請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63018完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳秀熙(Hsiu-Hsi Chen) | |
| dc.contributor.author | Yi-Ming Liu | en |
| dc.contributor.author | 劉翊民 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:18:59Z | - |
| dc.date.available | 2013-03-04 | |
| dc.date.copyright | 2013-03-04 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-02-04 | |
| dc.identifier.citation | 1. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2005;365(9468):1415-28.
2. Kassi E, Pervanidou P, Kaltsas G, Chrousos G. Metabolic syndrome: definitions and controversies. Bmc Med 2011;9. 3. Global atlas on cardiovascular disease prevention and control: WHO, 2011. 4. Grundy SM. Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 2008;28(4):629-36. 5. Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, et al. The Metabolic Syndrome and Cardiovascular Risk: A Systematic Review and Meta-Analysis. Journal of the American College of Cardiology 2010;56(14):1113-32. 6. Reddy KS, Yusuf S. Emerging Epidemic of Cardiovascular Disease in Developing Countries. Circulation 1998;97(6):596-601. 7. Wilson PWF, D’Agostino RB, Parise H, Sullivan L, Meigs JB. Metabolic Syndrome as a Precursor of Cardiovascular Disease and Type 2 Diabetes Mellitus. Circulation 2005;112(20):3066-72. 8. Isomaa B, Almgren P, Tuomi T, Forsen B, Lahti K, Nissen M, et al. Cardiovascular Morbidity and Mortality Associated With the Metabolic Syndrome. Diabetes Care 2001;24(4):683-89. 9. Lakka H LDELTA, et al. THe metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA: The Journal of the American Medical Association 2002;288(21):2709-16. 10. Wilson Pf KWBSHDARB. CLustering of metabolic factors and coronary heart disease. Archives of Internal Medicine 1999;159(10):1104-09. 11. Sundstrom J, Riserus U, Byberg L, Zethelius B, Lithell H, Lind L. Clinical value of the metabolic syndrome for long term prediction of total and cardiovascular mortality: prospective, population based cohort study. BMJ 2006;332(7546):878-82. 12. Sundstrom J, Vallhagen E, Riserus U, Byberg L, Zethelius B, Berne C, et al. Risk Associated With the Metabolic Syndrome Versus the Sum of Its Individual Components. Diabetes Care 2006;29(7):1673-74. 13. Vasan RS. Biomarkers of Cardiovascular Disease. Circulation 2006;113(19):2335-62. 14. May A, Wang TJ. Biomarkers for cardiovascular disease: challenges and future directions. Trends in Molecular Medicine 2008;14(6):261-67. 15. WM B. Introduction to bayesian statistics. Hoboken, New Jersey: John Wiley & Sons, 2004. 16. Round A. Introduction to clinical reasoning. Journal of Evaluation in Clinical Practice 2001;7(2):109-17. 17. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988;37(12):1595-607. 18. Organization WH. Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications. Report of a WHO Consultation, 1999. 19. Comment on the provisional report from the WHO consultation. Diabetic Medicine 1999;16(5):442-43. 20. Expert Panel on Detection E, Adults ToHBCi. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA: The Journal of the American Medical Association 2001;285(19):2486-97. 21. Einhorn MDFFD. American College of Endocrinology Position Statement on the Insulin Resistance Syndrome*. Endocrine Practice 2003;9(0):5-21. 22. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and Management of the Metabolic Syndrome. Circulation 2005;112(17):2735-52. 23. IDF. The IDF consensus worldwide definition of the metabolic syndrome. Available at http://www.idf.org/webdata/docs/MetSyndrome_FINAL.pdf. 24. Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the Metabolic Syndrome. Circulation 2009;120(16):1640-45. 25. RB E. Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003–2006.: National health statistics reports, 2009:1-7. 26. Nestel P LR, Low LP, et al. Metabolic syndrome: recent prevalence in East and Southeast Asian populations. Asia Pac J Clin Nutr 2007;16:362-67. 