04 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-01-30 | |
dc.identifier.citation | References
1. Kornberg, R.D. (1974) Chromatin structure: a repeating unit of histones and DNA. Science, 184, 868-871. 2. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. and Richmond, T.J. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389, 251-260. 3. Suganuma, T. and Workman, J.L. (2008) Crosstalk among Histone Modifications. Cell, 135, 604-607. 4. Campos, E.I. and Reinberg, D. (2009) Histones: annotating chromatin. Annu Rev Genet, 43, 559-599. 5. Latham, J.A. and Dent, S.Y. (2007) Cross-regulation of histone modifications. Nat Struct Mol Biol, 14, 1017-1024. 6. Taverna, S.D., Li, H., Ruthenburg, A.J., Allis, C.D. and Patel, D.J. (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol, 14, 1025-1040. 7. Bhaumik, S.R., Smith, E. and Shilatifard, A. (2007) Covalent modifications of histones during development and disease pathogenesis. Nat Struct Mol Biol, 14, 1008-1016. 8. Shahbazian, M.D. and Grunstein, M. (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem, 76, 75-100. 9. Lo, W.S., Trievel, R.C., Rojas, J.R., Duggan, L., Hsu, J.Y., Allis, C.D., Marmorstein, R. and Berger, S.L. (2000) Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol Cell, 5, 917-926. 10. Lo, W.S., Duggan, L., Emre, N.C., Belotserkovskya, R., Lane, W.S., Shiekhattar, R. and Berger, S.L. (2001) Snf1--a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science, 293, 1142-1146. 11. Millar, C.B. and Grunstein, M. (2006) Genome-wide patterns of histone modifications in yeast. Nat Rev Mol Cell Biol, 7, 657-666. 12. Weake, V.M. and Workman, J.L. (2010) Inducible gene expression: diverse regulatory mechanisms. Nat Rev Genet, 11, 426-437. 13. Roeder, R.G. (2005) Transcriptional regulation and the role of diverse coactivators in animal cells. FEBS Lett, 579, 909-915. 14. Lo, W.S., Gamache, E.R., Henry, K.W., Yang, D., Pillus, L. and Berger, S.L. (2005) Histone H3 phosphorylation can promote TBP recruitment through distinct promoter-specific mechanisms. EMBO J, 24, 997-1008. 15. Govind, C.K., Qiu, H., Ginsburg, D.S., Ruan, C., Hofmeyer, K., Hu, C., Swaminathan, V., Workman, J.L., Li, B. and Hinnebusch, A.G. (2010) Phosphorylated Pol II CTD recruits multiple HDACs, including Rpd3C(S), for methylation-dependent deacetylation of ORF nucleosomes. Mol Cell, 39, 234-246. 16. Xiao, T., Hall, H., Kizer, K.O., Shibata, Y., Hall, M.C., Borchers, C.H. and Strahl, B.D. (2003) Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev, 17, 654-663. 17. Kouzarides, T. (2007) Chromatin modifications and their function. Cell, 128, 693-705. 18. Yang, X.J. and Seto, E. (2008) The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol, 9, 206-218. 19. Alejandro-Osorio, A.L., Huebert, D.J., Porcaro, D.T., Sonntag, M.E., Nillasithanukroh, S., Will, J.L. and Gasch, A.P. (2009) The histone deacetylase Rpd3p is required for transient changes in genomic expression in response to stress. Genome Biol, 10, R57. 20. Roguev, A. and Krogan, N.J. (2007) SIN-fully silent: HDAC complexes in fission yeast. Nat Struct Mol Biol, 14, 358-359. 21. Kadosh, D. and Struhl, K. (1997) Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell, 89, 365-371. 22. Strahl, B.D., Grant, P.A., Briggs, S.D., Sun, Z.W., Bone, J.R., Caldwell, J.A., Mollah, S., Cook, R.G., Shabanowitz, J., Hunt, D.F. et al. (2002) Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol Cell Biol, 22, 1298-1306. 23. Li, B., Carey, M. and Workman, J.L. (2007) The role of chromatin during transcription. Cell, 128, 707-719. 24. Butler, J.S. and Dent, S.Y. (2012) Chromatin 'resetting' during transcription elongation: a central role for methylated H3K36. Nat Struct Mol Biol, 19, 863-864. 25. Wagner, E.J. and Carpenter, P.B. (2012) Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol, 13, 115-126. 26. Luco, R.F., Pan, Q., Tominaga, K., Blencowe, B.J., Pereira-Smith, O.M. and Misteli, T. (2010) Regulation of alternative splicing by histone modifications. Science, 327, 996-1000. 27. Kim, S., Kim, H., Fong, N., Erickson, B. and Bentley, D.L. (2011) Pre-mRNA splicing is a determinant of histone H3K36 methylation. Proc Natl Acad Sci U S A, 108, 13564-13569. 28. de Almeida, S.F., Grosso, A.R., Koch, F., Fenouil, R., Carvalho, S., Andrade, J., Levezinho, H., Gut, M., Eick, D., Gut, I. et al. (2011) Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. Nat Struct Mol Biol, 18, 977-983. 29. Conrad, T. and Akhtar, A. (2012) Dosage compensation in Drosophila melanogaster: epigenetic fine-tuning of chromosome-wide transcription. Nat Rev Genet, 13, 123-134. 30. Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J.R., Cole, P.A. and Casero, R.A. (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 119, 941-953. 31. Shi, Y.J., Matson, C., Lan, F., Iwase, S., Baba, T. and Shi, Y. (2005) Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell, 19, 857-864. 32. Kooistra, S.M. and Helin, K. (2012) Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol, 13, 297-311. 33. Mosammaparast, N. and Shi, Y. (2010) Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem, 79, 155-179. 34. Klose, R.J., Kallin, E.M. and Zhang, Y. (2006) JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet, 7, 715-727. 35. Tsukada, Y., Fang, J., Erdjument-Bromage, H., Warren, M.E., Borchers, C.H., Tempst, P. and Zhang, Y. (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature, 439, 811-816. 36. Whetstine, J.R., Nottke, A., Lan, F., Huarte, M., Smolikov, S., Chen, Z., Spooner, E., Li, E., Zhang, G., Colaiacovo, M. et al. (2006) Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell, 125, 467-481. 37. Klose, R.J., Yamane, K., Bae, Y., Zhang, D., Erdjument-Bromage, H., Tempst, P., Wong, J. and Zhang, Y. (2006) The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature, 442, 312-316. 38. Chen, Z., Zang, J., Whetstine, J., Hong, X., Davrazou, F., Kutateladze, T.G., Simpson, M., Mao, Q., Pan, C.H., Dai, S. et al. (2006) Structural insights into histone demethylation by JMJD2 family members. Cell, 125, 691-702. 39. Ng, S.S., Kavanagh, K.L., McDonough, M.A., Butler, D., Pilka, E.S., Lienard, B.M., Bray, J.E., Savitsky, P., Gileadi, O., von Delft, F. et al. (2007) Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature, 448, 87-91. 40. Tu, S., Bulloch, E.M., Yang, L., Ren, C., Huang, W.C., Hsu, P.H., Chen, C.H., Liao, C.L., Yu, H.M., Lo, W.S. et al. (2007) Identification of histone demethylases in Saccharomyces cerevisiae. J Biol Chem, 282, 14262-14271. 41. Klose, R.J., Gardner, K.E., Liang, G., Erdjument-Bromage, H., Tempst, P. and Zhang, Y. (2007) Demethylation of histone H3K36 and H3K9 by Rph1: a vestige of an H3K9 methylation system in Saccharomyces cerevisiae? Mol Cell Biol, 27, 3951-3961. 42. Klose, R.J. and Zhang, Y. (2007) Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol, 8, 307-318. 43. Jang, Y.K., Wang, L. and Sancar, G.B. (1999) RPH1 and GIS1 are damage-responsive repressors of PHR1. Mol Cell Biol, 19, 7630-7638. 44. Zhang, N. and Oliver, S.G. (2010) The transcription activity of Gis1 is negatively modulated by proteasome-mediated limited proteolysis. J Biol Chem, 285, 6465-6476. 45. Orzechowski Westholm, J., Tronnersjo, S., Nordberg, N., Olsson, I., Komorowski, J. and Ronne, H. (2012) Gis1 and Rph1 regulate glycerol and acetate metabolism in glucose depleted yeast cells. PLoS One, 7, e31577. 46. Balciunas, D. and Ronne, H. (1999) Yeast genes GIS1-4: multicopy suppressors of the Gal- phenotype of snf1 mig1 srb8/10/11 cells. Mol Gen Genet, 262, 589-599. 47. Pedruzzi, I., Burckert, N., Egger, P. and De Virgilio, C. (2000) Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1. EMBO J, 19, 2569-2579. 48. Zhang, N., Wu, J. and Oliver, S.G. (2009) Gis1 is required for transcriptional reprogramming of carbon metabolism and the stress response during transition into stationary phase in yeast. Microbiology, 155, 1690-1698. 49. Yu, Y., Neiman, A.M. and Sternglanz, R. (2010) The JmjC domain of Gis1 is dispensable for transcriptional activation. FEMS Yeast Res, 10, 793-801. 50. Sebastian, J. and Sancar, G.B. (1991) A damage-responsive DNA binding protein regulates transcription of the yeast DNA repair gene PHR1. Proc Natl Acad Sci U S A, 88, 11251-11255. 51. Kim, E.M., Jang, Y.K. and Park, S.D. (2002) Phosphorylation of Rph1, a damage-responsive repressor of PHR1 in Saccharomyces cerevisiae, is dependent upon Rad53 kinase. Nucleic Acids Res, 30, 643-648. 