27. Ryu S, Song J, Choi B-Y, Lee S-J, Kim WS, Chang Y, et al. Incidence and Risk Factors for Metabolic Syndrome in Korean Male Workers, Ages 30 to 39. Annals of epidemiology 2007;17(4):245-52. 28. Nakanishi N, Suzuki K, Tatara K. Serum γ-Glutamyltransferase and Risk of Metabolic Syndrome and Type 2 Diabetes in Middle-Aged Japanese Men. Diabetes Care 2004;27(6):1427-32. 29. Koskinen J, Magnussen CG, Taittonen L, Rasanen L, Mikkila V, Laitinen T, et al. Arterial Structure and Function After Recovery From the Metabolic Syndrome. Circulation 2010;121(3):392-400. 30. de Ferranti SD. Recovery from Metabolic Syndrome Is Both Possible and Beneficial. Clinical Chemistry 2010;56(7):1053-55. 31. Schorr SG, Slooff CJ, Bruggeman R, Taxis K. The incidence of metabolic syndrome and its reversal in a cohort of schizophrenic patients followed for one year. Journal of Psychiatric Research 2009;43(13):1106-11. 32. Chen RCMC, S. F. MD, MPH; Su, C. L. MD; H. Chen, T. H. DDS, PhD; Yen, M. F. MS; Wu, H. M. BS; Chen, Z. Y. MD; Liou, H. H. MD, PhD. Prevalence, incidence, and mortality of PD: A door-to-door survey in Ilan County, Taiwan. Neurology 2001;Volume 57(9), 13 November 2001, :pp 1679-86. 33. Ford ES. Risks for All-Cause Mortality, Cardiovascular Disease, and Diabetes Associated With the Metabolic Syndrome. Diabetes Care 2005;28(7):1769-78. 34. Ho JS, Cannaday JJ, Barlow CE, Mitchell TL, Cooper KH, FitzGerald SJ. Relation of the Number of Metabolic Syndrome Risk Factors With All-Cause and Cardiovascular Mortality. The American Journal of Cardiology 2008;102(6):689-92. 35. Chien K-L, Hsu H-C, Sung F-C, Su T-C, Chen M-F, Lee Y-T. Metabolic syndrome as a risk factor for coronary heart disease and stroke: An 11-year prospective cohort in Taiwan community. Atherosclerosis 2007;194(1):214-21. 36. Huang K-C, Lee L-T, Chen C-Y, Sung P-K. All-cause and Cardiovascular Disease Mortality Increased With Metabolic Syndrome in Taiwanese. Obesity 2008;16(3):684-89. 37. Hwang L-C, Bai C-H, Chen C-J. Prevalence of Obesity and Metabolic Syndrome in Taiwan. Journal of the Formosan Medical Association = Taiwan yi zhi 2006;105(8):626-35. 38. Statistics Cause of Death Statistics 2010. http://www.doh.gov.tw/EN2006/DM/DM2.aspx?now_fod_list_no=12228&class_no=390&level_no=2: Department of Health, Excutive Yuan, Taiwan. 39. Cooney MT, Dudina A, D'Agostino R, Graham IM. Cardiovascular Risk-Estimation Systems in Primary Prevention. Circulation 2010;122(3):300-10. 40. Siontis GCM, Tzoulaki I, Siontis KC, Ioannidis JPA. Comparisons of established risk prediction models for cardiovascular disease: systematic review. BMJ 2012;344. 41. Berger JS, Jordan CO, Lloyd-Jones D, Blumenthal RS. Screening for cardiovascular risk in asymptomatic patients. J Am Coll Cardiol 2010;55(12):1169-77. 42. Kannel WB, McGee D, Gordon T. A general cardiovascular risk profile: the Framingham Study. Am J Cardiol 1976;38(1):46-51. 43. Wilson PWF, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of Coronary Heart Disease Using Risk Factor Categories. Circulation 1998;97(18):1837-47. 44. D'Agostino SRBGSSLMWP. Validation of the framingham coronary heart disease prediction scores: Results of a multiple ethnic groups investigation. JAMA: The Journal of the American Medical Association 2001;286(2):180-87. 45. Liu J HYDASRB, et al. Predictive value for the chinese population of the framingham chd risk assessment tool compared with the chinese multi-provincial cohort study. JAMA: The Journal of the American Medical Association 2004;291(21):2591-99. 46. Conroy RM, Pyorala K, Fitzgerald AP, Sans S, Menotti A, De Backer G, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. European Heart Journal 2003;24(11):987-1003. 47. Ridker P BJERNCNR. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: The reynolds risk score. JAMA: The Journal of the American Medical Association 2007;297(6):611-19. 48. Ridker PM, Paynter NP, Rifai N, Gaziano JM, Cook NR. C-Reactive Protein and Parental History Improve Global Cardiovascular Risk Prediction. The Reynolds Risk Score for Men. Circulation 2008. 49. Woodward M, Brindle P, Tunstall-Pedoe H. Adding social deprivation and family history to cardiovascular risk assessment: the ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC). Heart 2007;93(2):172-76. 50. Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, May M, Brindle P. Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study. BMJ 2007;335(7611):136. 51. D’Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General Cardiovascular Risk Profile for Use in Primary Care. Circulation 2008;117(6):743-53. 52. Brindle PM, McConnachie A, Upton MN, Hart CL, Davey Smith G, Watt GC. The accuracy of the Framingham risk-score in different socioeconomic groups: a prospective study. Br J Gen Pract 2005;55(520):838-45. 53. Menotti A, Lanti M, Puddu PE, Kromhout D. Coronary heart disease incidence in northern and southern European populations: a reanalysis of the seven countries study for a European coronary risk chart. Heart 2000;84(3):238-44. 54. Cox DR MH. The Theory of Stochastic Process: Methuen &Co Ltd, 1965. 55. Dani Gamerman HFL. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, first Edition Chapman & Hall, 1997. 56. Chen HH, Duffy, S. W., Tabar L. and Day N. E. Markov chain models for progression of breast cancer: Part I : tumour attributes and the preclinical screen-detectable phase. Journal of Epidemiology and Biostatistics 1997;2:9-23. 57. Duffy SW, Day NE, Tabar L, Chen H-H, Smith TC. Markov Models of Breast Tumor Progression: Some Age-Specific Results. JNCI Monographs 1997;1997(22):93-97. 58. Chang C-M, Lin W-C, Kuo H-S, Yen M-F, Chen TH-H. Estimation and prediction system for multi-state disease process: application to analysis of organized screening regime. Journal of Evaluation in Clinical Practice 2007;13(6):867-81. 59. Tseng C-D, Yen, Amy Ming-Fang, Chiu, Sherry Yueh-Hsia, Chen, Li-Sheng, Chen, Hsiu-Hsi, Chang, Shu-Hui. A Predictive Model for Risk of Prehypertension and Hypertension and Expected Benefit After Population-Based Life-Style Modification (KCIS No. 24). Am J Hypertens 2012;25(2):9. 60. Chen TH, Chiu YH, Luh DL, Yen MF, Wu HM, Chen LS, et al. Community-based multiple screening model: design, implementation, and analysis of 42,387 participants. Cancer 2004;100(8):1734-43. 61. Chiu Y-H, Chen L-S, Chan C-C, Liou D-M, Wu S-C, Kuo H-S, et al. Health information system for community-based multiple screening in Keelung, Taiwan (Keelung Community-based Integrated Screening No. 3). International Journal of Medical Informatics 2006;75(5):369-83. 62. Lin W-Y, Chiu T-Y, Lee L-T, Lin C-C, Huang C-Y, Huang K-C. Betel nut chewing is associated with increased risk of cardiovascular disease and all-cause mortality in Taiwanese men. The American Journal of Clinical Nutrition 2008;87(5):1204-11. 63. Yen AM-F, Chen L-S, Chiu Y-H, Boucher BJ, Chen TH-H. A prospective community-population-registry–based cohort study of the association between betel-quid chewing and cardiovascular disease in men in Taiwan (KCIS no. 19). The American Journal of Clinical Nutrition 2008;87(1):70-78. 64. Little RJA, & Rubin, D. B. Statistical analysis with missing data. New York: John Wiley & Sons, 1987. 65. Pencina MJ, D'Agostino RB, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Statistics in Medicine 2011;30(1):11-21. 66. Chen THH, Kuo HS, Yen MF, Lai MS, Tabar L, Duffy SW. Estimation of Sojourn Time in Chronic Disease Screening without Data on Interval Cases. Biometrics 2000;56(1):167-72. 67. Ravaglia G, Forti P, Maioli F, Bastagli L, Chiappelli M, Montesi F, et al. Metabolic Syndrome. Diabetes Care 2006;29(11):2471-76. 68. Hildrum B, Mykletun A, Dahl A, Midthjell K. Metabolic syndrome and risk of mortality in middle-aged versus elderly individuals: the Nord-Trondelag Health Study (HUNT). Diabetologia 2009;52(4):583-90. 69. Hui W, Liu Z, Ho S. Metabolic syndrome and all-cause mortality: a meta-analysis of prospective cohort studies. European Journal of Epidemiology 2010;25(6):375-84. 