52. Harrison, J.C. and Haber, J.E. (2006) Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet, 40, 209-235. 53. Huang, M., Zhou, Z. and Elledge, S.J. (1998) The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell, 94, 595-605. 54. Huang, M. and Elledge, S.J. (1997) Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae. Mol Cell Biol, 17, 6105-6113. 55. Zhang, Z. and Reese, J.C. (2005) Molecular genetic analysis of the yeast repressor Rfx1/Crt1 reveals a novel two-step regulatory mechanism. Mol Cell Biol, 25, 7399-7411. 56. Sancar, G.B., Ferris, R., Smith, F.W. and Vandeberg, B. (1995) Promoter elements of the PHR1 gene of Saccharomyces cerevisiae and their roles in the response to DNA damage. Nucleic Acids Res, 23, 4320-4328. 57. Sweet, D.H., Jang, Y.K. and Sancar, G.B. (1997) Role of UME6 in transcriptional regulation of a DNA repair gene in Saccharomyces cerevisiae. Mol Cell Biol, 17, 6223-6235. 58. Sebastian, J., Kraus, B. and Sancar, G.B. (1990) Expression of the yeast PHR1 gene is induced by DNA-damaging agents. Mol Cell Biol, 10, 4630-4637. 59. Kihara, J., Moriwaki, A., Matsuo, N., Arase, S. and Honda, Y. (2004) Cloning, functional characterization, and near-ultraviolet radiation-enhanced expression of a photolyase gene (PHR1) from the phytopathogenic fungus Bipolaris oryzae. Curr Genet, 46, 37-46. 60. Waterworth, W.M., Jiang, Q., West, C.E., Nikaido, M. and Bray, C.M. (2002) Characterization of Arabidopsis photolyase enzymes and analysis of their role in protection from ultraviolet-B radiation. J Exp Bot, 53, 1005-1015. 61. Berger, S.L. (2007) The complex language of chromatin regulation during transcription. Nature, 447, 407-412. 62. Chen, S.H., Smolka, M.B. and Zhou, H. (2007) Mechanism of Dun1 activation by Rad53 phosphorylation in Saccharomyces cerevisiae. J Biol Chem, 282, 986-995. 63. Agger, K., Christensen, J., Cloos, P.A. and Helin, K. (2008) The emerging functions of histone demethylases. Curr Opin Genet Dev, 18, 159-168. 64. Yamane, K., Toumazou, C., Tsukada, Y., Erdjument-Bromage, H., Tempst, P., Wong, J. and Zhang, Y. (2006) JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell, 125, 483-495. 65. Okada, Y., Scott, G., Ray, M.K., Mishina, Y. and Zhang, Y. (2007) Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature, 450, 119-123. 66. Tateishi, K., Okada, Y., Kallin, E.M. and Zhang, Y. (2009) Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature, 458, 757-761. 67. Workman, J.L. (2006) Nucleosome displacement in transcription. Genes Dev, 20, 2009-2017. 68. Kim, T. and Buratowski, S. (2007) Two Saccharomyces cerevisiae JmjC domain proteins demethylate histone H3 Lys36 in transcribed regions to promote elongation. J Biol Chem, 282, 20827-20835. 69. Morillon, A., Karabetsou, N., Nair, A. and Mellor, J. (2005) Dynamic lysine methylation on histone H3 defines the regulatory phase of gene transcription. Mol Cell, 18, 723-734. 70. Allis, C.D., Berger, S.L., Cote, J., Dent, S., Jenuwien, T., Kouzarides, T., Pillus, L., Reinberg, D., Shi, Y., Shiekhattar, R. et al. (2007) New nomenclature for chromatin-modifying enzymes. Cell, 131, 633-636. 71. Hartley, J.L., Temple, G.F. and Brasch, M.A. (2000) DNA cloning using in vitro site-specific recombination. Genome Res, 10, 1788-1795. 72. Gelperin, D.M., White, M.A., Wilkinson, M.L., Kon, Y., Kung, L.A., Wise, K.J., Lopez-Hoyo, N., Jiang, L., Piccirillo, S., Yu, H. et al. (2005) Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev, 19, 2816-2826. 73. Winzeler, E.A., Shoemaker, D.D., Astromoff, A., Liang, H., Anderson, K., Andre, B., Bangham, R., Benito, R., Boeke, J.D., Bussey, H. et al. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science, 285, 901-906. 74. Yuen, T., Zhang, W., Ebersole, B.J. and Sealfon, S.C. (2002) Monitoring G-protein-coupled receptor signaling with DNA microarrays and real-time polymerase chain reaction. Methods Enzymol, 345, 556-569. 75. Kuras, L., Kosa, P., Mencia, M. and Struhl, K. (2000) TAF-Containing and TAF-independent forms of transcriptionally active TBP in vivo. Science, 288, 1244-1248. 76. Robyr, D., Suka, Y., Xenarios, I., Kurdistani, S.K., Wang, A., Suka, N. and Grunstein, M. (2002) Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell, 109, 437-446. 77. Gunjan, A. and Verreault, A. (2003) A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae. Cell, 115, 537-549. 78. Usui, T., Ogawa, H. and Petrini, J.H. (2001) A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol Cell, 7, 1255-1266. 79. Yadav, A.K., Renfrow, J.J., Scholtens, D.M., Xie, H., Duran, G.E., Bredel, C., Vogel, H., Chandler, J.P., Chakravarti, A., Robe, P.A. et al. (2009) Monosomy of chromosome 10 associated with dysregulation of epidermal growth factor signaling in glioblastomas. JAMA, 302, 276-289. 80. Game, J.C., Williamson, M.S., Spicakova, T. and Brown, J.M. (2006) The RAD6/BRE1 histone modification pathway in Saccharomyces confers radiation resistance through a RAD51-dependent process that is independent of RAD18. Genetics, 173, 1951-1968. 81. Psathas, J.N., Zheng, S., Tan, S. and Reese, J.C. (2009) Set2-dependent K36 methylation is regulated by novel intratail interactions within H3. Mol Cell Biol, 29, 6413-6426. 82. Lin, L.J., Minard, L.V., Johnston, G.C., Singer, R.A. and Schultz, M.C. (2010) Asf1 can promote trimethylation of H3 K36 by Set2. Mol Cell Biol, 30, 1116-1129. 83. An, W., Kim, J. and Roeder, R.G. (2004) Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell, 117, 735-748. 84. Muse, G.W., Gilchrist, D.A., Nechaev, S., Shah, R., Parker, J.S., Grissom, S.F., Zeitlinger, J. and Adelman, K. (2007) RNA polymerase is poised for activation across the genome. Nat Genet, 39, 1507-1511. 85. Guenther, M.G., Levine, S.S., Boyer, L.A., Jaenisch, R. and Young, R.A. (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell, 130, 77-88. 86. Li, J., Moazed, D. and Gygi, S.P. (2002) Association of the histone methyltransferase Set2 with RNA polymerase II plays a role in transcription elongation. J Biol Chem, 277, 49383-49388. 87. Hampsey, M. and Reinberg, D. (2003) Tails of intrigue: phosphorylation of RNA polymerase II mediates histone methylation. Cell, 113, 429-432. 88. Huang, W.-C. (2007), National Taiwan University, Taipei. 89. Branzei, D. and Foiani, M. (2006) The Rad53 signal transduction pathway: Replication fork stabilization, DNA repair, and adaptation. Exp Cell Res, 312, 2654-2659. 90. Zhao, X., Muller, E.G. and Rothstein, R. (1998) A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol Cell, 2, 329-340. 91. Chi, A., Huttenhower, C., Geer, L.Y., Coon, J.J., Syka, J.E., Bai, D.L., Shabanowitz, J., Burke, D.J., Troyanskaya, O.G. and Hunt, D.F. (2007) Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci U S A, 104, 2193-2198. 92. Li, X., Gerber, S.A., Rudner, A.D., Beausoleil, S.A., Haas, W., Villen, J., Elias, J.E. and Gygi, S.P. (2007) Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae. J Proteome Res, 6, 1190-1197. 93. Smolka, M.B., Albuquerque, C.P., Chen, S.H. and Zhou, H. (2007) Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc Natl Acad Sci U S A, 104, 10364-10369. 94. Albuquerque, C.P., Smolka, M.B., Payne, S.H., Bafna, V., Eng, J. and Zhou, H. (2008) A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics, 7, 1389-1396. 95. Pokholok, D.K., Harbison, C.T., Levine, S., Cole, M., Hannett, N.M., Lee, T.I., Bell, G.W., Walker, K., Rolfe, P.A., Herbolsheimer, E. et al. (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell, 122, 517-527. 96. Hargreaves, D.C., Horng, T. and Medzhitov, R. (2009) Control of inducible gene expression by signal-dependent transcriptional elongation. Cell, 138, 129-145. 97. Morris, S.A., Rao, B., Garcia, B.A., Hake, S.B., Diaz, R.L., Shabanowitz, J., Hunt, D.F., Allis, C.D., Lieb, J.D. and Strahl, B.D. (2007) Identification of histone H3 lysine 36 acetylation as a highly conserved histone modification. J Biol Chem, 282, 7632-7640. 98. Wang, Z., Zang, C., Rosenfeld, J.A., Schones, D.E., Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Peng, W., Zhang, M.Q. et al. (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet, 40, 897-903. 99. Stewart, M.D., Li, J. and Wong, J. (2005) Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol Cell Biol, 25, 2525-2538. 100. Yamada, T., Fischle, W., Sugiyama, T., Allis, C.D. and Grewal, S.I. (2005) The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast. Mol Cell, 20, 173-185. 101. Keogh, M.C., Kurdistani, S.K., Morris, S.A., Ahn, S.H., Podolny, V., Collins, S.R., Schuldiner, M., Chin, K., Punna, T., Thompson, N.J. et al. (2005) Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell, 123, 593-605. 