70. Lloyd-Jones DM, Leip EP, Larson MG, D’Agostino RB, Beiser A, Wilson PWF, et al. Prediction of Lifetime Risk for Cardiovascular Disease by Risk Factor Burden at 50 Years of Age. Circulation 2006;113(6):791-98. 71. Tardif J-C, Heinonen T, Orloff D, Libby P. Vascular Biomarkers and Surrogates in Cardiovascular Disease. Circulation 2006;113(25):2936-42. 72. Kozera L, Andrews J, Morgan AW. Cardiovascular risk and rheumatoid arthritis—the next step: differentiating true soluble biomarkers of cardiovascular risk from surrogate measures of inflammation. Rheumatology 2011;50(11):1944-54. 73. A Practical Guide on Modeling Competing Risk Data by Giorgos. Bakoyannis and Giota Touloumi on behalf of CASCADE Collaboration. www.cascade-collaboration.org downloaded on 2012/12/31. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63018 | - |
| dc.description.abstract | 背景
闡明代謝症候群的概況與其對心血管病的衝擊對公衛政策制定與臨床指南建立至為重要。 方法 本論文所研究的資料來自參與基隆闔家歡篩檢(Keelung Community-based Integrated Screening, KCIS)計劃的民眾。首先,描述代謝症候群的標準化盛行率與發生率。在貝式架構下,依序置入人口學特徵、代謝症候群因子和傳統危險因子來建立心血管病預測模型。最後,利用六階段馬爾可夫模式描述代謝症候群的自然病史、心血管疾病的發生率與死亡率。 結果 代謝症候群盛行率、發生率在男性、女性分別為19.0%、5.4%和13.4%、4.6%。代謝症候群患者相對於未罹患代謝症候群者其死於心血管病死亡相對危險性為1.5。針對某47歲男子,利用建立的貝式模型納入其代謝分數(概似比1.488)後,可將其五年心血管病風險從基本的11.2%更新為15.8%。若加上抽菸(概似比1.62)、心血管病家族史(概似比1.47)等資訊,風險升至30.9%。我們估計代謝異常與心血管病自然病史各階段的轉移率。每年從輕度代謝異常變成代謝症候群的機會6.15%,反之,回復正常的機會為29.11%。代謝症候群患者每年心血管病發生率為20.2%,且風險與代謝異常嚴重度同步。 結論 本文描述代謝症候群與心血管病的流行病學、建立貝式模型以容納不同程度證據來預測心血管病風險、並探討心血管病與代謝症候群的動態變化。這些風險預測模型不論對高危險病人的臨床鑑別或衛生政策的評估均極為有用。 | zh_TW |
| dc.description.abstract | Background
Elucidating the epidemic profiles and the impact of Mets on CVD in general population is important in developing public health policy and clinical guideline. Methods Subjects from Keelung Community-based Integrated Screening (KCIS) Program were enrolled. We reported standardizes prevalence and incidence rate of Mets, and constructed Bayesian models to estimate the CVD risk by sequentially incorporating demographic features, metabolic syndrome components and conventional risk factors. Finally, a six-state Markov process was used to describe the natural history of Mets, and incidence and mortality of CVD. Results The age-adjusted prevalence and incidence in men and women were 19.0%, 5.4% and 13.4% 4.6%, respectively. The adjusted RR of Mets on CVD was 1.5. By applying the constructed Bayesian model, the predicted five-year CVD risk for a 47-year-old man could be updated to 15.8% from basic 11.2% after incorporating his metabolic score (Likelihood ratio (LR)=1.488), and further 30.9% after considering smoking status (LR=1.62) and family history(LR=1.47). We estimated transition rates between different states of Mets by the Markov model. In subjects of MMD, about 6.15% progressed to Mets annually and 29.11% regressed to FMD. The annual CVD incidence of Mets cohort was 20.2% and the risk increased with the severity of metabolic status. Conclusions In this thesis, we described the epidemiological profiles for Mets and CVD, demonstrated a sequential Bayesian approach for individual risk prediction, and studied the dynamic changes regarding Mets and CVD. These models are very useful either from personal viewpoints of high risk group identification or population viewpoints of police policies evaluation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:18:59Z (GMT). No. of bitstreams: 1 ntu-102-D96842007-1.pdf: 1114721 bytes, checksum: e894a7ebaeec0fab444db1d350c2fa0c (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Contents