102. Merker, J.D., Dominska, M., Greenwell, P.W., Rinella, E., Bouck, D.C., Shibata, Y., Strahl, B.D., Mieczkowski, P. and Petes, T.D. (2008) The histone methylase Set2p and the histone deacetylase Rpd3p repress meiotic recombination at the HIS4 meiotic recombination hotspot in Saccharomyces cerevisiae. DNA Repair (Amst), 7, 1298-1308. 103. Robert, F., Pokholok, D.K., Hannett, N.M., Rinaldi, N.J., Chandy, M., Rolfe, A., Workman, J.L., Gifford, D.K. and Young, R.A. (2004) Global position and recruitment of HATs and HDACs in the yeast genome. Mol Cell, 16, 199-209. 104. Tao, J., Hu, K., Chang, Q., Wu, H., Sherman, N.E., Martinowich, K., Klose, R.J., Schanen, C., Jaenisch, R., Wang, W. et al. (2009) Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and neurological function. Proc Natl Acad Sci U S A, 106, 4882-4887. 105. Mersman, D.P., Du, H.N., Fingerman, I.M., South, P.F. and Briggs, S.D. (2009) Polyubiquitination of the demethylase Jhd2 controls histone methylation and gene expression. Genes Dev, 23, 951-962. 106. Liu, W., Tanasa, B., Tyurina, O.V., Zhou, T.Y., Gassmann, R., Liu, W.T., Ohgi, K.A., Benner, C., Garcia-Bassets, I., Aggarwal, A.K. et al. (2010) PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature, 466, 508-512. 107. Brachmann, C.B., Davies, A., Cost, G.J., Caputo, E., Li, J., Hieter, P. and Boeke, J.D. (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast, 14, 115-132. 108. Lee, J.S. and Shilatifard, A. (2007) A site to remember: H3K36 methylation a mark for histone deacetylation. Mutat Res, 618, 130-134. 109. Zhao, X. and Rothstein, R. (2002) The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1. Proc Natl Acad Sci U S A, 99, 3746-3751. 110. de Nadal, E., Ammerer, G. and Posas, F. (2011) Controlling gene expression in response to stress. Nat Rev Genet, 12, 833-845. 111. Causton, H.C., Ren, B., Koh, S.S., Harbison, C.T., Kanin, E., Jennings, E.G., Lee, T.I., True, H.L., Lander, E.S. and Young, R.A. (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell, 12, 323-337. 112. Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D. and Brown, P.O. (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell, 11, 4241-4257. 113. Gasch, A.P. (2002) In Hohmann, S. and Mager, W. H. (eds.), Yeast Stress Responses. Springer-Verlag Heidelberg, New York, Vol. 1, pp. 11-70. 114. Berry, D.B., Guan, Q., Hose, J., Haroon, S., Gebbia, M., Heisler, L.E., Nislow, C., Giaever, G. and Gasch, A.P. (2011) Multiple means to the same end: the genetic basis of acquired stress resistance in yeast. PLoS Genet, 7, e1002353. 115. Slavov, N., Airoldi, E.M., van Oudenaarden, A. and Botstein, D. (2012) A conserved cell growth cycle can account for the environmental stress responses of divergent eukaryotes. Mol Biol Cell, 23, 1986-1997. 116. Berry, D.B. and Gasch, A.P. (2008) Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol Biol Cell, 19, 4580-4587. 117. Kandror, O., Bretschneider, N., Kreydin, E., Cavalieri, D. and Goldberg, A.L. (2004) Yeast adapt to near-freezing temperatures by STRE/Msn2,4-dependent induction of trehalose synthesis and certain molecular chaperones. Mol Cell, 13, 771-781. 118. Kensler, T.W., Wakabayashi, N. and Biswal, S. (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol, 47, 89-116. 119. Durrant, W.E. and Dong, X. (2004) Systemic acquired resistance. Annu Rev Phytopathol, 42, 185-209. 120. Gasch, A.P., Huang, M., Metzner, S., Botstein, D., Elledge, S.J. and Brown, P.O. (2001) Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Mol Biol Cell, 12, 2987-3003. 121. Verghese, J., Abrams, J., Wang, Y. and Morano, K.A. (2012) Biology of the Heat Shock Response and Protein Chaperones: Budding Yeast (Saccharomyces cerevisiae) as a Model System. Microbiol Mol Biol Rev, 76, 115-158. 122. Schmitt, A.P. and McEntee, K. (1996) Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 93, 5777-5782. 123. Martinez-Pastor, M.T., Marchler, G., Schuller, C., Marchler-Bauer, A., Ruis, H. and Estruch, F. (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J, 15, 2227-2235. 124. Huen, M.S. and Chen, J. (2008) The DNA damage response pathways: at the crossroad of protein modifications. Cell Res, 18, 8-16. 125. Lord, C.J. and Ashworth, A. (2012) The DNA damage response and cancer therapy. Nature, 481, 287-294. 126. Liang, C.Y., Hsu, P.H., Chou, D.F., Pan, C.Y., Wang, L.C., Huang, W.C., Tsai, M.D. and Lo, W.S. (2011) The histone H3K36 demethylase Rph1/KDM4 regulates the expression of the photoreactivation gene PHR1. Nucleic Acids Res, 39, 4151-4165. 127. Jenuwein, T. and Allis, C.D. (2001) Translating the histone code. Science, 293, 1074-1080. 128. Sikorski, R.S. and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics, 122, 19-27. 129. Knop, M., Siegers, K., Pereira, G., Zachariae, W., Winsor, B., Nasmyth, K. and Schiebel, E. (1999) Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast, 15, 963-972. 130. Belle, A., Tanay, A., Bitincka, L., Shamir, R. and O'Shea, E.K. (2006) Quantification of protein half-lives in the budding yeast proteome. Proc Natl Acad Sci U S A, 103, 13004-13009. 131. Zambelli, F., Pesole, G. and Pavesi, G. (2009) Pscan: finding over-represented transcription factor binding site motifs in sequences from co-regulated or co-expressed genes. Nucleic Acids Res, 37, W247-252. 132. Badis, G., Chan, E.T., van Bakel, H., Pena-Castillo, L., Tillo, D., Tsui, K., Carlson, C.D., Gossett, A.J., Hasinoff, M.J., Warren, C.L. et al. (2008) A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. Mol Cell, 32, 878-887. 133. Zhu, C., Byers, K.J., McCord, R.P., Shi, Z., Berger, M.F., Newburger, D.E., Saulrieta, K., Smith, Z., Shah, M.V., Radhakrishnan, M. et al. (2009) High-resolution DNA-binding specificity analysis of yeast transcription factors. Genome Res, 19, 556-566. 134. Teixeira, M.C., Monteiro, P., Jain, P., Tenreiro, S., Fernandes, A.R., Mira, N.P., Alenquer, M., Freitas, A.T., Oliveira, A.L. and Sa-Correia, I. (2006) The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res, 34, D446-451. 135. Chantret, I., Frenoy, J.P. and Moore, S.E. (2003) Free-oligosaccharide control in the yeast Saccharomyces cerevisiae: roles for peptide:N-glycanase (Png1p) and vacuolar mannosidase (Ams1p). Biochem J, 373, 901-908. 136. Lawrence, C.L., Botting, C.H., Antrobus, R. and Coote, P.J. (2004) Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Mol Cell Biol, 24, 3307-3323. 137. Collinson, E.J. and Grant, C.M. (2003) Role of yeast glutaredoxins as glutathione S-transferases. J Biol Chem, 278, 22492-22497. 138. Coleman, S.T., Fang, T.K., Rovinsky, S.A., Turano, F.J. and Moye-Rowley, W.S. (2001) Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. J Biol Chem, 276, 244-250. 139. Wu, J., Zhang, N., Hayes, A., Panoutsopoulou, K. and Oliver, S.G. (2004) Global analysis of nutrient control of gene expression in Saccharomyces cerevisiae during growth and starvation. Proc Natl Acad Sci U S A, 101, 3148-3153. 140. Tsankov, A.M., Thompson, D.A., Socha, A., Regev, A. and Rando, O.J. (2010) The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol, 8, e1000414. 141. Wade, S.L., Poorey, K., Bekiranov, S. and Auble, D.T. (2009) The Snf1 kinase and proteasome-associated Rad23 regulate UV-responsive gene expression. EMBO J, 28, 2919-2931. 142. Basrai, M.A., Velculescu, V.E., Kinzler, K.W. and Hieter, P. (1999) NORF5/HUG1 is a component of the MEC1-mediated checkpoint response to DNA damage and replication arrest in Saccharomyces cerevisiae. Mol Cell Biol, 19, 7041-7049. 143. Chang, Y., Wu, J., Tong, X.J., Zhou, J.Q. and Ding, J. (2011) Crystal structure of the catalytic core of Saccharomyces cerevesiae histone demethylase Rph1: insights into the substrate specificity and catalytic mechanism. Biochem J, 433, 295-302. 144. Vandamme, J., Lettier, G., Sidoli, S., Di Schiavi, E., Norregaard Jensen, O. and Salcini, A.E. (2012) The C. elegans H3K27 Demethylase UTX-1 Is Essential for Normal Development, Independent of Its Enzymatic Activity. PLoS Genet, 8, e1002647. 145. Mallette, F.A., Mattiroli, F., Cui, G., Young, L.C., Hendzel, M.J., Mer, G., Sixma, T.K. and Richard, S. (2012) RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites. EMBO J, 31, 1865-1878. 146. Venters, B.J., Wachi, S., Mavrich, T.N., Andersen, B.E., Jena, P., Sinnamon, A.J., Jain, P., Rolleri, N.S., Jiang, C., Hemeryck-Walsh, C. et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell, 41, 480-492. 