摘要……….…………………………………………………………….……………i Abstract…………………………….…….………….……………………….……..iii Figure Contents…….………………………………………………….……………vii Table Contents…….………………………………………………….……………viii Chapter 1: Introduction 1.1 Background……….………………………………………………….……………1 1.2 Aims…………………………….…….………….……………………….……..6 Chap 2 Literature Review 2.1 The History and Definition of Metabolic Syndrome………………………….…7 2.2 Prevalence and Incidence of Metabolic Syndrome……………………………....9 2.3 CVD and Total Mortality of Metabolic syndrome……………………………....12 2.4 Epidemiology of Metabolic Syndrome in Taiwan……………………………….13 2.5 CVD Risk Prediction Pertaining to Metabolic Syndrome……………………...15 2.5.1 Framingham Risk Score (FRS)………………………………………….16 2.5.2 The SCORE Project………………………………………………………17 2.5.3 Reynolds Risk Score………………………………………………….…18 2.5.4 The ASSIGN Risk Score ………………………………………………..19 2.5.5 QRISK Risk Score………………………………………………………20 2.5.6 Commentary…………………………………………………………….21 2.6 Multi state Model………………………………………………………………...24 Chapter 3 Material and Statistical Methods 3.1 Study Cohort …………………………………..………………………………...26 3.2 Data Collection…………………………………………………………………29 3.3 Glossary…………………………………………………………………………..31 3.4 Differential Equations for Prevalent and Incident Cases……………………..33 3.5 Prevalence, Incidence and Mortality…………………………………………….34 3.6 Risk Prediction Model for CVD……..………………………………………....35 3.7 Step-by-step Demonstration of Bayesian Models in a Sequential Manner………38 3.8 Classical logistic regression model………………………………………………44 3.9 Model Calibration with re-classification………………………………………....45 3.10 Model Validation………………………………………………………………..46 3.11 Multi state Markov Model for Dynamic Changes of Mets for predicting Incidence and Mortality of CVD..………………………………………………47 3.11.2 Data Structure………………………………………………………….…….51 Chapter 4 Result 4.1 Part I…………………….……………………………………………………….53 4.1.1 Baseline Characteristics……………………………….…………………….53 4.1.2 Prevalence, Incidence of Metabolic Syndrome……………….……………..53 4.1.3 Total and CVD Mortality…………………………………..……………….54 4.2 Part II……………………………………………………………………………56 4.2.1 Baseline Characteristics…………………………………………………..56 4.2.2 Basic Model (Prior Information)…………………………………………57 4.2.3 Likelihood Ratio and Posterior Odds………………………………………57 4.2.4 Regression Coefficients of Classical Model………………………………..58 4.2.5 Clinical Application………………………………………………………….58 4.2.6 Calibration with NRI………………………………………………………..59 4.2.7 Model Validation…………………………………………………..…….…60 4.3 Part III……………………………………………………………………………61 Chap 5 Discussion 5.1 Part I Basic Epidemiological Profiles…………………………………..…….....65 5.1.1 Prevalence/Incidence Ratio……………………………………………...65 5.1.2 Long term CVD mortality………………………………………………….67 5.2 Part II Bayesian Clinical Reasoning Model…………………………………….68 5.2.1 Clinical Reasoning with Sequential Approach……….…………………..68 5.2.2 Clinical Application…………………....…………………………………...69 5.2.3 Comparison with the previous study……………..…………………….…70 5.2.4 Limitation…………………………………………………………………..71 5.3 Part III Dynamic Markov Multistate Model……..……………………………….72 5.4 Conclusion………………………………………………………………………..75 Reference……………………………………………………………………….….99 Appendix 1 Evolution of the Metabolic Syndrome Definition……………………106 Appendix 2 Characteristics of Various CVD Prediction Algorithms……………….107 Appendix 3 Multi State Markov Model construction step by step………………….108 | |
| dc.language.iso | en | |
| dc.subject | 心血管病 | zh_TW |
| dc.subject | 風險預測 | zh_TW |
| dc.subject | 多階段馬可夫模式 | zh_TW |
| dc.subject | 貝式定理 | zh_TW |
| dc.subject | 代謝症候群 | zh_TW |
| dc.subject | Markov | en |
| dc.subject | Metabolic syndrome | en |
| dc.subject | Cardiovascular disease | en |
| dc.subject | Babyes'theorem | en |
| dc.subject | Prediction | en |
| dc.subject | Multi state | en |
| dc.title | 以代謝症候群為基礎的心血管病風險預測模型 | zh_TW |
| dc.title | Metabolic-Syndrome-Based Risk Prediction Model for Cardiovascular Disease | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 曾春典(Chuen-Den Tseng),簡國龍(Kuo-Liong Chien),黃國晉(Kuo-Chin Huang),梁繼權(Kai-Kuen Leung),陳保中(Pau-Chung Chen) | |
| dc.subject.keyword | 代謝症候群,心血管病,貝式定理,多階段馬可夫模式,風險預測, | zh_TW |
| dc.subject.keyword | Metabolic syndrome,Cardiovascular disease,Babyes' theorem,Prediction,Multi state,Markov, | en |
| dc.relation.page | 112 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-02-04 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 1.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