147. Rinn, J.L. and Huarte, M. (2011) To repress or not to repress: this is the guardian's question. Trends Cell Biol, 21, 344-353. 148. Small, S., Kraut, R., Hoey, T., Warrior, R. and Levine, M. (1991) Transcriptional regulation of a pair-rule stripe in Drosophila. Genes Dev, 5, 827-839. 149. Huebert, D.J., Kuan, P.F., Keles, S. and Gasch, A.P. (2012) Dynamic changes in nucleosome occupancy are not predictive of gene expression dynamics but are linked to transcription and chromatin regulators. Mol Cell Biol, 32, 1645-1653. 150. Ramsdale, M., Selway, L., Stead, D., Walker, J., Yin, Z., Nicholls, S.M., Crowe, J., Sheils, E.M. and Brown, A.J. (2008) MNL1 regulates weak acid-induced stress responses of the fungal pathogen Candida albicans. Mol Biol Cell, 19, 4393-4403. 151. Hlynialuk, C., Schierholtz, R., Vernooy, A. and van der Merwe, G. (2008) Nsf1/Ypl230w participates in transcriptional activation during non-fermentative growth and in response to salt stress in Saccharomyces cerevisiae. Microbiology, 154, 2482-2491. 152. Smith, J.J., Miller, L.R., Kreisberg, R., Vazquez, L., Wan, Y. and Aitchison, J.D. (2011) Environment-responsive transcription factors bind subtelomeric elements and regulate gene silencing. Mol Syst Biol, 7, 455. 153. Gaston, K. and Jayaraman, P.S. (2003) Transcriptional repression in eukaryotes: repressors and repression mechanisms. Cell Mol Life Sci, 60, 721-741. 154. Weiner, A., Chen, H.V., Liu, C.L., Rahat, A., Klien, A., Soares, L., Gudipati, M., Pfeffner, J., Regev, A., Buratowski, S. et al. (2012) Systematic dissection of roles for chromatin regulators in a yeast stress response. PLoS Biol, 10, e1001369. 155. Bodenmiller, B., Campbell, D., Gerrits, B., Lam, H., Jovanovic, M., Picotti, P., Schlapbach, R. and Aebersold, R. (2008) PhosphoPep--a database of protein phosphorylation sites in model organisms. Nat Biotechnol, 26, 1339-1340. 156. Huber, A., Bodenmiller, B., Uotila, A., Stahl, M., Wanka, S., Gerrits, B., Aebersold, R. and Loewith, R. (2009) Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev, 23, 1929-1943. 157. Zhang, J., Vaga, S., Chumnanpuen, P., Kumar, R., Vemuri, G.N., Aebersold, R. and Nielsen, J. (2011) Mapping the interaction of Snf1 with TORC1 in Saccharomyces cerevisiae. Mol Syst Biol, 7, 545. 158. Swinnen, E., Wanke, V., Roosen, J., Smets, B., Dubouloz, F., Pedruzzi, I., Cameroni, E., De Virgilio, C. and Winderickx, J. (2006) Rim15 and the crossroads of nutrient signalling pathways in Saccharomyces cerevisiae. Cell Div, 1, 3. 159. Soufi, B., Kelstrup, C.D., Stoehr, G., Frohlich, F., Walther, T.C. and Olsen, J.V. (2009) Global analysis of the yeast osmotic stress response by quantitative proteomics. Mol Biosyst, 5, 1337-1346. 160. De Nadal, E., Zapater, M., Alepuz, P.M., Sumoy, L., Mas, G. and Posas, F. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63066 | - |
dc.description.abstract | 基因表現決定了細胞的特性以及適度的生理反應,真核生物的DNA包裹在與組蛋白所纏繞成的核小體中,組蛋白上的後轉譯修飾能調控所有以DNA為模板的細胞生理活動。其中如何控制組蛋白的甲基化的動態平衡為基因調控重要的研究主題之一。本論文主要研究酵母菌中的組蛋白去甲基酶Rph1參與基因轉錄的調控機制。
本論文第一部份主要探討Rph1對於光解酶基因PHR1的轉錄抑制機制。Rph1可透過其去甲基酶活性而有效的抑制光解酶基因PHR1的轉錄,並利用其鋅手指結構結合到光解酶基因PHR1啟動子的上游抑制區域,並在核酸受損訊號活化之後離開PHR1啟動子,進而引發光解酶基因PHR1的轉錄;Rph1所導致的組蛋白去甲基化並能和轉譯抑制因子去乙醯基酶Rpd3一同合作達到組蛋白上甲基化與乙醯基化的交互作用,而抑制基因轉錄。檢查點蛋白Rad53能透過其激酶活性調控Rph1上的磷酸化修飾,改變Rph1結合染色質與否進而改變染色質構造來控制下游基因的轉錄。 第二部份針對Rph1調控標的進行全面性的分析。利用微陣列找出在剔除RPH1的突變株中差別表現的基因群,結果顯示Rph1在正常生長的細胞中主要功能為轉錄抑制因子,許多逆境相關基因其啟動子都含有Rph1辨識結合序列(CCCCTWA),值得注意的是許多Rph1抑制的基因屬於”環境逆境共同反應基因”,受到各式各樣不同逆境共同引發表現的基因群,包含DNA損傷以及氧化壓力等等;Rph1可以直接結合到標的基因的啟動子進而抑制其表現,逆境可引發Rph1磷酸化修飾並且離開啟動子同時Rph1蛋白量也減少進而促使基因轉錄。 綜合而言,本論文發現了去甲基酶Rph1可經由兩種不同路徑調控基因表現:透過Rph1去甲基化酵素活性或透過Rph1直接結合到染色質,影響許多逆境相關基因。而在不同的環境底下,許多訊息傳遞路徑可能參與調控Rph1的磷酸化或是蛋白質表現量以及控制其染色質結合能力與否,來嚴密調節Rph1標的基因,適切反應不同環境的生理功能,以達到細胞正常生長的平衡。 | zh_TW |
dc.description.abstract | Alteration of gene expression is critical for cellular processes. The eukaryotic genome is wrapped with histone proteins to form a highly ordered chromatin structure. The post-translational modifications on histones provide pivotal regulations for DNA-templated events. The dynamics of histone methylation have emerged as an important issue since the identification of histone demethylases. This dissertation is focused on the mechanistic roles of the H3K36 demethylase Rph1 in transcriptional regulation.
First (Chapter II), we revealed that Rph1 is associated with the URS region of the PHR1 promoter via its zinc-finger domains and dissociated after UV irradiation. Rph1-mediated histone demethylation influences the dynamic cross-talk between histone methylation and acetylation in cooperation with the co-repressor Rpd3 on the promoter region. Furthermore, the checkpoint protein kinase Rad53 modulates Rph1 phosphorylation and dissociation leading to full activation of the PHR1 expression. Phosphorylation at S652 of Rph1 potentially contributes to its dissociation from chromatin and the transcriptional de-repression of PHR1 in response to DNA damage. H3K36 demethylase Rph1 regulates PHR1 expression by association with the promoter and by altering chromatin modifications under the control of DNA-damage checkpoint signaling. Second (Chapter III), we explored the regulatory network of Rph1 in yeast by microarray analysis. More than 75% of Rph1-regulated genes showed increased expression in the rph1-deletion mutant, as compared with the wild type, suggesting that Rph1 is mainly a transcriptional repressor. The binding motif 5’- CCCCTWA -3’, which resembles the stress response element (STRE), is overrepresented in the promoters of Rph1-repressed genes. A significant proportion of Rph1-regulated genes respond to DNA damage and environmental stresses. Rad53 negatively modulated Rph1 protein level, which indicates a mechanistic role of Rad53 in the expression of Rph1-regulated genes. Furthermore, the results showed that Rph1 was a labile protein and the JmjN domain was important in maintaining protein stability and the repressive effect of Rph1. Rph1 is directly associated with the promoter region of targeted genes and dissociated from chromatin upon DNA damage and oxidative stress. Here, we demonstrate Rph1 functions as a transcriptional repressor and an integral component connecting different signaling pathways responding to genotoxic stresses. The H3K36 demethylase activity and DNA binding affinity of Rph1 coordinately regulate the expression of target genes. Rph1 protein is highly dynamic under the control of multiple signaling pathways. Both DNA damage and oxidative stress induce Rph1 phosphorylation and dissociation from the promoters leading to transcriptional de-repression of Rph1 targets. Taken together, the delicate control of the H3K36 demethylase Rph1 not only increase the complexity of transcriptional regulation but also contributes to the maintenance of homeostasis and cell viability. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T16:21:05Z (GMT). No. of bitstreams: 1 ntu-102-F94442006-1.pdf: 2581904 bytes, checksum: 5e5418c56a3297f2dd30a11105927c71 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 論文審定書 i
謝誌 ii 中文摘要 iii Abstract iv Table of Contents vi List of Tables ix List of Figures x List of Abbreviations xii Chapter I: Introduction 1 1.1. Overview 2 1.2. Epigenetics and Chromatin 3 DNA, histones and chromatin 3 Dynamics of chromatin structure (PTM on histones) 3 Transcription in eukaryotes 5 Histone acetylation and deacetylation in gene expression 7 H3K36 methylation 8 1.3. Histone demethylases 10 LSD1 versus Jumonji domain-containing histone demethylases 10 Histone demethylases in Saccharomyces cerevisiae 11 Rph1 and Gis1 12 1.4. DNA damage response in transcription 13 Checkpoint activation 13 Transcriptional regulations in response to DNA damage in yeast 15 The regulation of PHR1 expression 15 1.5. Specific aims of this study 16 Chapter II: The histone H3K36 demethylase Rph1/KDM4 regulates the expression of the photoreactivation gene PHR1 17 2.1. Introduction 18 2.2. Materials and Methods 21 2.3. Results 24 The H3K36 demethylase Rph1 regulates PHR1 transcription 24 Rph1 binds to the URS of PHR1 through ZF domains and modulates chromatin modifications in specific regions of the PHR1 promoter 26 Cross-talk between H3K36 tri-methylation and H3 acetylation occurs at the PHR1 promoter 28 Rph1 is dissociated from the PHR1 promoter in response to DNA damage 30 Rad53 regulates the expression of PHR1 and dissociation of Rph1 in response to DNA damage 32 Activated Rad53 complex phosphorylates Rph1 and S652A mutated Rph1 impairs the dissociation in response to DNA damage 34 2.4. Discussion 36 2.5. Tables 42 2.6. Figures and Legends 46 Chapter III: Dissociation of the H3K36 demethylase Rph1 from chromatin mediates de-repression of environmental stress-response genes under genotoxic stress in Saccharomyces cerevisiae 56 3.1. Introduction 57 3.2. Materials and Methods 60 3.3. Results 63 Rph1 regulates the expression of genes associated with DNA damage and the ESR 63 Rph1-repressed genes are induced by DNA damage in a Rad53-dependent manner 65 The checkpoint kinase Rad53 negatively regulates Rph1 protein 66 Rph1 represses the expression of GTT1 through functional JmjN and ZF domains 67 Rph1 binds to the gene promoters and is dissociated with DNA damage 69 Rph1 is phosphorylated with oxidative stress, which leads to Rph1 dissociation and transcriptional activation 69 3.4. Discussion 71 3.5. Tables 76 3.6. Figures and Legends 86 Chapter IV: Conclusions and future implications 94 4.1. Summary 95 4.2. Future implications 95 Rph1 restricts the chromatin accessibility to the transcriptional activators such as Msn2/4 95 Functional link between Rph1 and chronological life span 96 (i) The chronological aging in budding yeast 97 (ii) Rph1 is highly transcribed upon DS and required for stress resistance in aging yeasts 98 (iii) Rph1 protein is phosphorylated upon aging in a Rim15-dependent manner 98 Perspectives of Rph1 in CLS 99 4.3. Figures and Legends 101 References 105 Appendix 120 | |
dc.language.iso | en | |
dc.title | 探討酵母菌去甲基酶Rph1因應基因毒性逆境之轉錄調控機制 | zh_TW |
dc.title | Mechanistic studies of the H3K36 demethylase Rph1 in transcriptional regulation responding to genotoxic stress in Saccharomyces cerevisiae | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 張明富(Ming-Fu Chang),王隆祺(Long-Chi Wang),林敬哲(Jing-Jer Lin),張智芬(Zee-Fen Chang),鄧述諄(Shu-Chun Teng) | |
dc.subject.keyword | 染色質,去甲基酶,轉錄調控,逆境反應, | zh_TW |
dc.subject.keyword | chromatin,histone demethylase,transcriptional regulation,stress response, | en |
dc.relation.page | 120 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-01-30 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
顯示於系所單位: | 生物化學暨分子生物學科研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 2.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。